山西省大同三中2018-2019学年高二上学期10月月考数学---精校Word版答案全

合集下载

大同区第三高级中学2018-2019学年高二上学期第二次月考试卷数学

大同区第三高级中学2018-2019学年高二上学期第二次月考试卷数学

大同区第三高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.函数f(x)=,则f(﹣1)的值为()A.1 B.2 C.3 D.42.定义在R上的奇函数f(x)满足f(x+3)=f(x),当0<x≤1时,f(x)=2x,则f (2015)=()A.2 B.﹣2 C.﹣D.3.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞)B.(1,)C.(2.+∞)D.(1,2)4.已知幂函数y=f(x)的图象过点(,),则f(2)的值为()A.B.﹣C.2 D.﹣25.曲线y=e x在点(2,e2)处的切线与坐标轴所围三角形的面积为()A.e2B.2e2C.e2D.e26.在等差数列{a n}中,3(a3+a5)+2(a7+a10+a13)=24,则此数列前13项的和是()A.13 B.26 C.52 D.567.不等式的解集为()A.或B.C.或D.8.奇函数f(x)在(﹣∞,0)上单调递增,若f(﹣1)=0,则不等式f(x)<0的解集是()A.(﹣∞,﹣1)∪(0,1)B.(﹣∞,﹣1)(∪1,+∞)C.(﹣1,0)∪(0,1) D.(﹣1,0)∪(1,+∞)9.已知集合P={x|﹣1<x<b,b∈N},Q={x|x2﹣3x<0,x∈Z},若P∩Q≠∅,则b的最小值等于()A.0 B.1 C.2 D.310.△ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且c=2a,则cosB=()A.B.C.D.11.已知等差数列{a n }的前n 项和为S n ,若m >1,且a m ﹣1+a m+1﹣a m 2=0,S 2m ﹣1=38,则m 等于( ) A .38B .20C .10D .912.已知正项数列{a n }的前n 项和为S n ,且2S n =a n +,则S 2015的值是( )A .B .C .2015D .二、填空题13.在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 .14.椭圆C : +=1(a >b >0)的右焦点为(2,0),且点(2,3)在椭圆上,则椭圆的短轴长为 .15.已知函数322()7f x x ax bx a a =++--在1x =处取得极小值10,则ba的值为 ▲ . 16.已知M N 、为抛物线24y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,||||10MF NF +=,则直线MN 的方程为_________.17.函数f (x )=﹣2ax+2a+1的图象经过四个象限的充要条件是 .18.如图,在三棱锥P ABC -中,PA PB PC ==,PA PB ⊥,PA PC ⊥,PBC △为等边三角形,则PC 与平面ABC 所成角的正弦值为______________.【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力.三、解答题19.在平面直角坐标系中,矩阵M 对应的变换将平面上任意一点P (x ,y )变换为点P (2x+y ,3x ).(Ⅰ)求矩阵M 的逆矩阵M ﹣1;(Ⅱ)求曲线4x+y ﹣1=0在矩阵M 的变换作用后得到的曲线C ′的方程.20.在直角坐标系xOy中,曲线C1的参数方程为C1:为参数),曲线C2:=1.(Ⅰ)在以O为极点,x轴的正半轴为极轴的极坐标系中,求C1,C2的极坐标方程;(Ⅱ)射线θ=(ρ≥0)与C1的异于极点的交点为A,与C2的交点为B,求|AB|.21.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)(不等式选做题)设,且,则的最小值为(几何证明选做题)如图,中,,以为直径的半圆分别交于点,若,则22.设f(x)=x2﹣ax+2.当x∈,使得关于x的方程f(x)﹣tf(2a)=0有三个不相等的实数根,求实数t 的取值范围.23.已知向量(+3)⊥(7﹣5)且(﹣4)⊥(7﹣2),求向量,的夹角θ.24.设函数f(x)=a(x+1)2ln(x+1)+bx(x>﹣1),曲线y=f(x)过点(e﹣1,e2﹣e+1),且在点(0,0)处的切线方程为y=0.(Ⅰ)求a,b的值;(Ⅱ)证明:当x≥0时,f(x)≥x2;(Ⅲ)若当x≥0时,f(x)≥mx2恒成立,求实数m的取值范围.大同区第三高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:由题意可得f(﹣1)=f(﹣1+3)=f(2)=log22=1故选:A【点评】本题考查分度函数求值,涉及对数的运算,属基础题.2.【答案】B【解析】解:因为f(x+3)=f(x),函数f(x)的周期是3,所以f(2015)=f(3×672﹣1)=f(﹣1);又因为函数f(x)是定义R上的奇函数,当0<x≤1时,f(x)=2x,所以f(﹣1)=﹣f(1)=﹣2,即f(2015)=﹣2.故选:B.【点评】本题主要考查了函数的周期性、奇偶性的运用,属于基础题,解答此题的关键是分析出f(2015)=f (3×672﹣1)=f(﹣1).3.【答案】C【解析】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.【点评】本题主要考查了双曲线的简单性质,直线与圆的位置关系,点到直线的距离公式等.考查了学生数形结合的思想的运用.4.【答案】A【解析】解:设幂函数y=f(x)=xα,把点(,)代入可得=α,∴α=,即f(x)=,故f(2)==,故选:A.5.【答案】D【解析】解析:依题意得y′=e x,因此曲线y=e x在点A(2,e2)处的切线的斜率等于e2,相应的切线方程是y﹣e2=e2(x﹣2),当x=0时,y=﹣e2即y=0时,x=1,∴切线与坐标轴所围成的三角形的面积为:S=×e2×1=.故选D.6.【答案】B【解析】解:由等差数列的性质可得:a3+a5=2a4,a7+a13=2a10,代入已知可得3×2a4+2×3a10=24,即a4+a10=4,故数列的前13项之和S13====26故选B【点评】本题考查等差数列的性质和求和公式,涉及整体代入的思想,属中档题.7.【答案】A【解析】令得,;其对应二次函数开口向上,所以解集为或,故选A答案:A8.【答案】A【解析】解:根据题意,可作出函数图象:∴不等式f(x)<0的解集是(﹣∞,﹣1)∪(0,1)故选A.9.【答案】C【解析】解:集合P={x|﹣1<x<b,b∈N},Q={x|x2﹣3x<0,x∈Z}={1,2},P∩Q≠∅,可得b的最小值为:2.故选:C.【点评】本题考查集合的基本运算,交集的意义,是基础题.10.【答案】B【解析】解:△ABC中,a、b、c成等比数列,则b2=ac,由c=2a,则b=a,=,故选B.【点评】本题考查余弦定理的运用,要牢记余弦定理的两种形式,并能熟练应用.11.【答案】C【解析】解:根据等差数列的性质可得:a m﹣1+a m+1=2a m,则a m﹣1+a m+1﹣a m2=a m(2﹣a m)=0,解得:a m=0或a m=2,若a m等于0,显然S2m﹣1==(2m﹣1)a m=38不成立,故有a m=2,∴S2m﹣1=(2m﹣1)a m=4m﹣2=38,解得m=10.故选C12.【答案】D【解析】解:∵2S n=a n+,∴,解得a1=1.当n=2时,2(1+a2)=,化为=0,又a2>0,解得,同理可得.猜想.验证:2S=…+=,n==,因此满足2S n=a n+,∴.∴S n=.∴S2015=.故选:D.【点评】本题考查了猜想分析归纳得出数列的通项公式的方法、递推式的应用,考查了由特殊到一般的思想方法,考查了推理能力与计算能力,属于难题.二、填空题13.【答案】.【解析】解:过CD作平面PCD,使AB⊥平面PCD,交AB与P,设点P到CD的距离为h,则有V=×2×h××2,当球的直径通过AB与CD的中点时,h最大为2,则四面体ABCD的体积的最大值为.故答案为:.【点评】本小题主要考查棱柱、棱锥、棱台的体积、球内接多面体等基础知识,考查运算求解能力,考查空间想象力.属于基础题.14.【答案】.【解析】解:椭圆C:+=1(a>b>0)的右焦点为(2,0),且点(2,3)在椭圆上,可得c=2,2a==8,可得a=4,b2=a2﹣c2=12,可得b=2,椭圆的短轴长为:4.故答案为:4.【点评】本题考查椭圆的简单性质以及椭圆的定义的应用,考查计算能力.15.【答案】1 2考点:函数极值【方法点睛】函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求f′(x)―→求方程f′(x)=0的根―→列表检验f′(x)在f′(x)=0的根的附近两侧的符号―→下结论.(3)已知极值求参数.若函数f (x )在点(x 0,y 0)处取得极值,则f ′(x 0)=0,且在该点左、右两侧的导数值符号相反.16.【答案】20x y --=【解析】解析: 设1122(,)(,)M x y N x y 、,那么12||||210MF NF x x +=++=,128x x +=,∴线段MN 的中点坐标为(4,2).由2114y x =,2224y x =两式相减得121212()()4()y y y y x x +-=-,而1222y y +=,∴12121y y x x -=-,∴直线MN 的方程为24y x -=-,即20x y --=.17.【答案】 ﹣ .【解析】解:∵f (x )=﹣2ax+2a+1,∴求导数,得f ′(x )=a (x ﹣1)(x+2). ①a=0时,f (x )=1,不符合题意;②若a >0,则当x <﹣2或x >1时,f ′(x )>0;当﹣2<x <1时,f ′(x )<0, ∴f (x )在(﹣2,1)是为减函数,在(﹣∞,﹣2)、(1,+∞)上为增函数; ③若a <0,则当x <﹣2或x >1时,f ′(x )<0;当﹣2<x <1时,f ′(x )>0, ∴f (x )在(﹣2,1)是为增函数,在(﹣∞,﹣2)、(1,+∞)上为减函数因此,若函数的图象经过四个象限,必须有f (﹣2)f (1)<0,即()()<0,解之得﹣.故答案为:﹣【点评】本题主要考查了利用导数研究函数的单调性与极值、函数的图象、充要条件的判断等知识,属于基础题.18. 【解析】三、解答题19.【答案】【解析】解:(Ⅰ)设点P(x,y)在矩阵M对应的变换作用下所得的点为P′(x′,y′),则即=,∴M=.又det(M)=﹣3,∴M﹣1=;(Ⅱ)设点A(x,y)在矩阵M对应的变换作用下所得的点为A′(x′,y′),则=M﹣1=,即,∴代入4x+y﹣1=0,得,即变换后的曲线方程为x+2y+1=0.【点评】本题主要考查矩阵与变换等基础知识,考查运算求解能力及化归与转化思想,属于中档题.20.【答案】【解析】解:(Ⅰ)曲线为参数)可化为普通方程:(x﹣1)2+y2=1,由可得曲线C1的极坐标方程为ρ=2cosθ,曲线C2的极坐标方程为ρ2(1+sin2θ)=2.(Ⅱ)射线与曲线C1的交点A的极径为,射线与曲线C2的交点B的极径满足,解得,所以.21.【答案】【解析】AB22.【答案】【解析】设f(x)=x2﹣ax+2.当x∈,则t=,∴对称轴m=∈(0,],且开口向下;∴时,t取得最小值,此时x=9∴税率t的最小值为.【点评】此题是个指数函数的综合题,但在求解的过程中也用到了构造函数的思想及二次函数在定义域内求最值的知识.考查的知识全面而到位!23.【答案】【解析】解:∵向量(+3)⊥(7﹣5)且(﹣4)⊥(7﹣2),∴=0,+8=0,∴=,化为,代入=0,化为:+16﹣cos2θ,∴,∴θ=或.【点评】本题考查了数量积的定义及其运算性质,考查了推理能力与计算能力,属于中档题.24.【答案】【解析】解:(Ⅰ)f′(x)=2a(x+1)ln(x+1)+a(x+1)+b,∵f′(0)=a+b=0,f(e﹣1)=ae2+b(e﹣1)=a(e2﹣e+1)=e2﹣e+1∴a=1,b=﹣1.…(Ⅱ)f(x)=(x+1)2ln(x+1)﹣x,设g(x)=(x+1)2ln(x+1)﹣x﹣x2,(x≥0),g′(x)=2(x+1)ln(x+1)﹣x,(g′(x))′=2ln(x+1)+1>0,∴g′(x)在[0,+∞)上单调递增,∴g′(x)≥g′(0)=0,∴g(x)在[0,+∞)上单调递增,∴g(x)≥g(0)=0.∴f(x)≥x2.…(Ⅲ)设h(x)=(x+1)2ln(x+1)﹣x﹣mx2,h′(x)=2(x+1)ln(x+1)+x﹣2mx,(Ⅱ)中知(x+1)2ln(x+1)≥x2+x=x(x+1),∴(x+1)ln(x+1)≥x,∴h′(x)≥3x﹣2mx,①当3﹣2m≥0即时,h′(x)≥0,∴h(x)在[0,+∞)单调递增,∴h(x)≥h(0)=0,成立.②当3﹣2m<0即时,h′(x)=2(x+1)ln(x+1)+(1﹣2m)x,h′′(x)=2ln(x+1)+3﹣2m,令h′′(x)=0,得,当x∈[0,x0)时,h′(x)<h′(0)=0,∴h(x)在[0,x0)上单调递减,∴h(x)<h(0)=0,不成立.综上,.…。

大同区高中2018-2019学年高二上学期第二次月考测试数学

大同区高中2018-2019学年高二上学期第二次月考测试数学

大同区高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 如图所示,在平行六面体ABCD ﹣A 1B 1C 1D 1中,点E 为上底面对角线A 1C 1的中点,若=+x+y,则( )A .x=﹣B .x=C .x=﹣D .x=2. 若f (x )为定义在区间G 上的任意两点x 1,x 2和任意实数λ(0,1),总有f (λx 1+(1﹣λ)x 2)≤λf (x 1)+(1﹣λ)f (x 2),则称这个函数为“上进”函数,下列函数是“上进”函数的个数是( )①f (x )=,②f (x )=,③f (x )=,④f (x )=.A .4B .3C .2D .13. 抛物线x=﹣4y 2的准线方程为( )A .y=1B .y=C .x=1D .x=4. 已知抛物线C :y x 82=的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FQ PF 2=,则=QF ( ) A .6B .3C .38D .34 第Ⅱ卷(非选择题,共100分)5. 把函数y=sin (2x ﹣)的图象向右平移个单位得到的函数解析式为( )A .y=sin (2x ﹣) B .y=sin (2x+)C .y=cos2xD .y=﹣sin2x6. 高考临近,学校为丰富学生生活,缓解高考压力,特举办一场高三学生队与学校校队的男子篮球比赛.由于爱好者众多,高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队.首发要求每个班至少1人,至多2人,则首发方案数为( ) A .720 B .270 C .390 D .3007.设1m>,在约束条件,,1.y xy mxx y≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my=+的最大值小于2,则m的取值范围为()A.(1,1B.(1)+∞ C. (1,3)D.(3,)+∞8.设函数y=x3与y=()x的图象的交点为(x0,y0),则x0所在的区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,4)9.已知是虚数单位,若复数22aiZi+=+在复平面内对应的点在第四象限,则实数的值可以是()A.-2 B.1 C.2 D.3 10.在平面直角坐标系中,直线y=x与圆x2+y2﹣8x+4=0交于A、B两点,则线段AB的长为()A.4B.4C.2D.211.已知直线l1经过A(﹣3,4),B(﹣8,﹣1)两点,直线l2的倾斜角为135°,那么l1与l2()A.垂直 B.平行 C.重合 D.相交但不垂直12.函数g(x)是偶函数,函数f(x)=g(x﹣m),若存在φ∈(,),使f(sinφ)=f(cosφ),则实数m的取值范围是()A.()B.(,] C.()D.(]二、填空题13.S n=++…+=.14.一个总体分为A,B,C三层,用分层抽样的方法从中抽取一个容量为15的样本,若B层中每个个体被抽到的概率都为,则总体的个数为.15.设f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣2)=0,当x>0时,xf′(x)﹣f(x)>0,则使得f (x)>0成立的x的取值范围是.16.阅读下图所示的程序框图,运行相应的程序,输出的n的值等于_________.17的位置关系是.18.在极坐标系中,点(2,)到直线ρ(cosθ+sinθ)=6的距离为.三、解答题19.已知函数f(x)=xlnx,求函数f(x)的最小值.20.某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利总额y元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该机床开始盈利?(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.21.为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名5595%的把握认为“歌迷”与性别有关?“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌213.841 6.635附:K2=.22.已知数列{a n}的前n项和S n=2n2﹣19n+1,记T n=|a1|+|a2|+…+|a n|.(1)求S n的最小值及相应n的值;(2)求T n.23.等差数列{a n}的前n项和为S n,已知a1=10,a2为整数,且S n≤S4。

大同区高级中学2018-2019学年上学期高三数学10月月考试题

大同区高级中学2018-2019学年上学期高三数学10月月考试题

大同区高级中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 设定义域为(0,+∞)的单调函数f (x ),对任意的x ∈(0,+∞),都有f[f (x )﹣lnx]=e+1,若x 0是方程f (x )﹣f ′(x )=e 的一个解,则x 0可能存在的区间是( ) A .(0,1) B .(e ﹣1,1) C .(0,e ﹣1) D .(1,e )2. 已知函数f (x )=⎩⎨⎧a x -1,x ≤1log a1x +1,x >1(a >0且a ≠1),若f (1)=1,f (b )=-3,则f (5-b )=( ) A .-14B .-12C .-34D .-543. 已知函数f (x )=log 2(x 2+1)的值域为{0,1,2},则满足这样条件的函数的个数为( )A .8B .5C .9D .274. 设F 为双曲线22221(0,0)x y a b a b-=>>的右焦点,若OF 的垂直平分线与渐近线在第一象限内的交点到另一条渐近线的距离为1||2OF ,则双曲线的离心率为( )A .BC .D .3【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想. 5. 在ABC ∆中,角A ,B ,C 的对边分别是,,,BH 为AC 边上的高,5BH =,若2015120aBC bCA cAB ++=,则H 到AB 边的距离为( )A .2B .3 C.1 D .46. 函数f (x )=有且只有一个零点时,a 的取值范围是( )A .a ≤0B .0<a <C .<a <1D .a ≤0或a >17. 对于复数,若集合具有性质“对任意,必有”,则当时,等于 ( )A1 B-1 C0 D8. 下列命题正确的是( )A .很小的实数可以构成集合.B .集合{}2|1y y x =-与集合(){}2,|1x y y x =-是同一个集合.C .自然数集 N 中最小的数是.D .空集是任何集合的子集.9. 设集合{}|||2A x R x =∈≤,{}|10B x Z x =∈-≥,则A B =( )A.{}|12x x <≤B.{}|21x x -≤≤C. {}2,1,1,2--D. {}1,2【命题意图】本题考查集合的概念,集合的运算等基础知识,属送分题.10.设m 、n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n ∥α,则m ⊥n ;②若α∥β,β∥γ,m ⊥α,则m ⊥γ; ③若m ⊥α,n ⊥α,则m ∥n ;④若α⊥β,m ⊥β,则m ∥α; 其中正确命题的序号是( ) A .①②③④ B .①②③ C .②④D .①③11.为得到函数sin 2y x =-的图象,可将函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象( )A .向左平移3π个单位B .向左平移6π个单位 C.向右平移3π个单位 D .向右平移23π个单位12.经过点()1,1M 且在两轴上截距相等的直线是( )A .20x y +-=B .10x y +-=C .1x =或1y =D .20x y +-=或0x y -=二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.设,x y满足条件,1,x y ax y+≥⎧⎨-≤-⎩,若z ax y=-有最小值,则a的取值范围为.14.如图所示,圆C中,弦AB的长度为4,则AB AC×的值为_______.【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想.15.已知A(1,0),P,Q是单位圆上的两动点且满足,则+的最大值为.16.下列四个命题申是真命题的是(填所有真命题的序号)①“p∧q为真”是“p∨q为真”的充分不必要条件;②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等;③在侧棱长为2,底面边长为3的正三棱锥中,侧棱与底面成30°的角;④动圆P过定点A(﹣2,0),且在定圆B:(x﹣2)2+y2=36的内部与其相内切,则动圆圆心P的轨迹为一个椭圆.三、解答题(本大共6小题,共70分。

大同县第三中学2018-2019学年高二上学期第二次月考试卷数学

大同县第三中学2018-2019学年高二上学期第二次月考试卷数学

大同县第三中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.2.高三年上学期期末考试中,某班级数学成绩的频率分布直方图如图所示,数据分组依次如下:[70,90),[90,110),[100,130),[130,150),估计该班级数学成绩的平均分等于()A.112 B.114 C.116 D.1203.已知A,B是以O为圆心的单位圆上的动点,且||=,则•=()A.﹣1 B.1 C.﹣D.4.已知集合M={0,1,2},则下列关系式正确的是()A.{0}∈M B.{0}∉M C.0∈M D.0⊆M5.设a是函数x的零点,若x0>a,则f(x0)的值满足()A.f(x0)=0 B.f(x0)<0C.f(x0)>0 D.f(x0)的符号不确定6.执行如图所示的程序框图,若输入的分别为0,1,则输出的()A.4 B.16 C.27 D.367.将n2个正整数1、2、3、…、n2(n≥2)任意排成n行n列的数表.对于某一个数表,计算某行或某列中的任意两个数a、b(a>b)的比值,称这些比值中的最小值为这个数表的“特征值”.当n=2时,数表的所有可能的“特征值”的最大值为()A.B.C.2 D.38.若函数f(x)的定义域为R,则“函数f(x)是奇函数”是“f(0)=0”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.不等式≤0的解集是()A.(﹣∞,﹣1)∪(﹣1,2)B.[﹣1,2] C.(﹣∞,﹣1)∪[2,+∞) D.(﹣1,2]10.在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过200元.已知一等奖和二等奖奖品的单价分别为20元、10元,一等奖人数与二等奖人数的比值不得高于,且获得一等奖的人数不能少于2人,那么下列说法中错误的是()A.最多可以购买4份一等奖奖品 B.最多可以购买16份二等奖奖品C.购买奖品至少要花费100元 D.共有20种不同的购买奖品方案11.奇函数f(x)在(﹣∞,0)上单调递增,若f(﹣1)=0,则不等式f(x)<0的解集是()A .(﹣∞,﹣1)∪(0,1)B .(﹣∞,﹣1)(∪1,+∞)C .(﹣1,0)∪(0,1)D .(﹣1,0)∪(1,+∞)12.一个多面体的直观图和三视图如图所示,点M 是边AB 上的动点,记四面体FMC E -的体积为1V ,多面体BCE ADF -的体积为2V ,则=21V V ( )1111] A .41 B .31 C .21D .不是定值,随点M 的变化而变化二、填空题13.将一张坐标纸折叠一次,使点()0,2与点()4,0重合,且点()7,3与点(),m n 重合,则m n +的 值是 .14.已知f (x ),g (x )都是定义在R 上的函数,且满足以下条件:①f (x )=a x g (x )(a >0,a ≠1);②g (x )≠0;③f (x )g'(x )>f'(x )g (x );若,则a= .15.若点p (1,1)为圆(x ﹣3)2+y 2=9的弦MN 的中点,则弦MN 所在直线方程为 16.若双曲线的方程为4x 2﹣9y 2=36,则其实轴长为 .17.(﹣2)7的展开式中,x 2的系数是 .18.设MP 和OM 分别是角的正弦线和余弦线,则给出的以下不等式:①MP <OM <0;②OM <0<MP ;③OM <MP <0;④MP <0<OM , 其中正确的是 (把所有正确的序号都填上).三、解答题19.(本小题满分12分)已知两点)0,1(1-F 及)0,1(2F ,点P 在以1F 、2F 为焦点的椭圆C 上,且1PF 、21F F 、 2PF 构成等差数列. (I )求椭圆C 的方程;(II )设经过2F 的直线m 与曲线C 交于P Q 、两点,若22211PQ F P F Q =+,求直线m 的方程.20.一块边长为10cm 的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,试建立容器的容积V 与x 的函数关系式,并求出函数的定义域.21.2()sin 2f x x x =. (1)求函数()f x 的单调递减区间;(2)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若()12A f =,ABC ∆的面积为.22.数列{a n}满足a1=,a n∈(﹣,),且tana n+1•cosa n=1(n∈N*).(Ⅰ)证明数列{tan2a n}是等差数列,并求数列{tan2a n}的前n项和;(Ⅱ)求正整数m,使得11sina1•sina2•…•sina m=1.23.如图,已知椭圆C:+y2=1,点B坐标为(0,﹣1),过点B的直线与椭圆C另外一个交点为A,且线段AB的中点E在直线y=x上(Ⅰ)求直线AB的方程(Ⅱ)若点P为椭圆C上异于A,B的任意一点,直线AP,BP分别交直线y=x于点M,N,证明:OM•ON 为定值.24.已知f(x)=x2+ax+a(a≤2,x∈R),g(x)=e x,φ(x)=.(Ⅰ)当a=1时,求φ(x)的单调区间;(Ⅱ)求φ(x)在x∈[1,+∞)是递减的,求实数a的取值范围;(Ⅲ)是否存在实数a,使φ(x)的极大值为3?若存在,求a的值;若不存在,请说明理由.大同县第三中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D2.【答案】B【解析】解:根据频率分布直方图,得;该班级数学成绩的平均分是=80×0.005×20+100×0.015×20+120×0.02×20+140×0.01×20=114.故选:B.【点评】本题考查了根据频率分布直方图,求数据的平均数的应用问题,是基础题目.3.【答案】B【解析】解:由A,B是以O为圆心的单位圆上的动点,且||=,即有||2+||2=||2,可得△OAB为等腰直角三角形,则,的夹角为45°,即有•=||•||•cos45°=1××=1.故选:B.【点评】本题考查向量的数量积的定义,运用勾股定理的逆定理得到向量的夹角是解题的关键.4.【答案】C【解析】解:对于A、B,是两个集合的关系,不能用元素与集合的关系表示,所以不正确;对于C,0是集合中的一个元素,表述正确.对于D,是元素与集合的关系,错用集合的关系,所以不正确.故选C【点评】本题考查运算与集合的关系,集合与集合的关系,考查基本知识的应用5.【答案】C【解析】解:作出y=2x和y=log x的函数图象,如图:由图象可知当x0>a时,2>log x0,∴f(x0)=2﹣log x0>0.故选:C.6.【答案】D【解析】【知识点】算法和程序框图【试题解析】A=0,S=1,k=1,A=1,S=1,否;k=3,A=4,S=4,否;k=5,A=9,S=36,是,则输出的36。

山西省大同三中2018-2019学年高一数学10月月考试题

山西省大同三中2018-2019学年高一数学10月月考试题

年级_______ 班级____ 姓名____________ 考号______________座位号 密 封 线 内 不 要 答 题 大同三中2018-2019学年度第一学期高一年级10月月考数学试卷一、选择题:(本大题共有12个小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项符合要求) 1.设全集U ={x∈Z|-1≤x≤5},A ={1,2,5},B ={x∈N|-1<x<4},则B∩(A C U )=( ) A .{3} B .{0,3} C .{0,4} D .{0,3,4} 2.若集合A ={x ||x |≤1,x ∈Z },B ={y |y =x 2,x ∈R },则A ∩B 等于( ) A .{x |-1≤x ≤1} B .{0,1} C .{x |0≤x ≤1} D .φ 3.若f (x )=ax 2-2(a >0),且f (2)=2,则a 等于( ) A .1+22 B .1-22 C .0 D .2 4.设f (x )=1010))5((3≤>⎩⎨⎧++x x x f f x ,则f (5)的值是( ) A .24 B .21 C .18 D .16 5.f (x )=(m -1)x 2+2mx +3为偶函数,则f (x )在区间(2,5)上是( ) A .增函数 B .减函数 C .有增有减 D .增减性不确定 6.若函数f (x )满足f (3x +2)=9x +8,则f (x )的解析式是( ) A .f (x )=9x +8 B .f (x )=3x +2 C .f (x )=-3x -4 D .f (x )=3x +2或f (x )=-3x -4 7. 如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( ) A .a >-14 B .a ≥-14 C .-14≤a <0 D .-14≤a ≤0 8.已知y =f (x )与y =g (x )的图象如下图:则F (x )=f (x )·g (x )的图象可能是下图中的( )9.已知函数f(x)=-x 2+4x +a ,x∈[0,1],若f(x)有最小值-2,则f(x)的最大值为( )A .-1B .0C .1D .210.当0≤x≤2时,a<-x 2+2x 恒成立,则实数a 的取值范围是( )A .(-∞,1]B .(-∞,0]C .(-∞,0)D .(0,+∞)11.已知f(x)=ax 3+bx -4,其中a ,b 为常数,若f(-2)=2,则f(2)等于( )A .-26B .-18C .-10D .1012.若函数f (x )=⎩⎪⎨⎪⎧ -x 2+2ax -2a ,x ≥1,ax +1,x <1是(-∞,+∞)上的减函数,则实数a 的取值范围是( )A .(-2,0)B .[-2,0)C .(-∞,1]D .(-∞,0)二、填空题(本大题共4小题,每小题3分,共12分)13.下列各组中的两个函数是同一函数的为____________.①y =)3()5)(3(+-+x x x ,y =x -5;②y =x +1x -1,y =)1)(1(-+x x ; ③y =x ,y =x 2;④y =x ,y =3x 3;⑤y =(2x -5)2,y =2x -5.14.若函数f(x)=ax 2+bx +3a +b 是偶函数,定义域为[a -1,2a],则a =________,b =________。

大同实验中学2018-2019学年高二上学期第二次月考试卷数学卷

大同实验中学2018-2019学年高二上学期第二次月考试卷数学卷

大同县实验中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 复数的虚部为( )A .﹣2B .﹣2iC .2D .2i2. 若关于x 的不等式07|2||1|>-+-++m x x 的解集为R ,则参数m 的取值范围为( ) A .),4(+∞ B .),4[+∞ C .)4,(-∞ D .]4,(-∞【命题意图】本题考查含绝对值的不等式含参性问题,强化了函数思想、化归思想、数形结合思想在本题中的应用,属于中等难度.3. 已知函数f (x )的图象如图,则它的一个可能的解析式为( )A .y=2B .y=log 3(x+1)C .y=4﹣D .y=4. 若关于x 的方程x 3﹣x 2﹣x+a=0(a ∈R )有三个实根x 1,x 2,x 3,且满足x 1<x 2<x 3,则a 的取值范围为( )A .a >B .﹣<a <1 C .a <﹣1D .a >﹣15. 已知集合{}2|10A x x =-=,则下列式子表示正确的有( )①1A ∈;②{}1A -∈;③A ∅⊆;④{}1,1A -⊆.A .1个B .2个C .3个D .4个6. 已知f (x )是R 上的偶函数,且在(﹣∞,0)上是增函数,设,b=f (log 43),c=f (0.4﹣1.2)则a ,b ,c 的大小关系为( )A .a <c <bB .b <a <cC .c <a <bD .c <b <a7. 已知数列{a n }中,a 1=1,a n+1=a n +n ,若利用如图所示的程序框图计算该数列的第10项,则判断框内的条件是( )A.n≤8?B.n≤9?C.n≤10?D.n≤11?8.i是虚数单位,计算i+i2+i3=()A.﹣1 B.1 C.﹣i D.i9.双曲线的渐近线方程是()A.B.C.D.10.设集合()A.B. C.D.11.设a是函数x的零点,若x0>a,则f(x0)的值满足()A.f(x0)=0 B.f(x0)<0C.f(x0)>0 D.f(x0)的符号不确定12.抛物线x2=4y的焦点坐标是()A.(1,0)B.(0,1)C.()D.()二、填空题13.已知点E、F分别在正方体的棱上,且, ,则面AEF与面ABC所成的二面角的正切值等于 .14.对于集合M ,定义函数对于两个集合A ,B ,定义集合A △B={x|f A (x )f B (x )=﹣1}.已知A={2,4,6,8,10},B={1,2,4,8,12},则用列举法写出集合A △B 的结果为 .15.设x ,y 满足约束条件,则目标函数z=2x ﹣3y 的最小值是 .16.长方体ABCD ﹣A 1B 1C 1D 1的8个顶点都在球O 的表面上,E 为AB 的中点,CE=3,异面直线A 1C 1与CE所成角的余弦值为,且四边形ABB 1A 1为正方形,则球O 的直径为 .17由表中数据算出线性回归方程为=x+.若该公司第五名推销员的工作年限为8年,则估计他(她)的年推销金额为 万元.18.【启东中学2018届高三上学期第一次月考(10月)】已知函数()f x xlnx ax =-+在()0e ,上是增函数,函数()22xa g x e a =-+,当[]03x ln ∈,时,函数g (x )的最大值M 与最小值m 的差为32,则a 的值为______.三、解答题19.已知数列{a n }是等比数列,首项a 1=1,公比q >0,且2a 1,a 1+a 2+2a 3,a 1+2a 2成等差数列. (Ⅰ)求数列{a n }的通项公式(Ⅱ)若数列{b n }满足a n+1=(),T n 为数列{b n }的前n 项和,求T n .20.求同时满足下列两个条件的所有复数z:①z+是实数,且1<z+≤6;②z的实部和虚部都是整数.21.根据下列条件求方程.(1)若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,求抛物线的准线方程(2)已知双曲线的离心率等于2,且与椭圆+=1有相同的焦点,求此双曲线标准方程.22.(本小题满分12分)为了普及法律知识,达到“法在心中”的目的,某市法制办组织了普法知识竞赛.5名职工的成绩,成绩如下表:(1掌握更稳定;(2)用简单随机抽样法从乙单位5名职工中抽取2名,他们的成绩组成一个样本,求抽取的2名职工的分数差至少是4的概率.23.(本小题满分12分)已知函数21()cos cos 2f x x x x =--. (1)求函数()y f x =在[0,]2π上的最大值和最小值; (2)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,满足2c =,3a =,()0f B =,求sin A 的值.1111]24.已知a ,b ,c 分别是△ABC 内角A ,B ,C 的对边,且csinA=acosC .(I )求C 的值; (Ⅱ)若c=2a ,b=2,求△ABC 的面积.大同县实验中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:复数===1+2i的虚部为2.故选;C.【点评】本题考查了复数的运算法则、虚部的定义,属于基础题.2.【答案】A3.【答案】C【解析】解:由图可得,y=4为函数图象的渐近线,函数y=2,y=log3(x+1),y=的值域均含4,即y=4不是它们的渐近线,函数y=4﹣的值域为(﹣∞,4)∪(4,+∞),故y=4为函数图象的渐近线,故选:C【点评】本题考查的知识点是函数的图象,函数的值域,难度中档.4.【答案】B【解析】解:由x3﹣x2﹣x+a=0得﹣a=x3﹣x2﹣x,设f(x)=x3﹣x2﹣x,则函数的导数f′(x)=3x2﹣2x﹣1,由f′(x)>0得x>1或x<﹣,此时函数单调递增,由f′(x)<0得﹣<x<1,此时函数单调递减,即函数在x=1时,取得极小值f(1)=1﹣1﹣1=﹣1,在x=﹣时,函数取得极大值f(﹣)=(﹣)3﹣(﹣)2﹣(﹣)=,要使方程x3﹣x2﹣x+a=0(a∈R)有三个实根x1,x2,x3,则﹣1<﹣a<,即﹣<a<1,故选:B.【点评】本题主要考查导数的应用,构造函数,求函数的导数,利用导数求出函数的极值是解决本题的关键.5. 【答案】C 【解析】试题分析:{}1,1A =-,所以①③④正确.故选C. 考点:元素与集合关系,集合与集合关系. 6. 【答案】C【解析】解:由题意f (x )=f (|x|). ∵log 43<1,∴|log 43|<1;2>|ln |=|ln3|>1;∵|0.4﹣1.2|=|1.2|>2∴|0.4﹣1.2|>|ln |>|log 43|.又∵f (x )在(﹣∞,0]上是增函数且为偶函数, ∴f (x )在[0,+∞)上是减函数. ∴c <a <b .故选C7. 【答案】B【解析】解:n=1,满足条件,执行循环体,S=1+1=2 n=2,满足条件,执行循环体,S=1+1+2=4 n=3,满足条件,执行循环体,S=1+1+2+3=7n=10,不满足条件,退出循环体,循环满足的条件为n ≤9, 故选B .【点评】本题主要考查了当型循环结构,算法和程序框图是新课标新增的内容,在近两年的新课标地区高考都考查到了,这启示我们要给予高度重视,属于基础题.8.【答案】A【解析】解:由复数性质知:i2=﹣1故i+i2+i3=i+(﹣1)+(﹣i)=﹣1故选A【点评】本题考查复数幂的运算,是基础题.9.【答案】B【解析】解:∵双曲线标准方程为,其渐近线方程是=0,整理得y=±x.故选:B.【点评】本题考查双曲线的简单性质的应用,令标准方程中的“1”为“0”即可求出渐近线方程.属于基础题.10.【答案】B【解析】解:集合A中的不等式,当x>0时,解得:x>;当x<0时,解得:x<,集合B中的解集为x>,则A∩B=(,+∞).故选B【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.11.【答案】C【解析】解:作出y=2x和y=log x的函数图象,如图:由图象可知当x0>a时,2>log x0,∴f(x0)=2﹣log x0>0.故选:C.12.【答案】B【解析】解:∵抛物线x2=4y中,p=2,=1,焦点在y轴上,开口向上,∴焦点坐标为(0,1),故选:B.【点评】本题考查抛物线的标准方程和简单性质的应用,抛物线x2=2py的焦点坐标为(0,),属基础题.二、填空题13.【答案】【解析】延长EF交BC的延长线于P,则AP为面AEF与面ABC的交线,因为,所以为面AEF与面ABC所成的二面角的平面角。

大同区第三中学校2018-2019学年高二上学期第二次月考试卷数学

大同区第三中学校2018-2019学年高二上学期第二次月考试卷数学班级__________姓名__________ 分数__________一、选择题1. 若复数a 2﹣1+(a ﹣1)i (i 为虚数单位)是纯虚数,则实数a=( )A .±1B .﹣1C .0D .12. 设a ∈R ,且(a ﹣i )•2i (i 为虚数单位)为正实数,则a 等于()A .1B .0C .﹣1D .0或﹣13. 已知函数f (x )=Asin (ωx+φ)(a >0,ω>0,|φ|<)的部分图象如图所示,则f (x )的解析式是()A .f (x )=sin (3x+)B .f (x )=sin (2x+)C .f (x )=sin (x+)D .f (x )=sin (2x+)4. 在函数y=中,若f (x )=1,则x 的值是( )A .1B .1或C .±1D .5. 正方体的内切球与外接球的半径之比为( )A .B .C .D .6. 若为纯虚数,其中R ,则( )(z a ai =-+∈a 7i 1ia a +=+A . B . C . D .i 1i -1-7. 已知2a =3b =m ,ab ≠0且a ,ab ,b 成等差数列,则m=( )A .B .C .D .68. “p q ∨为真”是“p ⌝为假”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要9. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a=3,,A=60°,则满足条件的三角形个数为( )A .0B .1C .2D .以上都不对10.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若PA=AB ,求PB 与AC 所成角的余弦值;(Ⅲ)当平面PBC 与平面PDC 垂直时,求PA的长.【考点】直线与平面垂直的判定;点、线、面间的距离计算;用空间向量求直线间的夹角、距离.11.棱台的两底面面积为、,中截面(过各棱中点的面积)面积为,那么( )1S 2S 0S A . B .C .D.=0S =0122S S S =+20122S S S =12.下列语句所表示的事件不具有相关关系的是( )A .瑞雪兆丰年B .名师出高徒C .吸烟有害健康D .喜鹊叫喜二、填空题13.某城市近10年居民的年收入x 与支出y 之间的关系大致符合=0.9x+0.2(单位:亿元),预计今年该城市居民年收入为20亿元,则年支出估计是 亿元.14.给出下列命题:①存在实数α,使②函数是偶函数③是函数的一条对称轴方程④若α、β是第一象限的角,且α<β,则sin α<sin β其中正确命题的序号是 . 15.已知函数f (x )=x m 过点(2,),则m= . 16.已知,则不等式的解集为________.,0()1,0x e x f x x ì³ï=í<ïî2(2)()f x f x ->【命题意图】本题考查分段函数、一元二次不等式等基础知识,意在考查分类讨论思想和基本运算能力.17.【徐州市2018届高三上学期期中】已知函数(为自然对数的底数),若,则实数的取值范围为______.18.已知点A的坐标为(﹣1,0),点B是圆心为C的圆(x﹣1)2+y2=16上一动点,线段AB的垂直平分线交BC与点M,则动点M的轨迹方程为 .三、解答题19.(1)直线l的方程为(a+1)x+y+2﹣a=0(a∈R).若l在两坐标轴上的截距相等,求a的值;(2)已知A(﹣2,4),B(4,0),且AB是圆C的直径,求圆C的标准方程.20.已知函数f(x)=(a>0)的导函数y=f′(x)的两个零点为0和3.(1)求函数f(x)的单调递增区间;(2)若函数f(x)的极大值为,求函数f(x)在区间[0,5]上的最小值.21.某校为选拔参加“央视猜灯谜大赛”的队员,在校内组织猜灯谜竞赛.规定:第一阶段知识测试成绩不小于160分的学生进入第二阶段比赛.现有200名学生参加知识测试,并将所有测试成绩绘制成如下所示的频率分布直方图.(Ⅰ)估算这200名学生测试成绩的中位数,并求进入第二阶段比赛的学生人数;(Ⅱ)将进入第二阶段的学生分成若干队进行比赛.现甲、乙两队在比赛中均已获得120分,进入最后抢答阶段.抢答规则:抢到的队每次需猜3条谜语,猜对1条得20分,猜错1条扣20分.根据经验,甲队猜对每条谜语的概率均为,乙队猜对前两条的概率均为,猜对第3条的概率为.若这两队抢到答题的机会均等,您做为场外观众想支持这两队中的优胜队,会把支持票投给哪队?22.已知椭圆C:+=1(a>b>0)与双曲线﹣y2=1的离心率互为倒数,且直线x﹣y﹣2=0经过椭圆的右顶点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设不过原点O的直线与椭圆C交于M、N两点,且直线OM、MN、ON的斜率依次成等比数列,求△OMN 面积的取值范围.23.设f(x)=x2﹣ax+2.当x∈,使得关于x的方程f(x)﹣tf(2a)=0有三个不相等的实数根,求实数t的取值范围.24.已知三次函数f(x)的导函数f′(x)=3x2﹣3ax,f(0)=b,a、b为实数.(1)若曲线y=f(x)在点(a+1,f(a+1))处切线的斜率为12,求a的值;(2)若f(x)在区间[﹣1,1]上的最小值、最大值分别为﹣2、1,且1<a<2,求函数f(x)的解析式. 大同区第三中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:因为复数a2﹣1+(a﹣1)i(i为虚数单位)是纯虚数,所以a2﹣1=0且a﹣1≠0,解得a=﹣1.故选B.【点评】本题考查复数的基本概念的应用,实部为0并且虚部不为0,是解题的关键.2.【答案】B【解析】解:∵(a﹣i)•2i=2ai+2为正实数,∴2a=0,解得a=0.故选:B.【点评】本题考查了复数的运算法则、复数为实数的充要条件,属于基础题.3.【答案】D【解析】解:由图象知函数的最大值为1,即A=1,函数的周期T=4(﹣)=4×=,解得ω=2,即f(x)=2sin(2x+φ),由五点对应法知2×+φ=,解得φ=,故f(x)=sin(2x+),故选:D4.【答案】C【解析】解:∵函数y=中,f(x)=1,∴当x≤﹣1时,x+2=1,解得x=﹣1;当﹣1<x<2时,x2=1,解得x=1或x=﹣1(舍);当x ≥2时,2x=1,解得x=(舍).综上得x=±1故选:C . 5. 【答案】C【解析】解:正方体的内切球的直径为,正方体的棱长,外接球的直径为,正方体的对角线长,设正方体的棱长为:2a ,所以内切球的半径为:a ;外接球的直径为2a ,半径为:a ,所以,正方体的内切球与外接球的半径之比为:故选C 6. 【答案】C【解析】∵为纯虚数,∴z a =∴.7i 3ii 1i 3a a +-====-+7. 【答案】C .【解析】解:∵2a =3b =m ,∴a=log 2m ,b=log 3m ,∵a ,ab ,b 成等差数列,∴2ab=a+b ,∵ab ≠0,∴+=2,∴=log m 2, =log m 3,∴log m 2+log m 3=log m 6=2,解得m=.故选 C【点评】本题考查了指数与对数的运算的应用及等差数列的性质应用. 8. 【答案】B 【解析】试题分析:因为假真时,真,此时为真,所以,“ 真”不能得“为假”,而“为p p q ∨p ⌝p q ∨p ⌝p ⌝假”时为真,必有“ 真”,故选B. p p q ∨考点:1、充分条件与必要条件;2、真值表的应用.9. 【答案】B【解析】解:∵a=3,,A=60°,∴由正弦定理可得:sinB===1,∴B=90°,即满足条件的三角形个数为1个.故选:B.【点评】本题主要考查三角形个数的判断,利用正弦定理是解决本题的关键,考查学生的计算能力,属于基础题.10.【答案】【解析】解:(I)证明:因为四边形ABCD是菱形,所以AC⊥BD,又因为PA⊥平面ABCD,所以PA⊥BD,PA∩AC=A所以BD⊥平面PAC(II)设AC∩BD=O,因为∠BAD=60°,PA=AB=2,所以BO=1,AO=OC=,以O为坐标原点,分别以OB,OC为x轴、y轴,以过O且垂直于平面ABCD的直线为z轴,建立空间直角坐标系O﹣xyz,则P(0,﹣,2),A(0,﹣,0),B(1,0,0),C(0,,0)所以=(1,,﹣2),设PB与AC所成的角为θ,则cosθ=|(III)由(II)知,设,则设平面PBC的法向量=(x,y,z)则=0,所以令,平面PBC的法向量所以,同理平面PDC的法向量,因为平面PBC⊥平面PDC,所以=0,即﹣6+=0,解得t=,所以PA=.【点评】本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力 11.【答案】A 【解析】试题分析:不妨设棱台为三棱台,设棱台的高为上部三棱锥的高为,根据相似比的性质可得:2h ,解得A .220(2(a S a hS a S a hS '⎧=⎪+⎪⎨'⎪=+⎪⎩=考点:棱台的结构特征.12.【答案】D【解析】解:根据两个变量之间的相关关系,可以得到瑞雪兆丰年,瑞雪对小麦有好处,可能使得小麦丰收,名师出高徒也具有相关关系,吸烟有害健康也具有相关关系,故选D .【点评】本题考查两个变量的线性相关关系,本题解题的关键是根据实际生活中两个事物之间的关系确定两个变量之间的关系,本题是一个基础题.二、填空题13.【答案】 18.2 【解析】解:∵某城市近10年居民的年收入x 和支出y 之间的关系大致是=0.9x+0.2,∵x=20,∴y=0.9×20+0.2=18.2(亿元).故答案为:18.2.【点评】本题考查线性回归方程的应用,考查学生的计算能力,考查利用数学知识解决实际问题的能力,属于基础题. 14.【答案】 ②③ .【解析】解:①∵sin αcos α=sin2α∈[,],∵>,∴存在实数α,使错误,故①错误,②函数=cosx 是偶函数,故②正确,③当时,=cos (2×+)=cos π=﹣1是函数的最小值,则是函数的一条对称轴方程,故③正确,④当α=,β=,满足α、β是第一象限的角,且α<β,但sin α=sin β,即sin α<sin β不成立,故④错误,故答案为:②③.【点评】本题主要考查命题的真假判断,涉及三角函数的图象和性质,考查学生的运算和推理能力. 15.【答案】 ﹣1 .【解析】解:将(2,)代入函数f (x )得: =2m ,解得:m=﹣1;故答案为:﹣1.【点评】本题考查了待定系数法求函数的解析式问题,是一道基础题. 16.【答案】(-【解析】函数在递增,当时,,解得;当时,,()f x [0,)+¥0x <220x ->0x -<<0x ³22x x ->解得,综上所述,不等式的解集为.01x £<2(2)()f x f x ->(-17.【答案】【解析】令,则所以为奇函数且单调递增,因此即点睛:解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内18.【答案】=1【解析】解:由题意得,圆心C (1,0),半径等于4,连接MA,则|MA|=|MB|,∴|MC|+|MA|=|MC|+|MB|=|BC|=4>|AC|=2,故点M的轨迹是:以A、C为焦点的椭圆,2a=4,即有a=2,c=1,∴b=,∴椭圆的方程为=1.故答案为:=1.【点评】本题考查用定义法求点的轨迹方程,考查学生转化问题的能力,属于中档题. 三、解答题19.【答案】【解析】解:(1)当a=﹣1时,直线化为y+3=0,不符合条件,应舍去;当a≠﹣1时,分别令x=0,y=0,解得与坐标轴的交点(0,a﹣2),(,0).∵直线l在两坐标轴上的截距相等,∴a﹣2=,解得a=2或a=0;(2)∵A(﹣2,4),B(4,0),∴线段AB的中点C坐标为(1,2).又∵|AB|=,∴所求圆的半径r=|AB|=.因此,以线段AB为直径的圆C的标准方程为(x﹣1)2+(y﹣2)2=13.20.【答案】【解析】解:f′(x)=令g(x)=﹣ax2+(2a﹣b)x+b﹣c函数y=f′(x)的零点即g(x)=﹣ax2+(2a﹣b)x+b﹣c的零点即:﹣ax2+(2a﹣b)x+b﹣c=0的两根为0,3则解得:b=c=﹣a,令f′(x)>0得0<x<3所以函数的f(x)的单调递增区间为(0,3),(2)由(1)得:函数在区间(0,3)单调递增,在(3,+∞)单调递减,∴,∴a=2,∴;,∴函数f(x)在区间[0,4]上的最小值为﹣2.21.【答案】【解析】解:(Ⅰ)设测试成绩的中位数为x,由频率分布直方图得,(0.0015+0.019)×20+(x﹣140)×0.025=0.5,解得:x=143.6.∴测试成绩中位数为143.6.进入第二阶段的学生人数为200×(0.003+0.0015)×20=18人.(Ⅱ)设最后抢答阶段甲、乙两队猜对灯谜的条数分别为ξ、η,则ξ~B(3,),∴E(ξ)=.∴最后抢答阶段甲队得分的期望为[]×20=30,∵P(η=0)=,P(η=1)=,P(η=2)=,P(η=3)=,∴Eη=.∴最后抢答阶段乙队得分的期望为[]×20=24.∴120+30>120+24,∴支持票投给甲队.【点评】本小题主要考查概率、概率与统计等基础知识,考查推理论证能力、数据处理能力、运算求解能力及应用意识,考查或然与必然的思想,属中档题.22.【答案】【解析】解:(Ⅰ)∵双曲线的离心率为,所以椭圆的离心率,又∵直线x﹣y﹣2=0经过椭圆的右顶点,∴右顶点为(2,0),即a=2,c=,b=1,…∴椭圆方程为:.…(Ⅱ)由题意可设直线的方程为:y=kx+m•(k≠0,m≠0),M(x1,y1)、N(x2,y2)联立消去y并整理得:(1+4k2)x2+8kmx+4(m2﹣1)=0…则,于是…又直线OM、MN、ON的斜率依次成等比数列.∴…由m≠0得:又由△=64k2m2﹣16(1+4k2)(m2﹣1)=16(4k2﹣m2+1)>0,得:0<m2<2显然m2≠1(否则:x1x2=0,则x1,x2中至少有一个为0,直线OM、ON中至少有一个斜率不存在,与已知矛盾)…设原点O到直线的距离为d,则∴故由m的取值范围可得△OMN面积的取值范围为(0,1)…【点评】本题考查直线与圆锥曲线的综合应用,弦长公式以及三角形的面积的表式,考查转化思想以及计算能力.23.【答案】【解析】设f(x)=x2﹣ax+2.当x∈,则t=,∴对称轴m=∈(0,],且开口向下;∴时,t取得最小值,此时x=9∴税率t的最小值为.【点评】此题是个指数函数的综合题,但在求解的过程中也用到了构造函数的思想及二次函数在定义域内求最值的知识.考查的知识全面而到位!24.【答案】【解析】解:(1)由导数的几何意义f′(a+1)=12∴3(a+1)2﹣3a(a+1)=12∴3a=9∴a=3(2)∵f′(x)=3x2﹣3ax,f(0)=b∴由f′(x)=3x(x﹣a)=0得x1=0,x2=a∵x∈[﹣1,1],1<a<2∴当x∈[﹣1,0)时,f′(x)>0,f(x)递增;当x∈(0,1]时,f′(x)<0,f(x)递减.∴f(x)在区间[﹣1,1]上的最大值为f(0)∵f(0)=b,∴b=1∵,∴f(﹣1)<f(1)∴f(﹣1)是函数f(x)的最小值,∴∴∴f(x)=x3﹣2x2+1【点评】曲线在切点处的导数值为曲线的切线斜率;求函数的最值,一定要注意导数为0的根与定义域的关系.。

大同县第三中学校2018-2019学年高二上学期第二次月考试卷数学

大同县第三中学校2018-2019学年高二上学期第二次月考试卷数学班级__________姓名__________ 分数__________一、选择题1. 下列命题中错误的是()A .圆柱的轴截面是过母线的截面中面积最大的一个B .圆锥的轴截面是所在过顶点的截面中面积最大的一个C .圆台的所有平行于底面的截面都是圆面D .圆锥所有的轴截面是全等的等腰三角形2. 如图,一个底面半径为R 的圆柱被与其底面所成角是30°的平面所截,截面是一个椭圆,则该椭圆的离心率是()A .B .C .D .3. 设S n 为等比数列{a n }的前n 项和,已知3S 3=a 4﹣2,3S 2=a 3﹣2,则公比q=( )A .3B .4C .5D .64. 集合,是的一个子集,当时,若有,则称为的一个“孤立{}5,4,3,2,1,0=S A S A x ∈A x A x ∉+∉-11且x A 元素”.集合是的一个子集, 中含4个元素且中无“孤立元素”,这样的集合共有个B S B B B A.4 B. 5 C.6 D.75. 已知向量=(1,2),=(m ,1),如果向量与平行,则m 的值为( )A .B .C .2D .﹣26. 已知是虚数单位,若复数在复平面内对应的点在第四象限,则实数的值可以是( )22aiZ i+=+A .-2B .1C .2D .37. 执行如图所示的程序,若输入的,则输出的所有的值的和为( )3x =x A .243 B .363 C .729 D .1092【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力.8.若将函数y=tan(ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx+)的图象重合,则ω的最小值为()A.B.C.D.9.已知函数f(x)=sin2(ωx)﹣(ω>0)的周期为π,若将其图象沿x轴向右平移a个单位(a>0),所得图象关于原点对称,则实数a的最小值为()A.πB.C.D.10.已知函数f(x)=x2﹣,则函数y=f(x)的大致图象是()A.B.C.D.11.已知||=3,||=1,与的夹角为,那么|﹣4|等于()A.2B.C.D.1312.如图,网格纸上的正方形的边长为1,粗线画出的是某几何体的三视图,则这个几何体的体积为()A.30B.50C.75D.150二、填空题13.某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果. 已知男员工抽取了16人,则女员工应抽取人数为.14.在(2x+)6的二项式中,常数项等于 (结果用数值表示).15.下图是某算法的程序框图,则程序运行后输出的结果是____.16.已知函数f(x)=cosxsinx,给出下列四个结论:①若f(x1)=﹣f(x2),则x1=﹣x2;②f(x)的最小正周期是2π;③f(x)在区间[﹣,]上是增函数;④f(x)的图象关于直线x=对称.其中正确的结论是 .17.给出下列命题:①把函数y=sin (x ﹣)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin (2x ﹣);②若α,β是第一象限角且α<β,则cos α>cos β;③x=﹣是函数y=cos (2x+π)的一条对称轴;④函数y=4sin (2x+)与函数y=4cos (2x ﹣)相同;⑤y=2sin (2x ﹣)在是增函数;则正确命题的序号 . 18.向区域内随机投点,则该点与坐标原点连线的斜率大于1的概率为 .三、解答题19.设函数f (x )=kx 2+2x (k 为实常数)为奇函数,函数g (x )=a f (x )﹣1(a >0且a ≠1).(Ⅰ)求k 的值;(Ⅱ)求g (x )在[﹣1,2]上的最大值;(Ⅲ)当时,g (x )≤t 2﹣2mt+1对所有的x ∈[﹣1,1]及m ∈[﹣1,1]恒成立,求实数t 的取值范围.20.(本小题满分10分)已知曲线,直线(为参数).22:149x y C +=2,:22,x t l y t =+⎧⎨=-⎩(1)写出曲线的参数方程,直线的普通方程;C (2)过曲线上任意一点作与夹角为的直线,交于点,求的最大值与最小值.C P 30A ||PA21.已知是等差数列,是等比数列,为数列的前项和,,且,{}n a {}n b n S {}n a 111a b ==3336b S =().228b S =*n N ∈(1)求和;n a n b (2)若,求数列的前项和.1n n a a +<11n n a a +⎧⎫⎨⎬⎩⎭n T 22.某工厂修建一个长方体形无盖蓄水池,其容积为4800立方米,深度为3米.池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底长方形长为x 米.(Ⅰ)求底面积并用含x 的表达式表示池壁面积;(Ⅱ)怎样设计水池能使总造价最低?最低造价是多少?23.(本题满分15分)正项数列满足,.}{n a 121223+++=+n n n n a a a a 11=a (1)证明:对任意的,;*N n ∈12+≤n n a a (2)记数列的前项和为,证明:对任意的,.}{n a n n S *N n ∈32121<≤--n n S 【命题意图】本题考查数列的递推公式与单调性,不等式性质等基础知识,意在考查推理论证能力,分析和解决问题的能力.24.已知直角梯形ABCD中,AB∥CD,,过A作AE⊥CD,垂足为E,G 、F分别为AD、CE的中点,现将△ADE沿AE折叠,使得DE⊥EC.(1)求证:FG∥面BCD;(2)设四棱锥D﹣ABCE的体积为V,其外接球体积为V′,求V:V′的值.大同县第三中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:对于A,设圆柱的底面半径为r,高为h,设圆柱的过母线的截面四边形在圆柱底面的边长为a,则截面面积S=ah≤2rh.∴当a=2r时截面面积最大,即轴截面面积最大,故A正确.对于B,设圆锥SO的底面半径为r,高为h,过圆锥定点的截面在底面的边长为AB=a,则O到AB的距离为,∴截面三角形SAB的高为,∴截面面积S==≤=.故截面的最大面积为.故B错误.对于C,由圆台的结构特征可知平行于底面的截面截圆台,所得几何体仍是圆台,故截面为圆面,故C正确.对于D,由于圆锥的所有母线长都相等,轴截面的底面边长为圆锥底面的直径,故圆锥所有的轴截面是全等的等腰三角形,故D正确.故选:B.【点评】本题考查了旋转体的结构特征,属于中档题.2.【答案】A【解析】解:因为底面半径为R的圆柱被与底面成30°的平面所截,其截口是一个椭圆,则这个椭圆的短半轴为:R,长半轴为:=,∵a2=b2+c2,∴c=,∴椭圆的离心率为:e==.故选:A.【点评】本题考查椭圆离心率的求法,注意椭圆的几何量关系的正确应用,考查计算能力.3.【答案】B【解析】解:∵S n为等比数列{a n}的前n项和,3S3=a4﹣2,3S2=a3﹣2,两式相减得3a 3=a 4﹣a 3,a 4=4a 3,∴公比q=4.故选:B . 4. 【答案】C 【解析】试题分析:根据题中“孤立元素”定义可知,若集合B 中不含孤立元素,则必须没有三个连续的自然数存在,所有B 的可能情况为:,,,,,共6个。

大同区第三中学校2018-2019学年上学期高二数学12月月考试题含解析

大同区第三中学校2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知平面α∩β=l ,m 是α内不同于l 的直线,那么下列命题中错误 的是( )A .若m ∥β,则m ∥lB .若m ∥l ,则m ∥βC .若m ⊥β,则m ⊥lD .若m ⊥l ,则m ⊥β 2. 一个几何体的三视图如图所示,则该几何体的体积为( )A .B .C .D .3. 双曲线E 与椭圆C :x 29+y 23=1有相同焦点,且以E 的一个焦点为圆心与双曲线的渐近线相切的圆的面积为π,则E 的方程为( ) A.x 23-y 23=1 B.x 24-y 22=1 C.x 25-y 2=1 D.x 22-y 24=14.=( )A .﹣iB .iC .1+iD .1﹣i5. 函数f (x )=x 2﹣2ax ,x ∈[1,+∞)是增函数,则实数a 的取值范围是( ) A .RB .[1,+∞)C .(﹣∞,1]D .[2,+∞)6. 某程序框图如图所示,该程序运行后输出的S 的值是( )A .﹣3B .﹣C .D .27. sin45°sin105°+sin45°sin15°=( )A .0B .C .D .18. 设{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )A .1B .2C .4D .69. 若数列{a n }的通项公式a n =5()2n ﹣2﹣4()n ﹣1(n ∈N *),{a n }的最大项为第p 项,最小项为第q 项,则q ﹣p 等于( ) A .1B .2C .3D .410.如图,网格纸上的正方形的边长为1,粗线画出的是某几何体的三视图,则这个几何体的体积为( )A .30B .50C .75D .15011.若,则等于( )A .B .C .D .12.设函数()()()21ln 31f x g x ax x ==-+,,若对任意1[0)x ∈+∞,,都存在2x ∈R ,使得()()12f x f x =,则实数的最大值为( )A .94 B . C.92D .4 二、填空题13.设i 是虚数单位,是复数z 的共轭复数,若复数z=3﹣i ,则z •= .14.1F ,2F 分别为双曲线22221x y a b-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,若12PF F ∆______________.【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.15.若函数f (x ),g (x )满足:∀x ∈(0,+∞),均有f (x )>x ,g (x )<x 成立,则称“f (x )与g (x )关于y=x 分离”.已知函数f (x )=a x 与g (x )=log a x (a >0,且a ≠1)关于y=x 分离,则a 的取值范围是 .16.已知变量x ,y ,满足,则z=log 4(2x+y+4)的最大值为.17.已知直线l 的参数方程是(t 为参数),曲线C 的极坐标方程是ρ=8cos θ+6sin θ,则曲线C 上到直线l 的距离为4的点个数有 个.18.某种产品的加工需要 A ,B ,C ,D ,E 五道工艺,其中 A 必须在D 的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有 种.(用数字作答)三、解答题19.(本小题满分12分)已知函数21()(3)ln 2f x x a x x =+-+. (1)若函数()f x 在定义域上是单调增函数,求的最小值;(2)若方程21()()(4)02f x a x a x -+--=在区间1[,]e e上有两个不同的实根,求的取值范围.20.全集U=R,若集合A={x|3≤x<10},B={x|2<x≤7},(1)求A∪B,(∁U A)∩(∁U B);(2)若集合C={x|x>a},A⊆C,求a的取值范围.21.如图,在△ABC中,BC边上的中线AD长为3,且sinB=,cos∠ADC=﹣.(Ⅰ)求sin∠BAD的值;(Ⅱ)求AC边的长.22.如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF,BC⊥CF,,EF=2,BE=3,CF=4.(Ⅰ)求证:EF⊥平面DCE;(Ⅱ)当AB的长为何值时,二面角A﹣EF﹣C的大小为60°.23.△ABC的三个内角A、B、C所对的边分别为a、b、c,asinAsinB+bcos2A=a.(Ⅰ)求;(Ⅱ)若c2=b2+a2,求B.24.为了培养中学生良好的课外阅读习惯,教育局拟向全市中学生建议一周课外阅读时间不少于t0小时.为此,教育局组织有关专家到某“基地校”随机抽取100名学生进行调研,获得他们一周课外阅读时间的数据,整理得到如图频率分布直方图:(Ⅰ)求任选2人中,恰有1人一周课外阅读时间在[2,4)(单位:小时)的概率(Ⅱ)专家调研决定:以该校80%的学生都达到的一周课外阅读时间为t0,试确定t0的取值范围大同区第三中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】D【解析】【分析】由题设条件,平面α∩β=l ,m 是α内不同于l 的直线,结合四个选项中的条件,对结论进行证明,找出不能推出结论的即可【解答】解:A 选项是正确命题,由线面平行的性质定理知,可以证出线线平行;B 选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;C 选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;D 选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面; 综上D 选项中的命题是错误的 故选D2. 【答案】 B【解析】解:三视图复原的几何体是一个半圆锥和圆柱的组合体, 它们的底面直径均为2,故底面半径为1, 圆柱的高为1,半圆锥的高为2,故圆柱的体积为:π×12×1=π,半圆锥的体积为:×=,故该几何体的体积V=π+=,故选:B3. 【答案】【解析】选C.可设双曲线E 的方程为x 2a 2-y 2b2=1,渐近线方程为y =±bax ,即bx ±ay =0,由题意得E 的一个焦点坐标为(6,0),圆的半径为1, ∴焦点到渐近线的距离为1.即|6b |b 2+a2=1,又a 2+b 2=6,∴b =1,a =5,∴E 的方程为x 25-y 2=1,故选C.4. 【答案】 B【解析】解: ===i .故选:B .【点评】本题考查复数的代数形式混合运算,复数的除法的运算法则的应用,考查计算能力.5.【答案】C【解析】解:由于f(x)=x2﹣2ax的对称轴是直线x=a,图象开口向上,故函数在区间(﹣∞,a]为减函数,在区间[a,+∞)上为增函数,又由函数f(x)=x2﹣2ax,x∈[1,+∞)是增函数,则a≤1.故答案为:C6.【答案】B【解析】解:由程序框图得:第一次运行S==﹣3,i=2;第二次运行S==﹣,i=3;第三次运行S==,i=4;第四次运行S==2,i=5;第五次运行S==﹣3,i=6,…S的值是成周期变化的,且周期为4,当i=2015时,程序运行了2014次,2014=4×503+2,∴输出S=﹣.故选:B.【点评】本题考查了循环结构的程序框图,根据程序的运行功能判断输出S值的周期性变化规律是关键.7.【答案】C【解析】解:sin45°sin105°+sin45°sin15°=cos45°cos15°+sin45°sin15°=cos(45°﹣15°)=cos30°=.故选:C.【点评】本题主要考查了诱导公式,两角差的余弦函数公式,特殊角的三角函数值在三角函数化简求值中的应用,考查了转化思想,属于基础题.8. 【答案】B 【解析】试题分析:设{}n a 的前三项为123,,a a a ,则由等差数列的性质,可得1322a a a +=,所以12323a a a a ++=, 解得24a =,由题意得1313812a a a a +=⎧⎨=⎩,解得1326a a =⎧⎨=⎩或1362a a =⎧⎨=⎩,因为{}n a 是递增的等差数列,所以132,6a a ==,故选B .考点:等差数列的性质. 9. 【答案】A【解析】解:设=t ∈(0,1],a n =5()2n ﹣2﹣4()n ﹣1(n ∈N *),∴a n =5t 2﹣4t=﹣,∴a n∈,当且仅当n=1时,t=1,此时a n 取得最大值;同理n=2时,a n 取得最小值.∴q ﹣p=2﹣1=1, 故选:A . 【点评】本题考查了二次函数的单调性、指数函数的单调性、数列的通项公式,考查了推理能力与计算能力,属于中档题.10.【答案】B【解析】解:该几何体是四棱锥, 其底面面积S=5×6=30, 高h=5, 则其体积V=S ×h=30×5=50.故选B .11.【答案】B【解析】解:∵,∴,∴(﹣1,2)=m (1,1)+n (1,﹣1)=(m+n ,m ﹣n )∴m+n=﹣1,m ﹣n=2,∴m=,n=﹣,∴ 故选B .【点评】用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题等.12.【答案】] 【解析】试题分析:设()()2ln 31g x ax x =-+的值域为A ,因为函数()1f x =[0)+∞,上的值域为(0]-∞,,所以(0]A -∞⊆,,因此()231h x ax x =-+至少要取遍(01],中的每一个数,又()01h =,于是,实数需要满足0a ≤或0940a a >⎧⎨∆=-≥⎩,解得94a ≤.考点:函数的性质.【方法点晴】本题主要考查函数的性质用,涉及数形结合思想、函数与方程思想、转和化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型。

山西省大同三中2018-2019学年高二数学10月月考试题

2018学年度第一学期高二年级十月月考题数学试题时间90分 满分100 班级----- 姓名-----一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.以长为8 cm ,宽为6 cm 的矩形的一边为旋转轴旋转而成的圆柱的底面面积为( )A .64πcm 2B .36πcm 2C .64πcm 2或36πcm 2D .48πcm 22.过两点A(4,y ),B(2,--3)的直线的倾斜角是 135,则y 等于( ) A .—1 B .—5 C .5 D .13.若直线2x -3y -6=0在x 轴上的截距为a ,在y 轴上的截距为b ,则( ) A .a =3,b =2 B .a =3,b =-2 C .a =-3,b =2 D .a =-3,b =-24.若长方体的长、宽、高分别为5,4,3,则它的外接球的表面积为( ) A.50π B .25π C.32π D.60π5.沿一个正方体三个面的对角线截得的几何体如图M5所示,则该几何体的侧视图为( )图M5图M66. 将棱长为2的正方体木块削成一个体积最大的球,则这个球的表面积为( ) A .2π B .4π C .8π D .16π7.若某空间几何体的三视图如图D7所示,则该几何体的体积为( )图D7A .2π+23B .4π+23C .2π+323 D .4π+3238.若三棱锥的三条侧棱两两垂直,三个侧面面积分别为26,23,22,则此三棱锥的外接球的表面积为 ( )A .6πB .4πC .8πD .10π 9.如图D9所示,已知六棱锥P —ABCDEF 的底面是正六边形,若PA ⊥平面ABC ,PA =2AB ,则下列结论正确的是( )图D9A .PB ⊥ADB .平面PAB ⊥平面PBC C .直线BC ∥平面PAED .直线PD 与平面ABC 所成的角为45°10.在直三棱柱ABC —A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成的角等于( )A .30°B .45°C .60°D .90°11.如图D11所示,在长方体ABCD — A 1B 1C 1D 1中,若AB =BC ,E ,F 分别是AB 1,BC 1的中点,则下列结论中不成立的是( )图D11①EF 与BB 1垂直; ②EF ⊥平面BCC 1B 1;③EF 与C 1D 所成的角为45°; ④EF ∥平面A 1B 1C 1D 1.A .②③B .①④C .③D .①②④12.在长方体ABCD —A 1B 1C 1D 1中,若AB =AD =23 ,CC 1=2,则二面角C 1----BD —C 的大小为( )A .30°B .45°C .60°D .90°请将选择题答案填入下表:二、填空题(本大题共4小题,每小题3分,共12分.把答案填在题中横线上)13.直线k x-y+1-3k=0,当k 变动时,所有直线的通过定点________14.用斜二测画法,画得正方形的直观图面积为18,则原正方形的面积是________.15.三棱锥P--ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D-ABE 的体积为V 1,三棱锥P-ABC 的体积为V 2,则21V V =________.16. 某路口的机动车隔离墩的三视图如图D 17所示,其中正视图、侧视图都是由半圆和矩形组成的,根据图中标出的尺寸(单位:cm ),可求得隔离墩的体积为 ________.三、解答题(本大题共4小题,共40分.解答应写出文字说明、证明过程或演算步骤) 17.(8分)已知直线l 1:(m+2)x+(m+3)y -5=0 和 l 2:6x+(2m -1)y=5.问m 为何值时,有(1)l 1∥ l2(2)l 1l218.(8分) 21.(12分)如图所示,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了,会溢出杯子吗?请用你的计算数据说明理由.19.(12分)如图M14所示,已知在三棱柱ABC EFG中,侧棱垂直于底面,AC=3,BC=4,AB=5,AE=4,点D是AB的中点.(1)求证:AE∥平面BFGC;(2)求证:AC⊥BG;(3)求三棱锥C_DBF的体积.图M1420.(12分)如图M15所示,已知四棱柱ABCD—A1B1C1D1的底面是正方形,且侧棱和底面垂直.(1)求证:BD ⊥平面ACC 1A 1;(2)当ABCD —A 1B 1C 1D 1为正方体时,求二面角C 1-BD -C 的正切值及异面直线BC 1与AC 所成角的大小.2018学年度第一学期高二年级十月月考题数学试题答案13. (3,1) 14, 362 15,41 163110003CM17,(1) m=-25,(2) m=-29或m=-1 18,不会溢。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.2π+2 B.4π+2 C.2π+ D.4π+
8.若三棱锥的三条侧棱两两垂直,三个侧面面积分别为 ,则此三棱锥的外接球的表面积为()
A.6πB.4πC.8πD.10π
9.如图D9所示,已知六棱锥P—ABCDEF的底面是正六边形,若PA⊥平面ABC,PA=2AB,则下列结论正确的是()
图D9
A.PB⊥AD
图D11
①EF与BB1垂直;
②EF⊥平面BCC1B1;
③EF与C1D所成的角为45°;
④EF∥平面A1B1C1D1.
A.②③B.①④C.③D.①②④
12.在长方体ABCD—A1B1C1D1中,若AB=AD=2 ,CC1= ,则二面角C1----BD—C的大小为()
A.30°B.45°C.60°D.90°
15.三棱锥P--ABC中,D,E分别为PB,PC的中点,记三棱锥D-ABE的体积为V1,三棱锥P-ABC的体积为V2,则 =________.
16.某路口的机动车隔离墩的三视图如图D17所示,其中正视图、侧视图都是由半圆和矩形组成的,根据图中标出的尺寸(单位:cm),可求得隔离墩的体积为________.
2018学年度第一学期高二年级十月月考题
数学试题
时间90分满分100
一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.以长为8 cm,宽为6 cm的矩形的一边为旋转轴旋转而成的圆柱的底面面积为()
A.64πcm2B.36πcm2C.64πcm2或36πcm2D.48πcm2
(1)求证:BD⊥平面ACC1A1;
(2)当ABCD—A1B1C1D1为正方体时,求二面角C1-BD-C的正切值及异面直线BC1与AC所成角的大小.
2018学年度第一学期高二年级十月月考题数学试题答案
题号
1
2
3
4
5
6
7
8
9
10
11
12
总分
答案
C
B
B
A
B
B
C
A
D
C
A
A
13.(3,1) 14, 36 15, 16
17,(1) m=-
,(2) m=- 或m=-1
18,不会溢。V 134 , V =64 201
19,(3) 4
20,(2) ,60
B.平面PAB⊥平面PBC
C.直线BC∥平面PAE
D.直线PD与平面ABC所成的角为45°
10.在直三棱柱ABC—A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()
A.30°B.45°C.60°D.90°
11.如图D11所示,在长方体ABCD—A1B1C1D1中,若AB=BC,E,F分别是AB1,BC1的中点,则下列结论中不成立的是()
2.过两点A(4,y ),B(2,--3)的直线的倾斜角是 ,则y等于()
A.—1B.—5C.5D.1
3.若直线2x-3y-6=0在x轴上的截距为a,在y轴上的截距为b,则()
A.a=3,b=2 B.a=3,b=-2
C.a=-3,b=2 D.a=-3,b=-2
4.若长方体的长、宽、高分别为5,4,3,则它的外接球的表面积为()
三、解答题(本大题共4小题,共40分.解答应写出文字说明、证明过程或演算步骤)
17.(8分)已知直线 :(m+2)x+(m+3)y-5=0和 :6x+(2m-1)y=5.问m为何值时,有(1) ∥
(2)
18.(8分)21.(12分)如图所示,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了,会溢出杯子吗?请用你的计算数据说明理由.
A.50πB.25πC.32πD.60π
5.沿一个正方体三个面的对角线截得的几何体如图M5所示,则该几何体的侧视图为()
图M5
图M6
6.将棱长为2的正方体木块削成一个体积最大的球,则这个球的表面积为()
A.2πB.4πC.8πD.16π
7.若某空间几何体的三视图如图D7所示,则该几何体的体积为()
图D7
请将选择题答案填入下表:
题号
1
2
3
4
5
6
7
8
9
10
11
12
总分
答案
第Ⅱ卷(非选择题共52分)
2、填空题(本大题共4小题,每小题3分,共12分.把答案填在题中横线上)
13.直线k x-y+1-3k=0,当k变动时,所有直线的通过定点________
14.用斜二测画法,画得正方形的直观图面积为18,则原正方形的面积是____ห้องสมุดไป่ตู้___.
19.(12分)如图M14所示,已知在三棱柱ABCEFG中,侧棱垂直于底面,AC=3,BC=4,AB=5,AE=4,点D是AB的中点.
(1)求证:AE∥平面BFGC;
(2)求证:AC⊥BG;
(3)求三棱锥C_DBF的体积.
图M14
20.(12分)如图M15所示,已知四棱柱ABCD—A1B1C1D1的底面是正方形,且侧棱和底面垂直.
相关文档
最新文档