数字通信:差错控制编码(纠错码)

合集下载

第7章差错控制编码

第7章差错控制编码

第7章 差错控制编码
7.2.2 行列监督码(二维奇偶校验码)
行列监督码(又称二维奇偶校验码、方阵码),它是垂直奇 偶校验与水平奇偶校验的组合,其发现差错的能力很强。这 种码是将若干码字排列成矩阵,在每行和每列的末尾均加监 督码(奇监督或偶监督)。
例如
1100101100010100110001011000011001110101…… 为用户要发送的信息序列,现将每8个码元分成一 组编成方阵,对方阵的行与列都进行偶数监督,则 在发送端编成如表7-1所示的方阵。
息码为10101,码后的码字为1010110101; 当信息码有偶数个“1”时,则监督码是信息码的反码,如
信息码为11011,则编码后的码字为1101100100。
第7章 差错控制编码
监督码的解码规则如下:
解码时先将接收码组中信息码和监督码对应码位模2相加, 得到一个合成码。 若接收的信息码中有奇数个“1”,则此合成码就是检验 码; 若接收的信息码中有偶数个“1”,则校验码为合成码的 反码。 观察校验码中“1”的个数,就能判决信码是否有错并纠 正错误。
信道中差错的类型:
随机差错:由随机噪声导致,表现为独立的、稀疏 的和互不相关发生的差错。
突发差错:相对集中出现,即在短时段内有很多错 码出现,而在其间有较长的无错码时间段,例如由 脉冲干扰引起的错码或信道特性产生的衰落等。
第7章 差错控制编码
7.1.2 差错控制方式 常用的差错控制方式:
➢ 检错重发(ARQ)
7.1.3 纠错码的分类
1)按差错控制编码的功能分:检错码、纠错码 2)按信息码与监督码间的检验关系分:
线性码、非线性码 3)按信息码与监督码间的约束关系分:分组码、卷积码 4)按信息码的编码前后的形式分:系统码、非系统码 5)按信道差错类型分:随机纠错码、突发纠错码 6)按用于差错编码的数学方法分:

差错控制编码

差错控制编码

2.差错控制编码2.1. 引言什么是差错控制编码(纠错编码、信道编码)?为什么要引入差错控制编码?差错控制编码的3种方式?本章主要讲述:前向纠错编码(FEC)、常用的简单编码、线性分组码(汉明码、循环码)、简单介绍RS码*、BCH码*、FIRE码*、交织码,卷积码极其译码、TCM编码*。

一、什么是差错控制编码及为什么引入差错控制编码?在实际信道上传输数字信号时,由于信道传输特性不理想及加性噪声的影响,接收端所收到的数字信号不可避免地会发生错误。

为了在已知信噪比情况下达到一定的误比特率指标,首先应该合理设计基带信号,选择调制解调方式,采用时域、频域均衡,使误比特率尽可能降低。

但若误比特率仍不能满足要求,则必须采用信道编码(即差错控制编码),将误比特率进一步降低,以满足系统指标要求。

随着差错控制编码理论的完善和数字电路技术的发展,信道编码已经成功地应用于各种通信系统中,并且在计算机、磁记录与存储中也得到日益广泛的应用。

差错控制编码的基本思路:在发送端将被传输的信息附上一些监督码元,这些多余的码元与信息码元之间以某种确定的规则相互关联(约束)。

接收端按照既定的规则校验信息码元与监督码元之间的关系,一旦传输发生差错,则信息码元与监督码元的关系就受到破坏,从而接收端可以发现错误乃至纠正错误。

研究各种编码和译码方法是差错控制编码所要解决的问题。

二、差错控制的三种方式1、检错重发(ARQ)检错重发:在接收端根据编码规则进行检查,如果发现规则被破坏,则通过反向信道要求发送端重新发送,直到接收端检查无误为止。

ARQ系统具有各种不同的重发机制:如可以停发等候重发、X.25协议的滑动窗口选择重发等。

ARQ系统需要反馈信道,效率较低,但是能达到很好的性能。

2、前向纠错前向纠错(FEC):发送端发送能纠正错误的编码,在接收端根据接收到的码和编码规则,能自动纠正传输中的错误。

不需要反馈信道,实时性好,但是随着纠错能力的提高,编译码设备复杂。

差错控制编码的分类

差错控制编码的分类

差错控制编码的分类差错控制编码是一种通信中常用的技术,它通过添加特定的编码格式,来检测和纠正误码,使数据传输的可靠性得以提高。

在差错控制编码的使用中,通常会根据不同的应用需求和技术特点,将其分为不同类型,下面将围绕差错控制编码的分类进行详细阐述。

一、前向纠错编码前向纠错编码也称为FEC编码,它是最常用的差错控制编码之一。

该编码在传输数据前,会将原始数据转化为一定的编码序列,并添加冗余信息用于检测和纠正差错。

在传输过程中,可以根据接收端反馈的差错信息,对数据进行快速的差错纠正。

前向纠错编码常见的应用场景包括手机数据传输、卫星通信等。

二、循环冗余校验码循环冗余校验码也称作CRC码,它是一种针对数据传输差错控制高效的编码方式。

和前向纠错编码不同,CRC码是根据一定的多项式算法,对原始数据块进行编码,产生冗余校验码。

通过比对接收端根据校验码计算出来的生成码和发送端发送过来的校验码进行比较,判断是否存在差错。

CRC码常用于数据存储和传输领域,例如局域网通信、文件传输等。

三、哈希校验码哈希校验码是差错控制编码的一种,其运用了哈希函数的原理,将参考数据块按照一定的哈希算法转化为哈希值。

在传输过程中,接收端也将接收到的数据块用同样的哈希算法转化为哈希值,然后和发送端的哈希值进行比对判断差错情况。

哈希校验码广泛用于数字签名、数据完整性检查等场合。

四、海明编码海明编码是一种纠错码,也是前向纠错编码的具体形式之一。

该编码方式通过将原始数据划分成一定的字节块,并添加多组冗余信息。

冗余信息的添加方式是通过将每个字节表示为二进制数的形式,然后构成一个矩阵进行计算得出。

在传输过程中,接收端通过对接收到的数据块进行计算,根据校验码快速发现错误并进行纠正。

海明编码常用于CD、DVD等数字光盘以及RAM、Flash等内存存储领域。

以上是常见的几种差错控制编码,它们通过不同的方式来实现数据传输的高效和准确。

在实际应用中,需要根据具体情况和需求,选择合适的编码方式进行使用和优化。

差错控制编码(纠错码)

差错控制编码(纠错码)

23
奇数校验码:附加一位监督码,使码组中“1”的个数为奇数
设码字(vn-1, vn-2, …, v1, v0),v0为监督元,则有:
vn-1+ vn-2+…+ v1+ v0=1
模2加
(8-1)
在接收端,按上式计算各码元,若结果为0认为有错; 否则,无错。如:11010 0
偶数校验码:附加一位监督码,使码组中“1”的个数为偶数,
引言 纠错编码的基本原理 线性分组码 循环码 小结
2
§8.1 引言
一、基本概念
在数字信号传输中,由于噪声的存在及信道特性 不理想,都可使信号波形失真,从而在接收端就不可 避免的产生错误判决。 引起误码原因: (1)信道特性不理想(乘性干扰): 引起码间串扰,通常 可采用均衡的办法纠正。 (2) 噪声影响(加性干扰) : 需借助各种差错控制编码 技术来克服。
5
三、误码的类型 随机误码
•错码出现是随机的、错码之间统计独立。 •由随机噪声引起 •存在随机误码的信道称为随机信道
突发误码
•错码成串集中出现,在很短的时间出现大量错码,而 过后又存在较大的无错码位,且差错之间是相关的 •例如:脉冲噪声,信道中衰落 •存在这种差错的信道称为突发信道
6
四、差错控制方法
特点:结构简单,易于实现,编码效率高,虽然不理想, 但干扰不严重时,且码长不长的情况下仍很有用。
25
3、方阵码
也叫二维奇偶校验码(矩阵码、行列监督码),其 基本原理与简单的奇偶校验码相似。不同的是每个 码元都要受到行和列的两项监督 编码方法: 将所要传送的码序列编成一个方阵,方阵中每一行为 一个码组。每行的最后加上一个监督码元,进行奇偶 监督。在每列的最后也加上一个监督码,进行奇偶监 督

第7章 差错控制编码

第7章 差错控制编码
随着数字通信系统的发展,可以将信道编码器和调制器统一 起来综合设计,这就是所谓的网格编码调制。
7.1.2 差错控制方式


可以纠正错误的码
(a) 前向纠错(FEC)

能够发现错误的码

应答信号
(b) 检错重发(ARQ)


可以发现和纠正错误的码
应答信号 (c) 混合纠错检错(HEC)
检错重发方式:
统的性噪比之比。 纠错码的抗干扰能力完全取决于许用码字之间的距离,码
的最小距离越大,说明码字间的最小差别越大,抗干扰能力 就越强。
分组码的最小汉明距离d0与检错和纠错能力之间满足下列关系: (1)当码字用于检测错误时,如果要检测e个错误,则
d0 ≥ e+1 (2)当码字用于纠正错误时,如果要纠正t个错误,则
第7章 差错控制编码
➢ 7.1 引言 ➢ 7.2 常用简单分组码 ➢ 7.3 线性分组码 ➢ 7.4 循环码 ➢ 7.5 卷积码 ➢ 7.6 m 序列
7.1 引言
7.1.1 信源编码与信道编码的基本概念
在数字通信系统中,为了提高数字信号传输的有效性而采 取的编码称为信源编码;为了提高数字通信的可靠性而采取 的编码称为信道编码。
7.1.2 纠错编码的基本原理
信道编码的基本概念: 码长:码字中码元的数目; 码重:码字中非0数字的数目; 码距:两个等长码字之间对应位不同的数目,有时也称
作这两个码字的汉明距离; 最小码距:在码字集合中全体码字之间距离的最小数值。 码率:信息位k 与码长n之比; 编码效率:在给定误码率要求下,非编码系统与编码系
当r个监督方程式计算得到的校正子有r位,可以用来指示 2r-1种误码图样。
如果希望用r个监督位构造出r个监督关系式来指示一位错 码的n种可能,则要求:

差错控制编码的归纳总结

差错控制编码的归纳总结

差错控制编码的归纳总结差错控制编码是一种在数据传输中用于检测和纠正错误的技术。

它通过在待传输的数据中引入冗余信息,以便在接收端检测和修复数据中的错误。

本文将对几种常见的差错控制编码进行归纳总结,包括奇偶校验码、海明码和循环冗余校验码。

1. 奇偶校验码奇偶校验码是一种简单的差错控制编码方式。

它通过在待传输数据中添加一个附加位(通常为0或1),使得数据的总位数为偶数或奇数。

接收端在接收数据后,通过检查附加位和数据位中1的个数来判断数据是否存在错误。

如果接收到的数据中的1的个数与附加位指示的奇偶性相符,则认为数据传输成功,否则认为存在错误。

虽然奇偶校验码简单易实现,但其纠错能力有限。

它只能检测和纠正出现在一个位上的错误,并不能纠正多个位的错误。

2. 海明码海明码是一种更为强大的差错控制编码方式。

它通过在待传输数据中添加一定数量的冗余位,以便检测和纠正多个位的错误。

海明码的基本原理是,将数据按照一定规则组织成一个矩阵,并对每个列和每个行进行奇偶校验。

接收端在接收到数据后,通过对每个列和每个行进行奇偶校验,可以检测到多个位的错误,并利用冗余位进行纠正。

海明码分为单错误检测纠正和多错误检测纠正两种类型。

单错误检测纠正的海明码可以检测到一位错误,并能够通过修改一个位来纠正错误。

多错误检测纠正的海明码可以检测和纠正多位错误。

不同类型的海明码所包含的冗余位数量不同,因此其检测和纠正能力也有所差异。

3. 循环冗余校验码循环冗余校验码(CRC码)是一种常用的差错控制编码方式。

它通过在待传输的数据末尾添加一个余数,使得整个数据能够被预先设定的生成多项式整除。

接收端在接收数据后,通过再次计算CRC码并与接收到的CRC码进行比较,可以判断数据是否存在错误。

如果计算得到的CRC码与接收到的CRC码一致,则认为数据传输成功,否则认为存在错误。

CRC码具有较高的检错能力和较低的纠错能力。

它能够检测多位错误,但不能纠正错误。

CRC码的生成多项式可根据需要进行选择,以平衡校验能力和计算效率。

北京理工大学《通信原理》第11章-差错控制编码

北京理工大学《通信原理》第11章-差错控制编码

但是这种码不能发现一个码组中的两个错码,因为发生两
个错码后产
检错和纠错
上面这种编码只能检测错码,不能纠正错码。例如,当接收码 组为禁用码组“100”时,接收端将无法判断是哪一位码发生了 错误,因为晴、阴、雨三者错了一位都可以变成“100”。
要能够纠正错误,还要增加多余度。例如,若规定许用码组只 有两个:“000”(晴),“111”(雨),其他都是禁用码组, 则能够检测两个以下错码,或能够纠正一个错码。
例如:“000”(晴),“001”(云),
“010”(阴),“011”(雨),
“100”(雪),“101”(霜),
“110”(雾),“111”(雹)。
其中任一码组在传输中若发生一个或多个错码,则将变 成另一个信息码组。这时,接收端将无法发现错误。
12
第11章差错控制编码
若在上述8种码组中只准许使用4种来传送天气,例如:
若码组A中发生两位错码,则其位置不会超出以O点为圆 心,以2为半径的圆。因此,只要最小码距不小于3,码 组A发生两位以下错码时,
不可能变成另一个准用 码组,因而能检测错码 的位数等于2。
0123
A
B 汉明距离
e
d0
19
第11章差错控制编码
同理,若一种编码的最小码距为d0,则将能检测(d0 - 1)个错码。 反之,若要求检测e个错码,则最小码距d0至少应不小于( e + 1)。
N - 码组的总位数,又称为码组的长度(码长), k - 码组中信息码元的数目, n – k = r - 码组中的监督码元数目,或称监督位数目。
16
第11章差错控制编码
分组码的码重和码距
码重:把码组中“1”的个数称为码组的重量,简称码重。 码距:把两个码组中对应位上数字不同的位数称为码组

差错控制编码的基本概念

差错控制编码的基本概念
这种在信息码元序列中加入监督码元的过程就称为差错 控制编码(或称纠错编码) 。 从差错控制角度来看,信道分为三类:
随机信道、突发信道、混合信道。 对不同类型的信道应该采用不同的差错控制技术。
1.2 纠错码的分类
(1)根据码的用途,可分为检错码和纠错码。检错码以检 错为目的,不一定能纠错;而纠错码以纠错为目的,一定能 检错。
(2)根据纠错码各码组信息元和监督元的函数关系,可分 为线性码和非线性码。如果函数关系是线性的,即满足一组 线性方程式,则称为线性码,否则为非线性码。
(3)按照信息码元和监督码元之间的约束方式不同,可 以将它分为分组码和卷积码。分组码的各码元仅与本码组的 信息元有关;卷积码中的码元不仅与本码组的信息元有关, 而且还与前面若干信息元有关。
特点:适合突发信道。
3 .恒比码
码字中 1 的数目与 0 的数目保持恒定比例的码称为恒比 码。接收端只要检测接收到的码组“1”的数目是否对,就可 以知道有无错误。 例:“5中取3”恒比码,有C53 =10种不同组合,表示10个阿 拉伯数字。如表 10.2 所示。 “7中取3”恒比码,有C73 =35种不同组合,表示26个英文字 母和其他符号。 而每个汉字又是以四位十进制数来代表的。。

器器 器器 介 器
调制信道
解 译 解信 调 码 密宿 器 器器
编码信道
由于数字信号传输过程中受到加性干扰和乘性干扰的影
响,会产生误码。由加性干扰引起的码间干扰,通常可以采 用信道均衡、匹配滤波器、升余弦系统特性、增加发射功率、 合理选择调制/解调方法等措施,减少误码。由于乘性干扰 影响,或采用了上述方法后,仍不能有效地抑制加性干扰的 影响时, 就要采用差错控制技术。
an1 an2 a1 a0 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 10 章 差错控制编码
10.2.3 恒比码 码字中1 码字中1的数目与 0的数目保持恒定比例 的码称为恒比码。 的码称为恒比码。又 称等重码, 称等重码,定1码。 这种码在检测时, 这种码在检测时, 通过计算接收码元中1 通过计算接收码元中1 的数目是否正确, 的数目是否正确,就 知道有无错误。 知道有无错误。
第 10 章 差错控制编码
差错控制编码
10.1 概述 10.2 常用的几种简单分组码 10.3 线性分组码 10.4 循环码 10.5 卷积码
第 10 章 差错控制编码
本章内容在数字通信系统中所处的位置: 本章内容在数字通信系统中所处的位置:
第 10 章 差错控制编码
10.1 概 述
差错控制编码,又称信道编码、 差错控制编码,又称信道编码、可靠性编 码、抗干扰编码或纠错码,它是提高数字信号 抗干扰编码或纠错码, 可靠性的有效方法之一 20世纪 传输可靠性的有效方法之一。它产生于20 传输可靠性的有效方法之一。它产生于20世纪 50年代初,发展到70年代趋向成熟。 50年代初,发展到70年代趋向成熟。本章将主 年代初 70年代趋向成熟 要分析信道编码的基本原理、 要分析信道编码的基本原理、介绍常用的检错 信道编码的基本原理 码、线性分组码及卷积码的构造原理及其应用。 线性分组码及卷积码的构造原理及其应用。
第 10 章 差错控制编码
举例说明:假如要传送A、B两个消息 举例说明:假如要传送 、 两个消息
编码一: 消息A----“0”;消息B----“1” 最小码距1 若传输中产生错码(“0”错成“1”或“1” 错成“0”)收端无法发现,该编码无检错 纠错能力。
第 10 章 差错控制编码
编码二: 消息A----“00”;消息B----“11” 最小码距2 若传输中产生一位错码,则变成“01”或 “10”,收端判决为有错(因“01”“10”为禁 用码组),但无法确定错码位置,不能纠正,该 编码具有检出一位错码的能力。 这表明增加一位冗余码元后码具有检出一位错 码的能力
第 10 章 差错控制编码
编码三: 消息A----“000”;消息B----“111” 最小码距3 传输中产生一位即使两位错码,都将变成禁用 码组,收端判决传输有错。该编码具有检出两 位错码的能力。 在产生一位错码情况下,收端可根据“大数” 法则进行正确判决,能够纠正这一位错码。例 如收到110,认为是111。 这表明增加两位冗余码元后码具有检出两位错 码及纠正一位错码的能力。
第 10 章 差错控制编码
总结: 总结:
前向纠错 FEC 发端 纠错码 收端
检错重发 ARQ
检错码 发端 判决信号 检错和纠错码 发端 判决信号 收端 收端
混合纠错 HEC
图 10-1 差错控制方式
第 10 章 差错控制编码
信道编码的核心问题
发现错误 纠正错误
第 10 章 差错控制编码
(1)几个概念 )
第 10 章 差错控制编码
10.2.1 奇偶监督码 奇偶监督码:在信息码元后附加一位监督位,使 得码组中奇偶监督码“1”的个数为偶数或奇数。
对k位码元 校验位 a1a2a3 ...ak ak+1 = a1 ⊕a2 ⊕a3 ... ⊕ak ak+1 = a1 ⊕a2 ⊕a3 ... ⊕ak ⊕1
r = 1 → ak+1
第 10 章 差错控制编码 并简记为
其中,P为r×k阶矩阵,I r 为r×r阶单位矩阵。可以写成H= [P Ir]形式的矩阵称为典型监督矩阵。 HAT=0T,说明H矩阵与码字的转置乘积必为零,可以用来 作为判断接收码字A是否出错的依据。
第 10 章 差错控制编码
监督矩阵H特点 r×n阶矩阵 监督矩阵H确定了编码时监督码元与信息码元 的关系 把具有[P·Ir]形式的H矩阵称为典型形式的监督 矩阵,其中P为r ×k阶矩阵, Ir为r ×r阶单位方阵 H矩阵的各行应线性无关。矩阵若能写成典型 形式,则其各行一定线性无关
第 10 章 差错控制编码 若把监督方程补充为下列方程
第 10 章 差错控制编码 可改写为矩阵形式
第 10 章 差错控制编码
1 0 G= 0 0
0 0 0 1 1 1 1 0 0 1 1 0 0 1 0 1 0 1 0 0 1 0 1 1
第 10 章 差错控制编码 表 10-2 (7,4)码的码字表 码的码字表
第 10 章 差错控制编码
2、线性分组码的性质 、
任意两个许用码组之和(逐位模2和)仍为一 许用码组,即具有封闭性。 最小码距=非零码的最小码重(1的个数)。
第 10 章 差错控制编码
10.3.2 监督矩阵 和生成矩阵G 监督矩阵H和生成矩阵 和生成矩阵
第 10 章 差错控制编码
(2)最小码距与检错和纠错能力的关系 )
一个码能检测e个错码,则要求其最小码dmin≥e+1 一个码能纠正t个错码,则要求其最小dmin≥2t+1 一个码能纠正t个错码,同时能检测e个错码,则要 求其最小码距 dmin≥e+t+1 (e>t)
第 10 章 差错控制编码
10.2 常用的几种简单分组码 奇偶监督码 二维奇偶监督码(略,见附录) 恒比码
差错控制的基本原理 在信息码上附加一定位数的监督码元, 在信息码上附加一定位数的监督码元,使其与信息位按某 种规则相互关联; 种规则相互关联;
若数据在传输过程中发生差错,关联关系被破坏, 若数据在传输过程中发生差错,关联关系被破坏,从而可 检出和/或纠正错误。 检出和/或纠正错误。
第 10 章 差错控制编码 差错控制编码的分类 线性码: 线性码: 信息码与监督码之间的关系为线性关系; 信息码与监督码之间的关系为线性关系;
第 10 章 差错控制编码 2、前向纠错方式 (FEC 、 Forward Error Correction)
发端发送能够纠正错误 纠正错误的码,收端收到信码后自动地纠正传 纠正错误 输中的错误 特点: 需反馈信道 无需重传,延时小; 需反馈信道, 特点:无需反馈信道,无需重传,延时小; 传输序列中冗余量较大。 传输序列中冗余量较大。 运用在移动通信系统、军事系统通信中。 运用在移动通信系统、军事系统通信中。 3、混合纠错方式 HEC(Hybrid ErrorCorrection) 、混合纠错方式 混合纠错方式记作是FEC和ARQ方式的结合。 出错较少时FEC起作用;出错较多时ARQ起作用 起作用;出错较多时 出错较少时 起作用 起作用
第 10 章 差错控制编码
数字信号在传输过程中受到干扰的影响,使 信号波形变坏,发生误码,可以采用一些方 法解决。
差错出现原因 外界噪声 传输中码间串扰 解决方法 合理地设计基带信号,选择调制、解调方式 ,采用均衡技术,提高发送功率等因素,使误比 特率降低。 差错控制编码。
ቤተ መጻሕፍቲ ባይዱ
第 10 章 差错控制编码
第 10 章 差错控制编码
现以(7,4)分组码为例来说明线性分组码的特点。设其码字 为A=[a6 a5 a4 a3 a2 a1 a0],其中前 4 位是信息元,后 3 位是 监督元, 可用下列线性方程组来描述该分组码,产生监督元。
a2 = a6 + a5 + a4 a3 a1 = a6 + a5 a0 = a 6 + a 4 + a3
偶校验 a1 ⊕ a2 ⊕a3 ... ⊕ak ⊕ak+1 = 0 奇校验 a1 ⊕ a2 ⊕a3 ... ⊕ak ⊕ak+1 = 1
第 10 章 差错控制编码
表:码长为4的奇、偶监督码 码长为4的奇监督码 奇 序 号 信息码元 0 1 2 3 4 5 6 7 000 001 010 011 100 101 110 111 监督码元 1 0 0 1 0 1 1 0 0 1 2 3 4 5 6 7 序 号 码长为4的偶监督码 偶
非线性码:信息码与监督码之间的关系为非线性关系。 非线性码:信息码与监督码之间的关系为非线性关系。
分组码:监督码只与本组信息码有系; 分组码:监督码只与本组信息码有系; 卷积码:监督码与本组和前面码组中的信息码有关。 卷积码:监督码与本组和前面码组中的信息码有关。
系统码: 系统码:
编码后码组中信息码保持原图样顺序不变; 编码后码组中信息码保持原图样顺序不变;
信息码元 000 001 010 011 100 101 110 111
监督码元 0 1 1 0 1 0 0 1
第 10 章 差错控制编码
只能检测出单个或奇数个错误,不能检测偶数个错误 不能纠错。 应用:以随机错误为主的计算机通信系统,难于对 付突发错误 编码效率=k/n=k/(k+1),是一种高效率码。 10.2.2二维奇偶监督码见附录 二维奇偶监督码见附录
表 10-1 3∶2 恒比码 ∶
(是一种五中取三码) 是一种五中取三码)
第 10 章 差错控制编码
10.3 线性分组码(重点) 线性分组码(重点) 1、基本概念 、
线性分组码: 先将信息码分组,然后给每组信码附加若干监督码 的编码称为分组码。 若附加的监督码和信息码由一些线性代数方程相则 称为线性分组码。 用符号(n,k)表示,k是信息码的位数,n是编码组总 位数,又称为码长,r=n-k为监督位数。
混合错误:以上两种误码及产生原因的组合。 混合错误:以上两种误码及产生原因的组合。
第 10 章 差错控制编码
10.1.2 差错控制类型
1、检错重发 (ARQ Automatic Repeat Request ):在发送端采用 具有检错功能的编码,接收端发现出错后自动请求重发. 检错功能的编码 具有检错功能的编码,接收端发现出错后自动请求重发. 有以下三种方式: 有以下三种方式: 停止---等待ARQ 停止---等待ARQ ---等待
编码效率:信息码元数与码长之比,通常用 η = k 表 n 示,其中k为信息码元的数目,n为码长。 最小码距:在一个码字集合中,任意两个码字间距离 的最小值,即码字集合中任意两元素间的最小距离, 记为dmin或d0 纠错码的抗干扰能力完全取决于许用码字之间的距 码的最小距离越大, 离,码的最小距离越大,说明码字间的最小差别越 抗干扰能力就越强。 大,抗干扰能力就越强。
相关文档
最新文档