二次函数实际应用-利润最大值问题

合集下载

二次函数利润最值问题

二次函数利润最值问题

二次函数利润最值问题引言在现代经济学中,利润是一个重要的指标,对于企业盈亏和发展有着至关重要的影响。

在许多经济相关的问题中,我们常常需要通过建立数学模型来分析和优化利润。

二次函数是一种重要的数学模型,在许多经济问题中都有广泛的应用。

本文将探讨二次函数在利润最值问题中的应用。

二次函数概述二次函数是指具有以下形式的数学函数:f(x)=ax2+bx+c其中,a、b和c为常数,且a≠0。

二次函数的图像通常是一条抛物线,其开口方向由系数a的正负决定。

利润最值问题利润最值问题是指在一定的经济条件下,通过数学模型中的二次函数来分析和优化利润。

这类问题在实际应用中非常常见,例如企业的生产成本和销售收入存在某种关系时,我们可以通过建立二次函数模型来研究企业的利润最大化问题。

利润函数的建立要解决利润最值问题,首先需要建立利润函数。

假设某企业的生产成本是关于产量x的二次函数,销售收入是关于产量x的线性函数。

那么该企业的利润函数可以表示为:P(x)=R(x)−C(x)其中,P(x)表示利润,R(x)表示销售收入,C(x)表示生产成本。

利润函数的优化优化利润函数,即求出使利润最大化(或最小化)的产量x。

可以通过以下步骤进行:1.将利润函数表示为二次函数的形式,即将R(x)和C(x)分别展开为二次函数的形式。

2.求出二次函数的顶点坐标,顶点坐标表示了二次函数的极值点。

3.根据二次函数的开口方向和顶点的坐标,确定利润函数的最值点。

利润最大化问题实例分析我们将通过一个实例来说明如何利用二次函数求解利润最大化问题。

假设某企业的生产成本函数为C(x)=0.5x2+10x+100,销售收入函数为R(x)= 30x。

我们需要求解该企业的利润最大化问题。

将成本函数表示为二次函数形式将生产成本函数C(x)=0.5x2+10x+100展开,得到C(x)=0.5x2+10x+100。

将销售收入函数表示为二次函数形式将销售收入函数R(x)=30x展开,得到R(x)=30x。

二次函数与商品利润最大问题

二次函数与商品利润最大问题

初中数学课件
课堂寄语
二次函数是一类最优化问题 的数学模型,能指导我们解决生活中 的实际问题,同学们,认真学习数学 吧,因为数学来源于生活,更能优化 我们的生活。
初中数学课件
作业超市
必做题:大演草 说明指导60页例题1 选做题:中考备战二次函数的应用题
.
2.二次函数y=ax2+bx+c的图象是一条 抛物线 ,它的对称
轴是
x b 2a
,顶点坐标是
( b , 4ac b2 ) 2a 4a
.
当a>0时,抛物线开口向 上 ,有最 低 点,函数有
4ac b2
最 小 值,是 4a

当 a<0时,抛物线开口向 下
数有最 大
4ac b2
值,是 4a
,有最 高 。
即:y=-20x2+100x+6000,

x 100 5 2 (20) 2
时,
y 20 (5)2 100大利润是6125元.
由(1)(2)的讨论及现在的销 售情综况合,可你知知,道应应定该价如6何5元定时价,
才能能使使利利润润最最大大了。吗?
点,函
基础扫描
初中数学课件
二次函数特定范围内的最值
初中数学课件
二 如何定价利润最大
例1 某商品现在的售价为每件60元,每星期可卖出300件, 市场调查反映:每涨价1元,每星期少卖出10件;已知商品的 进价为每件40元,如何定价才能使利润最大?
涨价销售
①每件涨价x元,则每星期售出商品的利润y元,填空:
初中数学课件
二次函数的应用
---商品利润最大问题
初中数学课件
复习目标
1.能应用二次函数的性质解决商品销售过程中 的最大利润问题.(重点) 2.弄清商品销售问题中的数量关系及确定自变 量的取值范围. (难点)

专题08 二次函数实际应用中的利润问题(解析版)-【压轴必考】

专题08 二次函数实际应用中的利润问题(解析版)-【压轴必考】

专题08 二次函数实际应用中的利润问题 经典例题例1.某电商销售某种商品一段时间后,发现该商品每天的销售量y (单位:千克)和每千克的售价x (单位:元)满足一次函数关系(如图所示),其中5080x ≤≤,(1)求y 关于x 的函数解析式;(2)若该种商品的成本为每千克40元,该电商如何定价才能使每天获得的利润最大?最大利润是多少?【答案】(1)y 关于x 的函数解析式为2200y x =-+;(2)该电商定价为70元时才能使每天获得的利润最大,最大利润是1800元.【解析】(1)设y 关于x 的函数解析式为y kx b =+,则由图象可得()50,100和()80,40,代入得: 501008040k b k b +=⎧⎨+=⎩,解得:2200k b =-⎧⎨=⎩,∴y 关于x 的函数解析式为2200y x =-+; (2)设该电商每天所获利润为w 元,由(1)及题意得:()()240220022808000w x x x x =--+=-+-,∴-2<0,开口向下,对称轴为702b x a=-=, ∴5080x ≤≤,∴当70x =时,w 有最大值,即为22702807080001800w =-⨯+⨯-=; 答:该电商定价为70元时才能使每天获得的利润最大,最大利润是1800元.例2.合肥百货大楼以进价120元购进某种新商品,在5月份试销阶段发现,在售价不低于130元的情况下每件售价(元)与商品的日销量(件)始终存在下表中的数量关系:(1)请你观察上面表格中数据的变化规律,填写表中的a 值为(2)若百货大楼该商品柜组想日盈利达到1600元,应将售价定为多少元?(3)柜组售货员小李发现销售该种商品m 件与n 件的利润相同,且m n ≠,请直接写出m 与n 所满足的关系式.【答案】(1)20;(2)160元;(3)m +n =80【解析】(1)∴130+70=200,135+65=200,140+60=200,∴每件的售价与产品的日销量之和为200,∴a =200-180=20,故答案为:20;(2)由(1)知:当每件产品每涨价1元时,日销售量减少1件,设每件产品定价为x 元(x >120),则产品的日销量为(200-x )元,依题意得:(x -120)(200-x )=1600,整理得:x 2-320x +25600=0,解得:x 1=x 2=160.答:每件产品定价为160元时,每日盈利可达到1600元;(3)由(1)知:当每件产品每涨价1元时,日销售量减少1件,∴当销售该种商品m 件时,定价为:(200-m )元,销售该种商品n 件时,定价为:(200-n )元, 由题意得:(200-m -120)m =(200-n -120)n ,整理得:(m -n )(m +n -80)=0,∴m ≠n ,∴m +n -80=0,即m +n =80.故答案为:(1)20;(2)160元;(3)m +n =80例3.某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x 元,每星期销售量为y 个.(1)请直接写出y (个)与x (元)之间的函数关系式;(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元?【答案】(1)y =-2x +220;(2)当销售单价是70元或80元时,该网店每星期的销售利润是2400元;(3)当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.【解析】(1)由题意可得,y =100-2(x -60)=-2x +220;(2)由题意可得,(-2x +220)(x -40)=2400,解得,170x =,280x =,∴当销售单价是70元或80元时,该网店每星期的销售利润是2400元.答:当销售单价是70元或80元时,该网店每星期的销售利润是2400元.(3)设该网店每星期的销售利润为w 元,由题意可得w =(-2x +220)(x -40)=223008800-+-x x , 当752b x a=-=时,w 有最大值,最大值为2450, ∴当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.答:当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.【变式训练1】天府新区某商场开业后要经营一种新上市的文具进价为10元/件.试营销阶段发现:当销售单价是13元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件,设该商场销售这种文具每天的销售量为y 件,销售单价为x 元/件(3)1x ≥.(1)写出y 与x 之间的函数关系式;(2)设商场每天的销售利润为w (元),若每天销售量不少于150件,求商场每天的最大利润.【答案】(1)10380y x =-+;(2)1950元【解析】(1)当销售单价是13元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件,∴销售量y 件,销售单价x 元/件(13)x 之间的关系为:25010(13)10380y x x =--=-+; (2)每天销售量不少于150件,150y ∴,即10380150x -+,解得23x ,商场每天的销售利润2(10)(10)(10380)10(24)1960w x y x x x =-⋅=-⋅-+=--+,w ∴关于x 的抛物线对称轴为24x =,而100-<,开口向下,当23x 时,图象在对称轴左侧,w 随x 的增大而增大,23x ∴=时,w 最大,且w 最大值为1950,∴若每天销售量不少于150件,则商场每天的最大利润是1950元.【变式训练2】某地区在2020年开展脱贫攻坚的工作中大力种植有机蔬菜.某种蔬菜的销售单价与销售月份之间的关系如图(1)所示,每千克成本与销售月份之间的关系如图(2)所示(其中图(1)的图象是直线,图(2)的图象是抛物线).(1)求每千克蔬菜销售单价y 与销售月份x 之间的关系式;(2)判断哪个月份销售每千克蔬菜的收益最大?并求出最大收益;(3)求出一年中销售每千克蔬菜的收益大于1元的月份有哪些?【答案】(1)y =23-x +7;(2)5月出售每千克收益最大,最大为73元;(3)一年中销售每千克蔬菜的收益大于1元的月份有4,5,6三个月.【解析】(1)设y kx b =+,将(3,5)和(6,3)代入得,3563k b k b +=⎧⎨+=⎩,解得237k b ⎧=-⎪⎨⎪=⎩.273y x ∴=-+; (2)设每千克成本与销售月份之间的关系式为:y =a (x -6)2+1,把(3,4)代入得,4=a (3-6)2+1,解得13a =.21(6)13y x ∴=-+,即214133y x x =-+. 收益23W =-217(413)3x x x +--+217(5)33x =--+, 103a =-<,∴当5x =时,73W =最大值.故5月出售每千克收益最大,最大为73元; (3)一年中销售每千克蔬菜的收益:23W =-217(413)3x x x +--+, 当1W =时,23-217(413)13x x x +--+=,解得:x 1=7,x 2=3, 103a =-<,x 为正整数,∴一年中销售每千克蔬菜的收益大于1元的月份有4,5,6三个月. 故答案为:(1)y =23-x +7;(2)5月出售每千克收益最大,最大为73元;(3)一年中销售每千克蔬菜的收益大于1元的月份有4,5,6三个月.【变式训练3】红星公司销售一种成本为40元/件的产品,若月销售单价不高于50元/件.一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x (单位:元/件),月销售量为y (单位:万件).(1)直接写出y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)当月销售单价是多少元/件时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a 元.已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a 的值.【答案】(1)5(4050)0.110(50100)x y x x ≤≤⎧=⎨-+<≤⎩;(2)当月销售单价是70元/件时,月销售利润最大,最大利润是90万元;(3)4.【解析】(1)由题意,当4050x ≤≤时,5y =,当50x >时,50.1(50)0.110y x x =--=-+,0y ≥,0.1100x ∴-+≥,解得100x ≤,综上,5(4050)0.110(50100)x y x x ≤≤⎧=⎨-+<≤⎩; (2)设该产品的月销售利润为w 万元,①当4050x ≤≤时,5(40)5200w x x =-=-,由一次函数的性质可知,在4050x ≤≤内,w 随x 的增大而增大,则当50x =时,w 取得最大值,最大值为55020050⨯-=;②当50100x <≤时,2(40)(0.110)0.1(70)90w x x x =--+=--+,由二次函数的性质可知,当70x =时,w 取得最大值,最大值为90,因为9050>,所以当月销售单价是70元/件时,月销售利润最大,最大利润是90万元;(3)捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元(大于50万元), 5070x ∴<≤,设该产品捐款当月的月销售利润为Q 万元,由题意得:(40)(0.110)Q x a x =---+,整理得:221400.1()390240a a Q x a +=--+-+, 140702a +>,∴在5070x <≤内,Q 随x 的增大而增大, 则当70x =时,Q 取得最大值,最大值为(7040)(0.17010)903a a ---⨯+=-,因此有90378a -=,解得4a =.【变式训练4】某企业研发了一种新产品,已知这种产品的成本为30元/件,且年销售量y (万件)与售价x (元/件)的函数关系式为()()2140,406080.6070x x y x x ⎧-+≤<⎪=⎨-+≤≤⎪⎩ (1)当售价为60元/件时,年销售量为________万件;(2)当售价为多少时,销售该产品的年利润最大?最大利润是多少?(3)若销售该产品的年利润不少于750万元,直接写出x 的取值范围.【答案】(1)20;(2)当售价为50元/件时,年销售利润最大,最大为800万元;(3)4555x ≤≤【解析】(1)=6080608020x y x y =-+=-+=当时,代入中,得.(2)设销售该产品的年利润为W 万元,当60x ≤40<时,()()()2302140250800W x x x =--+=--+.∴20<-,∴当50x =时,800W =最大当6070≤≤x 时,()()()2308055625W x x x =--+=--+∴10-<,6070≤≤x ,∴当60x =时,600W =最大∴800600>,∴当50x =时,800W =最大∴当售价为50元/件时,年销售利润最大,最大为800万元.(3)4555x ≤≤理由如下:由题意得 ()()3021407504555x x x --+≥≤≤解得:故答案为:(1)20;(2)当售价为50元/件时,年销售利润最大,最大为800万元;(3)4555x ≤≤ 课后训练1.某超市销售一种商品,每件成本为50元,销售人员经调查发现,销售单价为100元时,每月的销售量为50件,而销售单价每降低2元,则每月可多售出10件,且要求销售单价不得低于成本.(1)求该商品每月的销售量y (件)与销售单价x (元)之间的函数关系式;(不需要求自变量取值范围) (2)若使该商品每月的销售利润为4000元,并使顾客获得更多的实惠,销售单价应定为多少元?(3)超市的销售人员发现:当该商品每月销售量超过某一数量时,会出现所获利润反而减小的情况,为了每月所获利润最大,该商品销售单价应定为多少元?【答案】(1)5550y x =-+;(2)70元;(3)80元.【解析】(1)∴依题意得()150100102y x =+-⨯⨯, ∴y 与x 的函数关系式为5550y x =-+;(2)∴依题意得()504000y x -=,即()()5550504000x x -+-=,解得:170x =,290x =, ∴7090<∴当该商品每月销售利润为4000,为使顾客获得更多实惠,销售单价应定为70元;(3)设每月总利润为w ,依题意得 ()()()250555050580027500w y x x x x x =-=-+-=-+-∴50-<,此图象开口向下∴当()8008025x =-=⨯-时, w 有最大值为:258080080275004500-⨯+⨯-=(元),∴当销售单价为80元时利润最大,最大利润为4500元,故为了每月所获利润最大,该商品销售单价应定为80元.2.红星工厂研发生产某种产品,成本为3万元/吨,每天最多能生产15吨.工厂为持续发展,尝试与博飞销售公司建立产销合作关系,双方约定:合作第一个月,工厂产品仅由博飞销售公司订购代销,并每天按博飞销售公司当日订购产品数量生产,当日出厂价格y (万元/吨)与当日订购产品数量x (吨)之间的关系如图所示:(1)直接写出y 与x 的函数关系式,并写出自变量x 的取值范围;(2)红星工厂按产销合作模式生产这种产品,设第一个y (万元/吨)月单日所获利润为w (万元), ①求w (万元)与x (吨)的函数关系式;②为响应国家“乡村振兴”政策,红星工厂决定,将合作第一个月中单日所获最大利润捐赠给附近村委会.试问:工厂这次为“乡村振兴”最多捐赠多少万元?【答案】(1)9(05)4(515)x x y x -+≤≤⎧=⎨≤⎩<;(2)①w =26(05)(515)x x x x x ⎧-+≤≤⎨≤⎩<;②工厂这次为“乡村振兴”最多捐赠15万元.【解析】(1)当0≤x ≤5时,设函数关系式为:y =kx +b ,把(0,9),(5,4)代入上式,得945b k b =⎧⎨=+⎩,解得:19k b =-⎧⎨=⎩,∴y =-x +9, 当5<x ≤15时,y =4,综上所述:9(05)4(515)x x y x -+≤≤⎧=⎨≤⎩<; (2)①由题意得:w =(y -3)x =()()6(05)43(515)x x x x x ⎧-+≤≤⎪⎨-≤⎪⎩<,∴w =26(05)(515)x x x x x ⎧-+≤≤⎨≤⎩<; ②当05x ≤≤时,w =()22639x x x -+=--+,此时x =3,w 最大值=9,当515x ≤<时,w =x ,此时,x =15,w 最大值=15,综上所述:工厂这次为“乡村振兴”最多捐赠15万元.3.一大型商场经营某种品牌商品,该商品的进价为每件3元,根据市场调查发现销售量y (件)与售价x (元/件)(x 为正整数)之间满足一次函数关系:(1)求y 与x 的函数关系式(不求自变量的取值范围);(2)在销售过程中要求销售单价不低于成本价,且不高于15元/件.若某一周该商品的销售量不少于6000件,求这一周该商场销售这种商品获得的最大利润及此时的销售单价分别为多少元?【答案】(1)50012000y x =-+;(2)一周该商场销售这种商品获得的最大利润为54000元,销售单价分别为12元【解析】(1)设y 和x 的函数表达式为y kx b =+,则10000495005k b k b =+⎧⎨=+⎩,解得50012000k b =-⎧⎨=⎩, 故y 和x 的函数表达式为50012000y x =-+;.(2)设这一周该商场销售这种商品的利润为w 元,由题意得:3155001200006000x x ≤≤⎧⎨-+≥⎩, 解得312x ≤≤,这一周该商场销售这种商品获得利润:()()()235001200035001350036000w y x x x x x =-=-+-=-+-,∴22750055125551252w x ⎛⎫=--+≤ ⎪⎝⎭, ∴312x ≤≤,故12x =时,w 有最大值为54000,答:一周该商场销售这种商品获得的最大利润为54000元,销售单价为12元.4.夏天到了,宁波人最惦记的水果——杨梅进入成熟期,一水果店老板进行杨梅销售,已知杨梅进价为25元/千克.如果售价为30元/千克,那么每天可售出150千克:如果售价为32元/千克,那么每天可售出130千克.经调查发现:每天销售盘y (千克)与售价x (元/千克)之间存在一次函数关系.(1)求出y 关于x 的一次函数关系式;(2)若杨梅售价不得高于36元/千克,该店主销售杨梅每天要获得960元的毛利润,则销售单价应定为多少元/千克?(毛利润=销售额-进货成本〉(3)设杨梅每天销售的毛利润为W 元,当杨梅的售价定为多少元/千克时,每天销售获得的毛利润最大?最大毛利润是多少元?【答案】(1)y=-10x+450;(2)33元/千克;(3)售价定为35元/千克时,每天销售获得的毛利润最大,最大毛利润是1000元.【解析】(1)∴每天销售量y(千克)与售价x(元/千克)之间存在一次函数关系,∴设y=kx+b,∴x=30时,y=150,x=32时,y=130,则1503013032k bk b=+⎧⎨=+⎩,解得:10450kb=-⎧⎨=⎩,∴y关于x的一次函数关系式:y=-10x+450;(2)设销售单价应定为x元/千克,由题意得:(x-25)(-10x+450)=960,解得:x=37或x=33,∴杨梅售价不得高于36元/千克,∴x=37不合题意,∴x=33,答:销售单价应定为33元/千克;(3)设杨梅的售价定为m元/千克时,每天销售获得的毛利润最大,则W=(m-25)(-10m+450)=-10m2+700m-11250=-10(m-35)2+1000,∴-10<0,∴当m=35时,W有最大值,最大值1000元,答:杨梅的售价定为35元/千克时,每天销售获得的毛利润最大,最大毛利润是1000元.5.某商店从厂家以每件2元的价格购进一批商品,在市场试销中发现,此商品的月销售量y(单位:万件)与销售单价x(单位:元)之间有如下表所示关系:(1)根据表中的数据,在图中描出实数对(,)x y所对应的点,并画出y关于x的函数图象;(2)根据画出的函数图象,求出y关于x的函数表达式;(3)设经营此商品的月销售利润为P(单位:万元).①写出P关于x的函数表达式;②该商店计划从这批商品获得的月销售利润为10万元(不计其它成本),若物价局限定商品的销售单价不.得超过...进价的200%,则此时的销售单价应定为多少元? 【答案】(1)图象见解析;(2)216y x =-+;(3)①222032P x x =-+-;②销售单价应定为3元.【解析】(1)y 关于x 的函数图象如图所示:(2)由(1)可设y 与x 的函数关系式为y kx b =+,则由表格可把()()4,8,5,6代入得:4856k b k b +=⎧⎨+=⎩,解得:216k b =-⎧⎨=⎩,∴y 与x 的函数关系式为216y x =-+; (3)①由(2)及题意可得:()()()22221622032P x y x x x x =-=--+=-+-;∴P 关于x 的函数表达式为222032P x x =-+-;②由题意得:2200x ≤⨯%,即4x ≤,∴22203210x x -+-=,解得:123,7x x ==,∴3x =; 答:此时的销售单价应定为3元.。

(完整版)二次函数的应用(利润问题)(答案)

(完整版)二次函数的应用(利润问题)(答案)

二次函数的应用(利润问题)(答案)二次函数的实际应用1.将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个.若这种商品的零售价在一定范围内每降价1元,其日销售量就增加了1个,为了获得最大利润,则应降价_ _元,最大利润为_ _元.2. 某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?3.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润?4.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?5.某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量(件)之间的关系如下表:若日销售量y 是销售价x 的一次函数.⑴求出日销售量y (件)与销售价x (元)的函数关系式; ⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?6.“健益”超市购进一批20元/千克的绿色食品,如果以30元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y (千克)•与销售单价x (元)(30 x )存在如下图所示的一次函数关系式.⑴试求出y 与x 的函数关系式;⑵设“健益”超市销售该绿色食品每天获得利润P 元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?⑶根据市场调查,该绿色食品每天可获利润不超过4480元,•现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x 的范围(•直接写出答案).7.,某果品批发公司为指导今年的樱桃销售,对往年的市场销售情况进行了调查统计,得到如下数据: 销售价x (元/千克) (25)24 23 22 … 销售量y (千克) … 2000 2500 3000 3500 …(1)在如图的直角坐标系内,作出各组有序数对(x ,y )所对应的点.连接各点并观察所得的图形,判断y 与x 之间的函数关系,并求出y 与x 之间的函数关系式;(2)若樱桃进价为13元/千克,试求销售利润P (元)与销售价x (元/千克)之间的函数关系式,并求出当x 取何值时,P 的值最大?8.为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元) .(1)求y与x之间的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?二次函数的应用(利润问题)(答案)参考答案1解:设每件价格降价x 元,利润为y 元,则:)20)(70100(x x y +--=600102++-=x x 625)5((2+--=x 当5=x ,625max =y (元)答:价格提高5元,才能在半个月内获得最大利润.2解:设涨价(或降价)为每件x 元,利润为y 元,1y 为涨价时的利润,2y 为降价时的利润 则)10300)(4060(1x x y -+-=)60010(102---=x x 6250)5(102+--=x 当5=x ,即:定价为65元时,6250max =y (元) )20300)(4060(2x x y +--=)15)(20(20+--=x x 6125)5.2(202+--=x 当5.2=x ,即:定价为57.5元时,6125max =y (元)综合两种情况,应定价为65元时,利润最大.3解:设每件价格提高x 元,利润为y 元,则:)20400)(2030(x x y --+=)20)(10(20-+-=x x 4500)5(202+--=x 当5=x ,4500max =y (元)答:价格提高5元,才能在半个月内获得最大利润. 4解:设旅行团有x 人)30(≥x ,营业额为y 元,则:)]30(10800[--=x x y )110(10--=x x 30250)55(102+--=x当55=x ,30250max =y (元)答:当旅行团的人数是55人时,可以获得最大营业额. 5解:⑴设一次函数表达式为b kx y +=. 则1525,220k b k b +=⎧⎨+=⎩ 解得⎩⎨⎧=-=401b k ,即一次函数表达式为40+-=x y . ⑵ 设每件产品的销售价应定为x 元,所获销售利润为w 元 y x w )10(-=)40)(10(+--=x x 400502-+-=x x 225)25(2+--=x当25=x ,225max =y (元)答:销售价应定为25元时,每日获得最大销售利润为225元6解:⑴设y=kx+b 由图象可知,3040020,:402001000k b k k b b +==-⎧⎧⎨⎨+==⎩⎩解之得,即100020+-=x y )5030(≤≤x . ⑵ y x P )20(-=)100020)(20(+--=x x 200001400202-+-=x x∵020<-=a ∴P 有最大值. 当35)20(21400=-⨯=x 时,4500max =P (元) 答:当销售单价为35元/千克时,每天可获得最大利润4500元.⑶∵44804500)35(2041802≤+--≤x 16)35(12≤-≤x ∴31≤x ≤34或36≤x≤39. 7解:(1)由图象可知,y 是x 的一次函数,设y=kx+b ,•∵点(•25,2000),(24,2500)在图象上,∴200025500,:25002414500k b k k b b =+=-⎧⎧⎨⎨=+=⎩⎩解得 ,∴y=-500x+14500. (2)P=(x-13)·y=(x-13)·(-500x+14500))37744144142(500)37742(500)29)(13(50022+-+--=+--=---=x x x x x x=-500(x-21)2+32000∴P 与x 的函数关系式为P=-500x 2+21000x-188500,当销售价为21元/千克时,能获得最大利润,最大利润为32000元.8.解:)802)(20()20(+--=-=x x w x y )40)(20(2---=x x )80060(22+--=x x 200)30(22+--=x 160012022-+-=x x 当30=x ,200max =y (元)(1)y 与x 之间的的函数关系式为;160012022-+-=x x y(2)当销售价定为30元时,每天的销售利润最大,最大利润是200元.(3) 150200)30(22=+--x ,25)30(2=-x 28351>=x (舍去)252=x 答:该农户想要每天获得150元的销售利润,销售价应定为25元.,应选乙地.。

二次函数的应用——利润最值问题

二次函数的应用——利润最值问题
2
w … 60 x x … 40300 30 … x x 6000 x 30x 2 30 300 60-x
变式1:某商店销售某款童装,每件售价60元,每星期可卖出 300件,为了促销,该网店决定降价销售,市场反映:每降价 1 2 元,每星期可多卖30件,已知该童装每件成本40元,设该款童 款每件降价x元,每星期的销售量y件。 (1)求y与x之间的函数关系式。 (2)当每件降价为多少元时,每星期的销售利润最大,最大利 润为多少元?
降价 多售的件数 30×1 30×3 现在售价 60-1 60-3 现在销售量 300+30 300+30×3 … 300+30x 1 (2)设利润为 w 3
30×2 300+30×2 2 =(每件售价 60-2 利润 -每件进价)×销售量
30x x5 6750 y=300+30 所以,当降价5时x 20 2x 80 2 2x 30 200 因为 20 x 28 所以由二次函数的性质可知,当x≤30时,w随x的增大而增大 所以当x=28时,w取得最大值,最大值为
w 228 30 200 192
2
练习1:草莓是云南多地盛产的一种水果,今年水果销售店在草莓 销售旺季,试销售成本为每千克20元的草莓,规定试销售时间单 价不低于成本单价,也不高于每千克40元,经试销发现,销售量y (千克)与销售单价x(元)符合一次函数关系,如图y与x的函数 关系图象 (1)求y与x函数解析式。 (2)设该水果销售店试销售草莓 获得利润为w元,求w的最大值。
例1:某商店销售某款童装,每件售价60元,每星期可卖出 300件,为了促销,该网店决定降价销售,市场反映:每降价 1元,每星期可多卖30件,已知该童装每件成本40元,设该 款童款每件降价x元,每星期的销售量y件。 (1)求y与x之间的函数关系式。 (2)当每件降价为多少元时,每星期的销售利润最大,最大 利润为多少元? 解(1)

二次函数与实际问题-最大利润问题

二次函数与实际问题-最大利润问题
二次函数是解决实际问题 中常用的数学工具,具有 广泛的应用领域。
2 实际问题的挑战与机

实际问题的解决需要面对 各种挑战,但也提供了发 展和创新的机遇。
3 未来的发展趋势
随着技术的进步和需求的 变化,二次函数在解决实 际问题中的应用将继续发 展和演变。
可以引入其他约束、考虑风险和不确定性,提高决策的全面性和鲁棒性。
VI. 二次函数实践与练习
1 实际问题的解决方法和演示
通过实际案例和示例演示,帮助学习者理解 和应用二次函数解决实际问题。
2 练习题
提供一些练习题,加深对二次函数和实际问 题的理解。
VII. 二次函数与实际问题-总结与展望
1 二次函数的重要性
二次函数与实际问题-最 大利润问题
I. 二次函数概述
1 什么是二次函数?
二次函数是一个在方程中有二次项的函数,一般形式为y=ax^2+bx+c。
2 二次函数的一般式和标准式
一般式为y=ax^2+bx+c,标准式为y=a(x-h)^2+k。
3 二次函数图像
二次函数的图像可以是抛物线,开口向上或向下,取决于a的正负。
通过分析实际情况建立利润函数,将利润与决策因素相联系。
2
寻找最大值
通过求导或观察图像,找到利润函数的最大值,例,演示如何使用二次函数解决最大利润问题。
IV. 二次函数在其他问题中的应用
二次函数解决投影高度 问题
通过建立二次函数模型,可 以计算出物体的最大或最小 高度。
II. 最大利润问题简介
1 什么是最大利润问题?
最大利润问题是在实际情况中,通过优化决策来实现最大化利益的问题。
2 实际应用场景

二次函数与实际问题 最大利润问题

二次函数与实际问题最大利润问题1.某商人如果将进货价为8元的商品按每件10元出售,每天可销售100件,现采用提高售出价,减少进货量的办法增加利润,已知这种商品每涨价1元其销售量就要减少10件,问他将售出价(x)定为多少元时,才能使每天所赚的利润(y)最大并求出最大利润.2.2009年度东风公司神鹰汽车改装厂开发出A型农用车,其成本价为每辆2万元,出厂价为每辆2.4万元,年销售价为10000辆,2010年为了支援西部大开发的生态农业建设,该厂抓住机遇,发展企业,全面提高A型农用车的科技含量,每辆农用车的成本价增长率为x,出厂价增长率为0.75x,预测年销售增长率为0.6x.(年利润=(出厂价﹣成本价)×年销售量)(1)求2010年度该厂销售A型农用车的年利润y(万元)与x之间的函数关系.(2)该厂要是2010年度销售A型农用车的年利润达到4028万元,该年度A型农用车的年销售量应该是多少辆3.某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?4.东海体育用品商场为了推销某一运动服,先做了市场调查,得到数据如下表:(1)以x作为点的横坐标,p作为纵坐标,把表中的数据,在图中的直角坐标系中描出相应的点,观察连接各点所得的图形,判断p与x的函数关系式;(2)如果这种运动服的买入价为每件40元,试求销售利润y(元)与卖出价格x(元/件)的函数关系式(销售利润=销售收入﹣买入支出);(3)在(2)的条件下,当卖出价为多少时,能获得最大利润?5.某通讯器材公司销售一种市场需求较大的新型通讯产品.已知每件产品的进价为40元,每年销售该种产品的总开支(不含进价)总计120万元.在销售过程中发现,年销售量y(万件)与销售单价x(元)之间存在着如图所示的一次函数关系.(1)求y关于x的函数关系式;(2)试写出该公司销售该种产品的年获利z(万元)关于销售单价x(元)的函数关系式(年获利=年销售额一年销售产品总进价一年总开支).当销售单价x为何值时,年获利最大并求这个最大值;(3)若公司希望该种产品一年的销售获利不低于40万元,借助(2)中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少元?6.为了顺应市场要求,无为县花炮厂技术部研制开发一种新产品,年初上市后,公司经历了从亏损到盈利的过程.下面的二次函数图象(部分)刻画了该厂年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s和t之间的关系).根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末花炮厂累积利润可达到30万元;(3)求第8个月公司所获利润是多少万元?7.有一种葡萄:从树上摘下后不保鲜最多只能存放一周,如果放在冷藏室,可以延长保鲜时间,但每天仍有一定数量的葡萄变质,假设保鲜期内的重量基本保持不变,现有一位个体户,按市场价收购了这种葡萄200千克放在冷藏室内,此时市场价为每千克2元,据测算,此后每千克鲜葡萄的市场价格每天可以上涨0.2元,但是,存放一天需各种费用20元,平均每天还有1千克葡萄变质丢弃.(1)设x天后每千克鲜葡萄的市场价为P元,写出P关于x的函数关系式;(2)若存放x天后将鲜葡萄一次性出售,设鲜葡萄的销售金额为y元,写出y关于x的函数关系式;(3)问个体户将这批葡萄存放多少天后出售,可获得最大利润,最大利润q是多少?8.某工厂现有80台机器,每台机器平均每天生产384件产品,现准备增加一批同类机器以提高生产总量,在试生产中发现,由于其他生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品.(1)如果增加x台机器,每天的生产总量为y件,请你写出y与x之间的关系式;(2)增加多少台机器,可以使每天的生产总量最大,最大总量是多少?9.某商场以每件20元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足关系:m=140﹣2x.(1)写出商场卖这种商品每天的销售利润y与每件的销售价x间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?10.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y与x之间的函数关系式,并通过画该函数图象的草图,观察其图象的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元.11.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)是销售价x(元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日的销售利润是多少元?12.某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求:(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)要使商场平均每天赢利最多,请你帮助设计方案.13.某企业投资100万元引进一条产品加工生产线,若不计维修、保养费用,预计投产后每年可创利33万.该生产线投产后,从第1年到第x年的维修、保养费用累计为y(万元),且y=ax2+bx,若第1年的维修、保养费用为2万元,第2年为4万元.(1)求y的解析式;(2)投产后,这个企业在第几年就能收回投资?14.某商店经销一种销售成本为每千克40元的水产品.根据市场分析,若按每千克50元销售,一个月能销售500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题:(1)当销售单价定为每千克55元时,计算月销售量和月销售利润;(2)设销售单价为每千克x元,月销售利润为y元,求y与x之间的函数关系式;(3)当销售单价定为每千克多少元时,月销售利润最大,最大利润是多少?15.某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价增加x元(x为10的正整数倍).(1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;(2)设宾馆一天的利润为w元,求w与x的函数关系式;(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?16.某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x (元/千克)的变化而变化,具体关系式为:w=﹣2x+240.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:(1)求y与x的关系式;(2)当x取何值时,y的值最大?(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?17.儿童商场购进一批M型服装,销售时标价为75元/件,按8折销售仍可获利50%.商场现决定对M型服装开展促销活动,每件在8折的基础上再降价x元销售,已知每天销售数量y(件)与降价x(元)之间的函数关系式为y=20+4x(x>0).(1)求M型服装的进价;(2)求促销期间每天销售M型服装所获得的利润W的最大值.18.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?19.国家推行“节能减排,低碳经济”政策后,某环保节能设备生产企业的产品供不应求.若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于90万元.已知这种设备的月产量x(套)与每套的售价y1(万元)之间满足关系式y1=170﹣2x,月产量x(套)与生产总成本y2(万元)存在如图所示的函数关系.(1)直接写出y2与x之间的函数关系式;(2)求月产量x的范围;(3)当月产量x(套)为多少时,这种设备的利润W(万元)最大?最大利润是多少?20.某商店经营一种小商品,进价为2.5元,据市场调查,销售单价是13.5元时平均每天销售量是500件,而销售价每降低1元,平均每天就可以多售出100件.(1)假定每件商品降价x元,商店每天销售这种小商品的利润是y元,请写出y与x间的函数关系式,并注明x 的取值范围.(2)每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大?最大利润是多少?(注:销售利润=销售收入﹣购进成本)21.恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.(1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y与x之间的函数关系式.(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额﹣收购成本﹣各种费用)(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?22.为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80%销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.(1)分别求出y1、y2与x之间的函数关系式;(2)若市政府投资140万元,最多能购买多少个太阳能路灯?23.近年来,“宝胜”集团根据市场变化情况,采用灵活多样的营销策略,产值、利税逐年大幅度增长.第六销售公司2004年销售某型号电缆线达数万米,这得益于他们较好地把握了电缆售价与销售数量之间的关系.经市场调研,他们发现:这种电缆线一天的销量y(米)与售价x(元/米)之间存在着如图所示的一次函数关系,且40≤x≤70.(1)根据图象,求y与x之间的函数解析式;(2)设该销售公司一天销售这种型号电缆线的收入为w元.①试用含x的代数式表示w;②试问:当售价定为每米多少元时,该销售公司一天销售该型号电缆的收入最高,最高是多少元?24.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?2018年11月23日155****1869的初中数学组卷参考答案与试题解析一.解答题(共30小题)1.【分析】日利润=销售量×每件利润.每件利润为x﹣8元,销售量为100﹣10(x﹣10),据此得关系式.【解答】解:由题意得,y=(x﹣8)[100﹣10(x﹣10)]=﹣10(x﹣14)2+360(10≤a<20),∵a=﹣10<0∴当x=14时,y有最大值360答:他将售出价(x)定为14元时,才能使每天所赚的利润(y)最大,最大利润是360元.【点评】本题重在考查运用二次函数性质求最值常用配方法或公式法.2.【分析】(1)根据题意,借助于矩形面积,直接解答;(2)在(1)中,把y=8代入即可解答.【解答】解:(1)由题意可得:(4+x)(3+x)﹣3×4=y,化简得:y=x2+7x;(2)把y=8代入解析式y=x2+7x中得:x2+7x﹣8=0,解之得:x1=1,x2=﹣8(舍去).∴当边长增加1cm时,面积增加8cm2【点评】本题考查的是二次函数的实际应用,难度简单.3.【分析】(1)弄清题意和题目中的数量关系,(2)根据题意列出不等式组或方程,(3)解答.【解答】解:(1)由∴﹣1≤k≤1∴k=1或k=﹣1(1分)当k=1时,,年销售量随售价x增大而增大,不合.∴﹣1,y=﹣x+b(2分)把x=60,y=50000件=5万件代入,5=﹣×60+b,b=8∴y=﹣x+8(3分)(2)z=yx﹣40y﹣120=(﹣x+8)(x﹣40)﹣120=﹣x2+10x﹣440=﹣(x﹣100)2+60(4分)∴当x=100元时,年获利最大值为60万元.(5分)(3)令z=40,得40=﹣x2+10x﹣440整理得x2﹣200x+9600=0(6分)解得:x1=80,x2=120.(7分)由图象可知,(画图并标上数据1分)要使年获利不低于40万元,销售单价应在80元到120元之间,(说明此点1分)又因为销售单价越低,销售量越大,所以要使销售量最大,又要使年获利不低于40万元,则销售单价应定为80元.(说明此点1分)(10分)【点评】本题信息量较大,在考查提取、筛选信息,分析、解决实际问题等能力的同时,培养了同学们数形结合的思想.4.【分析】本题属于市场营销问题,销售利润=每辆车的利润×销售量,每辆车的利润=出厂价﹣成本价,其中,出厂价,成本价,销售量,都有各自对应的增长率,要正确使用.【解答】解:(1)由题意得:y=[2.4×(1+0.75x)﹣2(1+x)]×10000×(1+0.6x)=﹣1200x2+400x+4000;(2)由y=4028,即﹣1200x2+400x+4000=4028,解得x1=0.1,x2=.该年度A型农用车的年销售量=10000(1+0.6x)将x1=0.1,x2=代入得10600辆或11400辆.【点评】先有二次函数,再解一元二次方程,由一般都特殊;充分体现了两者之间的联系,对于一元二次方程的两个解是否都符合题意,一定要根据题意,通过计算,才能确定.5.【分析】(1)设花园靠墙的一边长为x(m),另一边长为,用面积公式表示矩形面积;(2)就是已知y=200,解一元二次方程,但要注意检验结果是否符合题意;即结果应该是0<x≤15.(3)由于0<x≤15,对称轴x=20,即顶点不在范围内,y随x的增大而增大.∴x=15时,y有最大值.【解答】解:(1)根据题意得:y=x•,即y=﹣x2+20x(0<x≤15)(2)当y=200时,即﹣x2+20x=200,解得x1=x2=20>15,∴花园面积不能达到200m2.(3)∵y=﹣x2+20x的图象是开口向下的抛物线,对称轴为x=20,∴当0<x≤15时,y随x的增大而增大.∴x=15时,y有最大值,y最大值=﹣×152+20×15=187.5m2即当x=15时,花园的面积最大,最大面积为187.5m2.【点评】本题考查实际问题中二次函数解析式的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.6.【分析】(1)根据利润=销售价﹣进价列关系式;(2)总利润=每个的利润×销售量,销售量为400﹣10x,列方程求解,根据题意取舍;(3)利用函数的性质求最值.【解答】解:由题意得:(1)50+x﹣40=x+10(元)(3分)(2)设每个定价增加x元.列出方程为:(x+10)(400﹣10x)=6000解得:x1=10 x2=20要使进货量较少,则每个定价为70元,应进货200个.(3分)(3)设每个定价增加x元,获得利润为y元.y=(x+10)(400﹣10x)=﹣10x2+300x+4000=﹣10(x﹣15)2+6250当x=15时,y有最大值为6250.所以每个定价为65元时得最大利润,可获得的最大利润是6250元.(4分)【点评】应用题中求最值需先求函数表达式,再运用函数性质求解.此题的关键在列式表示销售价格和销售量.7.【分析】(1)篱笆只有两边,且其和为18,设一边为x,则另一边为(18﹣x),根据公式表示面积;据实际意义,0<x<18;(2)根据函数性质求最值,可用公式法或配方法.【解答】解:(1)由已知,矩形的另一边长为(18﹣x)m则y=x(18﹣x)=﹣x2+18x自变量x的取值范围是0<x<18.(2)∵y=﹣x2+18x=﹣(x﹣9)2+81∴当x=9时(0<x<18),苗圃的面积最大,最大面积是81m2.又解:∵a=﹣1<0,y有最大值,∴当x=﹣时(0<x<18),y最大值==81(m2).【点评】运用函数性质求最值解决实际问题时常需考虑自变量的取值范围;二次函数求最值常用配方法和公式法.8.【分析】(1)易知是一次函数关系,由其中两点可求关系式;(2)根据利润的计算方法求关系式;(3)运用函数的性质求最值.【解答】解:(1)p与x成一次函数关系.设函数关系式为p=kx+b,则解得:k=﹣10,b=1000,∴p=﹣10x+1000经检验可知:当x=52,p=480,当x=53,p=470时也适合这一关系式∴所求的函数关系为p=﹣10x+1000;(2)依题意得:y=px﹣40p=(﹣10x+1000)x﹣40(﹣10x+1000)∴y=﹣10x2+1400x﹣40000;(3)由y=﹣10x2+1400x﹣40000可知,当x=﹣=70时,y有最大值∴卖出价格为70元时,能获得最大利润.【点评】(1)判断关系式后不要忘了验证;(2)求最值问题需先求函数表达式,再根据函数性质求解.9.【分析】(1)设直线解析式为y=kx+b,把已知坐标代入求出k,b的值后可求出函数解析式;(2)根据题意可知z=yx﹣40y﹣120,把x=100代入解析式即可;(3)令z=40,代入解析式求出x的实际值.【解答】解:(1)设y=kx+b,它过点(60,5),(80,4),,解得:,(2分)∴y=﹣x+8;(3分)(2)z=yx﹣40y﹣120=(﹣x+8)(x﹣40)﹣120=﹣x2+10x﹣440∴当x=100元时,最大年获利为60万元;(6分)(3)令z=40,得40=﹣x2+10x﹣440,整理得:x2﹣200x+9600=0,解得:x1=80,x2=120,(8分)由图象可知,要使年获利不低于40万元,销售单价应在80元到120元之间,(9分)又因为销售单价越低,销售量越大,所以要使销售量最大,且年获利不低于40万元,销售单价应定为80元.(10分)【点评】本题考查的是二次函数的实际应用.考生应学会数形结合解答二次函数的相关题型.10.【分析】(1)由已知图象上的三点坐标,设二次函数解析式为s=at2+bt+c,列方程组,求解析式;(2)求二次函数最大值,可以用公式法或者配方法;(3)第8个月公司所获利润=第8个月公司累积利润﹣第7个月公司累积利润.【解答】解:(1)设二次函数解析式为s=at2+bt+c∵图象经过(0,0),(4,0),(2,﹣2)由题意,得解得∴s=t2﹣2t(t≥0)(本题也可以选择其它三点坐标解题);(2)当s=30时,30=t2﹣2t解得t1=﹣6(不合题意,舍去),t2=10∴截止到10月末花炮厂累积利润达30万元;(3)当t=8时,s1=×82﹣2×8=16(万元)当t=7时,s2=×72﹣2×7=10.5(万元)∴第8个月公司利润为s1﹣s2=16﹣10.5=5.5(万元).【点评】本题考查点的坐标的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.11.【分析】(1)根据题意:观察图象,找函数图象上升的范围及从最低到最高的横坐标的差即可得到答案;(2)直接读取x=12时,纵坐标的数值即可;(3)根据图象,使用待定系数法,设出函数的解析式,找到函数过的特殊点,可求出答案.【解答】解:(1)第一天中,从4时到16时这头骆驼的体温是上升的,它的体温从最低上升到最高需要12小时;(2)第三天12时这头骆驼的体温是39℃;(3)观察可得:函数的对称轴为x=16,且最大值为40,故设其解析式为y=a(x﹣16)2+40,且过点(12,39)将其坐标代入可得解析式为y=﹣x2+2x+24(10≤x≤22).【点评】本题考查利用图象获取信息的能力及二次函数的实际应用,要求学生会使用待定系数法求函数的解析式.12.【分析】本题属于市场营销问题,销售额=每千克市场价×销售量,每千克市场价,销售量都与天数有关,根据题意表达这两个式子很关键.利润=销售额﹣收购价﹣各种费用,由二次函数性质求利润的最大值.【解答】解:(1)设x天后每千克鲜葡萄的市场价为p元,则有p=0.2x+2;(2)若存放x天后将鲜葡萄一次性出售,设鲜葡萄的销售总额为y元,则有y=(200﹣x)(0.2x+2),即y=﹣0.2x2+38x+400;(3)设将这批葡萄存放x天后出售,则有q=(200﹣x)(0.2x+2)﹣400﹣20x=﹣0.2x2+18x=﹣0.2(x﹣45)2+405,因此这批葡萄存放45天后出售,可获得最大利润405元.【点评】把实际问题转化为一次函数,二次函数,用二次函数的性质解答题目的问题,充分体现函数在生活中的应用价值,培养学生的学习兴趣.13.【分析】(1)生产总量=每台机器生产的产品数×机器数;(2)根据函数性质求最值.【解答】解:(1)根据题意得:y=(80+x)(384﹣4x)=﹣4x2+64x+30720(0<x<96);(2)∵y=﹣4x2+64x+30720=﹣4(x2﹣16x+64)+256+30720=﹣4(x﹣8)2+30976,∴当x=8时,y有最大值30976,则增加8台机器,可以使每天的生产总量最大,最大总量是30976件.【点评】认真审题,表示函数关系式是关键.14.【分析】(1)由销售利润=(销售价﹣进价)×销售量可列出函数关系式;(2)应用二次函数的性质,求最大值.【解答】解:(1)依题意,y=m(x﹣20),代入m=140﹣2x化简得y=﹣2x2+180x﹣2800.(2)y=﹣2x2+180x﹣2800=﹣2(x2﹣90x)﹣2800=﹣2(x﹣45)2+1250.当x=45时,y最大=1250.∴每件商品售价定为45元最合适,此销售利润最大为1250元.【点评】本题考查的是二次函数的应用,难度一般,用配方法求出函数最大值即可.15.【分析】(1)利润=单件利润×销售量;(2)根据利润的计算方法表示出关系式,解方程、画图回答问题.【解答】解:(1)若商店经营该商品不降价,则一天可获利润100×(100﹣80)=2000(元);(3分)(2)①依题意得:(100﹣80﹣x)(100+10x)=2160(5分)即x2﹣10x+16=0解得:x1=2,x2=8(6分)经检验:x1=2,x2=8都是方程的解,且符合题意,(7分)答:商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元;(8分)②依题意得:y=(100﹣80﹣x)(100+10x)(9分)∴y=﹣10x2+100x+2000=﹣10(x﹣5)2+2250 (10分)画草图:观察图象可得:当2≤x≤8时,y≥2160,∴当2≤x≤8时,商店所获利润不少于2160元.(13分)【点评】本题关键是求出利润的表达式,体现了函数与方程、不等式的关系.16.【分析】(1)本题属于市场营销问题,销售利润=一件利润×销售件数,一件利润=销售价﹣成本,日销售量y是销售价x的一次函数,所获利润W为二次函数.(2)运用二次函数的性质,可求最大利润.【解答】解:(1)设此一次函数关系式为y=kx+b,则,解得k=﹣1,b=40故一次函数的关系式为y=﹣x+40.(2)设所获利润为W元,则W=(x﹣10)(40﹣x)=﹣x2+50x﹣400=﹣(x﹣25)2+225所以产品的销售价应定为25元,此时每日的销售利润为225元.【点评】本题涉及一次函数,二次函数的求法,及二次函数性质的运用,需要根据题意,逐步求解,由易到难,搞清楚这两个函数之间的联系.17.【分析】(1)总利润=每件利润×销售量.设每天利润为w元,每件衬衫应降价x元,据题意可得利润表达式,再求当w=1200时x的值;(2)根据函数关系式,运用函数的性质求最值.【解答】解:设每天利润为w元,每件衬衫降价x元,根据题意得w=(40﹣x)(20+2x)=﹣2x2+60x+800=﹣2(x﹣15)2+1250(1)当w=1200时,﹣2x2+60x+800=1200,解之得x1=10,x2=20.根据题意要尽快减少库存,所以应降价20元.答:每件衬衫应降价20元.(2)解:商场每天盈利(40﹣x)(20+2x)=﹣2(x﹣15)2+1250.所以当每件衬衫应降价15元时,商场盈利最多,共1250元.答:每件衬衫降价15元时,商场平均每天盈利最多.【点评】本题重在考查根据题意写出利润的表达式是此题的关键.18.【分析】(1)根据条件解方程组易得解析式;(2)收回投资即纯利润=投资(包括购设备、维修、保养).【解答】解:(1)由题意,x=1时,y=2;x=2时,y=2+4=6,分别代入y=ax2+bx得解得:∴y=x2+x.(2)设g=33x﹣100﹣x2﹣x,则g=﹣x2+32x﹣100=﹣(x﹣16)2+156由于当1≤x≤16时,g随x的增大而增大,故当x=3时,g=﹣(x﹣16)2+156=﹣13<0,当x=4时,g=﹣(x﹣16)2+156=﹣(4﹣16)2+156=12>0,即第4年可收回投资.【点评】第二个问题可解方程求解.但运用函数知识解题解决问题的面更宽阔些.19.【分析】(1)根据“销售单价每涨1元,月销售量就减少10千克”,可知:月销售量=500﹣(销售单价﹣50)×10.由此可得出售价为55元/千克时的月销售量,然后根据利润=每千克的利润×销售的数量来求出月销售利润;(2)方法同(1)只不过将55元换成了x元,求的月销售利润变成了y;(3)得出(2)的函数关系式后根据函数的性质即可得出函数的最值以及相应的自变量的值.【解答】解:(1)∵当销售单价定为每千克55元时,则销售单价每涨(55﹣50)元,少销售量是(55﹣40)×10千克,∴月销售量为:500﹣(55﹣50)×10=450(千克),所以月销售利润为:(55﹣40)×450=6750元;(2)当销售单价定为每千克x元时,月销售量为:[500﹣(x﹣50)×10]千克.每千克的销售利润是:(x﹣40)元,所以月销售利润为:y=(x﹣40)[500﹣(x﹣50)×10]=(x﹣40)(1000﹣10x)=﹣10x2+1400x﹣40000,。

二次函数的实际应用(利润最值问题)附答案

第3课时 二次函数的实际应用——最大(小)值问题[例1]:求下列二次函数的最值:(1)求函数322-+=x x y 的最值.解:4)1(2-+=x y当1-=x 时,y 有最小值4-,无最大值.(2)求函数322-+=x x y 的最值.)30(≤≤x解:4)1(2-+=x y∵30≤≤x ,对称轴为1-=x∴当12330有最大值时;当有最小值时y x y x =-=.[例2]:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?解:设涨价(或降价)为每件x 元,利润为y 元,1y 为涨价时的利润,2y 为降价时的利润则:)10300)(4060(1x x y -+-= )60010(102---=x x6250)5(102+--=x当5=x ,即:定价为65元时,6250max =y (元))20300)(4060(2x x y +--= )15)(20(20+--=x x6125)5.2(202+--=x当5.2=x ,即:定价为57.5元时,6125max =y (元) 综合两种情况,应定价为65元时,利润最大.[练习]:1.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润?解:设每件价格提高x 元,利润为y 元, 则:)20400)(2030(x x y --+= )20)(10(20-+-=x x 4500)5(202+--=x当5=x ,4500max =y (元)答:价格提高5元,才能在半个月内获得最大利润.2.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额? 解:设旅行团有x 人)30(≥x ,营业额为y 元, 则:)]30(10800[--=x x y )110(10--=x x 30250)55(102+--=x当55=x ,30250max =y (元)答:当旅行团的人数是55人时,旅行社可以获得最大营业额.[例3]: 某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表:若日销售量y 是销售价x 的一次函数.⑴求出日销售量y (件)与销售价x (元)的函数关系式;⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元? 解:⑴设一次函数表达式为b kx y +=. 则1525,220k b k b +=⎧⎨+=⎩ 解得⎩⎨⎧=-=401b k ,•即一次函数表达式为40+-=x y .⑵ 设每件产品的销售价应定为x 元, 所获销售利润为w 元y x w )10(-=)40)(10(+--=x x 400502-+-=x x225)25(2+--=x当25=x ,225max =y (元)答:产品的销售价应定为25元时,每日获得最大销售利润为225元.【点评】解决最值问题应用题的思路与一般应用题类似,也有区别,主要有两点: ⑴在“当某某为何值时,什么最大(或最小、最省)”的设问中, “某某”要设为自变量,“什么”要设为函数;⑵求解方法是依靠配方法或最值公式,而不是解方程.3.(2006十堰市)市“健益”超市购进一批20元/千克的绿色食品,如果以30•元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y (千克)•与销售单价x (元)(30≥x )存在如下图所示的一次函数关系式. ⑴试求出y 与x 的函数关系式;⑵设“健益”超市销售该绿色食品每天获得利润P 元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?⑶根据市场调查,该绿色食品每天可获利润不超过4480元,•现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x 的范围(•直接写出答案).解:⑴设y=kx+b 由图象可知,3040020,:402001000k b k k b b +==-⎧⎧⎨⎨+==⎩⎩解之得, 即一次函数表达式为100020+-=x y )5030(≤≤x . ⑵ y x P )20(-=)100020)(20(+--=x x 200001400202-+-=x x∵020<-=a ∴P 有最大值.当35)20(21400=-⨯=x 时,4500max =P (元)(或通过配方,4500)35(202+--=x P ,也可求得最大值)答:当销售单价为35元/千克时,每天可获得最大利润4500元.⑶∵44804500)35(2041802≤+--≤x16)35(12≤-≤x∴31≤x ≤34或36≤x≤39. 作业布置:1.将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个.若这种商品的零售价在一定范围内每降价1元,其日销售量就增加了1个,为了获得最大利润,则应降价_5_元,最大利润为_625_元. 解:设每件价格降价x 元,利润为y 元, 则:)20)(70100(x x y +--=600102++-=x x 625)5((2+--=x当5=x ,625max =y (元)答:价格提高5元,才能在半个月内获得最大利润.2.(2006年青岛市)在2006年青岛崂山北宅樱桃节前夕,•某果品批发公司为指导今年的樱桃销售,对往年的市场销售情况进行了调查统计,得到如下数据:销售价x (元/千克) … 25 24 23 22 … 销售量y (千克) (200)250030003500…(1)在如图的直角坐标系内,作出各组有序数对(x ,y )所对应的点.连接各点并观察所得的图形,判断y 与x 之间的函数关系,并求出y 与x 之间的函数关系式; (2)若樱桃进价为13元/千克,试求销售利润P (元)与销售价x (元/千克)之间的函数关系式,并求出当x 取何值时,P 的值最大? 解:(1)由图象可知,y 是x 的一次函数,设y=kx+b ,•∵点(•25,2000),(24,2500)在图象上, ∴200025500,:25002414500k bk k b b =+=-⎧⎧⎨⎨=+=⎩⎩解得 , ∴y=-500x+14500.(2)P=(x-13)·y=(x-13)·(-500x+14500))37744144142(500)37742(500)29)(13(50022+-+--=+--=---=x x x x x x=-500(x-21)2+32000∴P 与x 的函数关系式为P=-500x 2+21000x-188500, 当销售价为21元/千克时,能获得最大利润,最大利润为32000元.3.有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量基本保持不变,现有一经销商,按市场价收购这种活蟹1000 kg放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.(1)设x天后每千克活蟹的市场价为p元,写出p关于x的函数关系式;(2)如果放养x天后将活蟹一次性出售,并记1000 kg蟹的销售总额为Q元,写出Q 关于x的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q-收购总额)?解:(1)由题意知:p=30+x,(2)由题意知:活蟹的销售额为(1000-10x)(30+x)元,死蟹的销售额为200x元.∴Q=(1000-10x)(30+x)+200x=-10x2+900x+30000.(3)设总利润为W元则:W=Q-1000×30-400x=-10x2+500x=-10(x2-50x) =-10(x-25)2+6250.当x=25时,总利润最大,最大利润为6250元.答:这批蟹放养25天后出售,可获最大利润.4.(2008湖北恩施)为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元) . (1)求y与x之间的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元? 解:)802)(20()20(+--=-=x x w x y )40)(20(2---=x x)80060(22+--=x x 200)30(22+--=x160012022-+-=x x当30=x ,200max =y (元)(1)y 与x 之间的的函数关系式为;160012022-+-=x x y(2)当销售价定为30元时,每天的销售利润最大,最大利润是200元. (3) 150200)30(22=+--x ,25)30(2=-x28351>=x (不合题意,舍去)252=x答:该农户想要每天获得150元的销售利润,销售价应定为25元.12.(2008河北)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元)与x 满足关系式9051012++=x x y ,投入市场后当年能全部售出,且在甲、乙两地每吨的售价,(万元)均与满足一次函数关系.(注:年利润=年销售额-全部费用)(1)成果表明,在甲地生产并销售吨时,,请你用含的代数式表示甲地当年的年销售额,并求年利润(万元)与之间的函数关系式;(2)成果表明,在乙地生产并销售吨时,(为常数),且在乙地当年的最大年利润为35万元.试确定的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?解:(1)甲地当年的年销售额为万元;.(2)在乙地区生产并销售时,年利润.由,解得或.经检验,不合题意,舍去,.(3)在乙地区生产并销售时,年利润,将代入上式,得(万元);将代入,得(万.元).,应选乙地.可编辑。

利润问题(二次函数应用题)含答案

利润问题(二次函数应用题)1、某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100)x件,应如何定价才能使定价利润最大?最大利润是多少元?2、某超市茶叶专柜经销一种绿茶,每千克成本为50元,市场调查发现,在一段时间内,每天的销售量y(千克)随销售单价x(元/千克)的变化而变化,具体的变化如下表:(1)求y与x的函数关系式;(2)设这种绿茶在这段时间内的销售利润为W(元).那么该茶叶每千克定价为多少元时,获得最大利润?且最大利润为多少元?3、某商店经营一种小商品,进价为2元,据市场调查,销售单价是13元时平均每天销售量是500件,而销售价每降低1元,平均每天就可以多售出100件.(1)设每件商品定价为x元时,销售量为y件,求出y与x的函数关系式;(2)若设销售利润为s,写出s与x的函数关系式;(2)每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大?最大利润是多少?4、某宾馆有50个房间供游客居住,当每个房间的定价为每天180元时,房间会全部住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.房价定为多少时,宾馆利润最大?5、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售2件。

(1)设每件衬衫降价x元,平均每天可售出y件,写出y与x的函数关系式___________________。

(2)每件衬衫降价多少元时,商场平均每天盈利最多?6、某商场销售一批产品零件,进价货为10元,若每件产品零件定价20元,则可售出10件,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件产品零件每降价2元,商场平均每天可多售8件。

(1)设每件产品零件降价x元,平均每天可售出y件,写出y与x的函数关系式___________________。

二次函数与实际问题最大利润问题


1)小明家的服装店每 星期获利多少元?你用 到了哪几个量的关系?
如果调整价格:每件 涨价1 元,每星期要 少卖出10 件服装
2)怎样定价才使每星
期利润达到6090元?
能否达到10000元?
3 )如何定价才能使一星期所获利润 最大?
分析
(60+ x)元 (60+ x-40) 元
涨价x元
销售 单价
单件 利润
如果调整价格:每件 降价1 元,每星期要 多卖出20 件服装
爸爸在旁边说, 降价必须是整数 哦,我可嫌找零
钱麻烦
帮小明算一算该如何定价才能使一星期所获 利润最大?最大利润是多少?
你是这样做的吗?
解:设降价x元,每 星期获得的利润为y 元,则 y=(60- x40)(300+20 x)
=(20x)(300+20 x)
的一次函数,反比例函数或二次函数的有关知识写出 y (万个)与x(元/个)的函数解析式. ? (2)求出该公司销售这种计算器的净得利润 z(万个)与 销售价格x(元/个)的函数解析式,销售价格定为多少元 时净得利润最大,最大值是多少? ? (3)该公司要求净得利润不能低于40万元,请写出销售 价格x(元/个)的取值范围,若还需考虑销售量尽可能大, 销售价格应定为多少元?
2、直接代入顶点坐标公式,求最值 (
?
b 2a
, 4a4c-ab2)
3、观察二次函数图象,找最高点或最低点,求最值
2、求下列二次函数的最值
(1)
(2)-1≤x≤2,该
y x?1
函数的最大值是 2 ,
最小值是 -2 ;
(3)若-2≤x≤0,该
o
x
函数的最大值是 1 ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题18 二次函数利润最值问题-B组
一、知识准备:
化简并求出对称轴、最值
-
-
-
(-
y
=x
x
10
)1
)(
3
2
6
二、典例剖析
问题一:某商店销售服装,现在的售价是为每件60元,每周可卖出300件。

已知商品的进价为每件40元,那么一周的利润是多少?
分析:(1)卖一件可得利润为:
(2)这一周所得利润为:
(3)你认为:利润、进价、售价、销售量有什么关系?
总结:一件利润=
总利润=
问题二:某商品进价为每件40元,现在的标价为每件60元,每周可卖出300件,市场调查反映:每涨价1元,每周少卖出10件。

1、填空:设每件涨价x元,每周总利润为y元,则每件售价为元,每件的利润为元,每周少卖出件,每周卖出件,每周的利润为元。

2、当商品的售价为多少元时,能使每周利润最大?最大利润是多少?
三、活学活用
问题一:某商品现在的售价为每件60元,每周可卖出300件,市场调查反映:如果商品每降价1元,每周可多卖出20件,已知商品的进价为每件40元,当商品售价为多少时,能使每周利润最大?最大利润是多少?
问题二:某商店购进一批单价为20元的日用商品,如果以单价30元销售那么半月内可售出400件,根据销售经验,推广销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半月内获得最大利润?。

相关文档
最新文档