电控液力自动变速器的结构与工作原理
汽车检测诊断与维修

上一页 下一页
图2-8 液力变矩器的单向离合器
返回
第二节 电控液力自动变速器的 结构与工作原理
3 失速特性 液力变矩器失速状态是指涡轮因负荷过大而停止转动,但泵 轮仍保持旋转的现象,此时液力变矩器只有动力输入而没有 输出,全部输入能量都转化成热能,因此变矩器中的油液温 度急剧上升,会对变矩器造成严重危害。失速点转速是指涡 轮停止转动时的液力变矩器输入转速。该转速大小取决于发 动机转矩、变矩器的尺寸和导轮、涡轮的叶片角度。
上一页 下一页
图2-12 带锁止离合器的液力变矩器
返回
图2-13 带锁止离合器的液力变矩器工作 原理
返回
第二节 电控液力自动变速器的 结构与工作原理
电控自动变速器必须满足五个方面的条件,ECU才能令锁止 离合器进入锁止工况。 ①发动机冷却液温度不得低于53~65 ℃(因车型而异)。 ②挡位开关指示变速器处于行驶挡(N位和P位不能锁止)。 ③制动灯开关必须指示没有进行制动。 ④车速必须高于37~65 km/h(因车型而异,大部分自 动变速器在三挡进入锁止工况,少数变速器在二挡时进入锁 止工况)。 ⑤来自节气门开度的传感器信号,必须高于最低电压,以指 示节气门处于开启状态。
上一页 下一页
第一节 概述
三、 自动变速器的分类
(一) 按驱动方式分类 自动变速器按照汽车驱动方式的不同,可分为后驱动自动变 速器和前驱动自动变速器即自动驱动桥。 后驱动自动变速器的变矩器和齿轮变速器的输入轴及输出轴 在同一轴线上,发动机的动力经变矩器、变速器、传动轴、 后驱动桥的主减速器、差速器和半轴传给左右两个后轮。 前驱动自动变速器在自动变速器的壳体内还装有主减速器和 差速器。
电子课件-《汽车底盘电控技术(第二版)》-B24-2194 课题三 电控液力自动变速器的控制系统

模块一 电控液力自动变速器
EDS2、EDS4、EDS5实物图
模块一 电控液力自动变速器
二、变矩器的油路分析
1.锁止离合器(WK) 断开
WK断开油路分析图
模块一 电控液力自动变速器
2.锁止离合器(WK) 调节与接合
WK调节与接合油路分析图
模块一 电控液力自动变速器
3.1挡油路分析
1挡油路分析图
模块一 电控液力自动变速器
二、故障自诊断和失效保护功能
控制单元带有一个故障存储器,如果1个电气/电子部件 损坏或者其电路断路或短路,系统能很快查出故障原因。
用电气信号来识别故障,如果受监控的传感器及部件有 故障出现,则故障地点信息会存入故障存储器中。
模块一 电控液力自动变速器
只有使用车辆诊断、测 量和信息系统VAS5051或者 用故障诊断仪VAG1551, 在工作方1 “快速数据传输” 状态才能进行自诊断。
模块一 电控液力自动变速器
3.执行器
(1)开关式电磁阀
开关式电磁阀工作原理 a)接通 b)关闭
模块一 电控液力自动变速器
(2)脉冲线性电磁阀
脉冲线性电磁阀结构
模块一 电控液力自动变速器
(3)起动、倒车灯继电器(J226) J226由两个继电器组合在一起,包括起动继电器和倒车 灯继电器。继电器号175,装在继电器盘15号位置上。 当排杆挡位于行驶挡位时,起动继电器可以控制起动机 电路,使起动机电路不通电,防止误起动。挂倒挡时倒车 灯继电器接通倒车灯。
模块一 电控液力自动变速器
4.2挡油路分析
2挡油路分析图
模块一 电控液力自动变速器
5.3挡油路分析
3挡油路分析图
模块一 电控液力自动变速器
液力变速器的工作原理

液力变速器的工作原理
液力变速器是一种使用液体媒介传递动力并实现变速的装置。
它主要由泵轮、涡轮、展速器和液力耦合器组成。
液力变速器的工作过程如下:
1. 引擎输出动力通过曲轴传递给液力变速器的泵轮。
泵轮是固定在曲轴上的,它会随着发动机的转速而旋转。
2. 泵轮的旋转会产生离心力,将液体(通常是液体自动变速器油)从泵轮的中心向外推。
3. 这些被推出的液体进入液力耦合器,液力耦合器由外壳、泵轮和涡轮组成。
4. 液体进入涡轮后,会被压缩并迅速加速转动。
涡轮是连接至车辆传动系统的组件。
5. 涡轮吸取了液体的动能,并将其传输给车辆传动系统,驱动车辆前行。
6. 同时,涡轮由于同步运转,使得液体重新回到液力耦合器。
7. 液体再次进入液力耦合器后,会被重新推回至泵轮,并循环往复,形成了一个闭合的动力传输回路。
通过调整泵轮和涡轮的形状和大小,液力变速器可以实现不同
的变速比,从而实现速度的调节。
当驾驶员需要加速时,液力变速器会增加泵轮和涡轮之间的液体压力,使得涡轮加速。
相反,当需要减速或停车时,液力变速器会减小液体压力,降低涡轮的转速。
总的来说,液力变速器通过液体传递动力,并通过调节液体压力来实现不同的变速比,从而满足驾驶员在不同行驶条件下的需求。
液力自动变速器工作原理

液力自动变速器工作原理液力自动变速器是一种常见的汽车传动装置,它能够根据车速和发动机转速的变化,自动调整车辆的变速比,从而实现顺畅的加速和高效的燃油利用。
在汽车行驶过程中,液力自动变速器扮演着至关重要的角色,下面我们来详细了解一下它的工作原理。
液力自动变速器的工作原理主要基于液力传递和液体离合器的原理。
液力传递是指通过液体在转子和定子之间的流动来传递动力的一种机械传动方式。
液体在密闭的转子和定子之间流动时,会形成液力耦合,使两者之间的动力传递更加平稳有效。
液力自动变速器由液力变矩器和行星齿轮机构组成。
液力变矩器是液力自动变速器的核心部件,它包括泵轮、涡轮和导向器。
当发动机转动时,泵轮受发动机输出轴的驱动开始旋转,涡轮则受泵轮旋转的液体动力传递开始旋转。
液体在泵轮和涡轮之间形成液力耦合,使得发动机的动力传递到涡轮,从而推动车辆运动。
液力自动变速器通过液体在液力变矩器中的流动速度来调整变速比。
当车速较低时,液体在液力变矩器中的流速较慢,此时变速器会自动调整为低挡,以获得更大的驱动力。
而当车速增加时,液体流速加快,变速器会自动调整为高挡,以提高车辆的经济性和舒适性。
行星齿轮机构是液力自动变速器中的另一个重要部件,它通过不同组合的行星齿轮实现不同的变速比。
当需要改变车辆的速度和扭矩时,行星齿轮机构会根据实际情况选择合适的齿轮组合,从而实现平稳的变速过程。
总的来说,液力自动变速器通过液压和机械结构的协同作用,实现了车辆的自动变速和动力传递。
它不仅提高了驾驶的舒适性和便利性,还提高了车辆的燃油经济性和性能表现。
液力自动变速器的工作原理虽然复杂,但在实际应用中却能够为驾驶员提供更好的驾驶体验,是现代汽车传动系统中不可或缺的重要组成部分。
电控液力自动变速器的结构与工作原理

.
16
液力变矩器中三个元件的功用:
泵轮:将发动机的机械能转变 为自动变速器油的动能。
涡轮:将自动变速器油的动能转 变为涡轮轴上的机械能。
导轮:改变自动变速器油的流动 方向,从而达到增矩的作用。
.
17
活塞为环状,另外活塞上有密封圈、回位弹簧。
壳体
主动盘
卡环
活塞
压盘
弹簧
从动盘
输入轴
花键毂
.
58
(3)工作情况:
离合器接合:当压力油经油道进入活塞左面的 液压缸时,液压力克服弹簧力使活塞右移,将 所有离合器片压紧。
a.当nw﹤0.85 nb时,此时nb>nw,油液速度
Vc流向导轮的正面, Md >0, Mw= Mb+Md ,可见Mw> Mb ,起变扭作用。
b.当nw=0.85 nb 时,油液速度Vc 与导轮叶 片相切, Md =0,Mw= Mb ,为偶合器(液力 联轴器)。此转速称为“偶合工作点”。
.
24
液力变矩器的工作特性分析
定义:当发动机的转速和转矩一定,泵轮 的转速和转矩也一定时,涡轮与泵轮之间 的转矩比、转速比、和传动效率三者的变 化规律。 转矩比=涡轮输出转矩/泵轮输出转矩 转速比=涡轮转速/泵轮转速 传动比=输入轴转速/输出轴转速
.
23
液力变矩器的工作特性分析
分析:变矩器工作时,作用在涡轮上的扭矩 ( Mw )不仅有泵轮施加给涡轮的扭矩(Mb), 还有导轮的反作用力矩(Md),即:Mw= Mb+Md。
.
点击播放
55
离合器片
电控液力自动变速器的控制原理

电控液力自动变速器的控制原理
电控液力自动变速器(AT)是在传统液力自动变速器的基础上增设电子控制系统而形成的。
以下是其控制原理的详细解释:
1、传感器和开关监测:电控液力自动变速器通过传感器和开关监测汽车和发动机的运行状态,包括发动机转速、节气门开度、车速、发动机冷却液温度、自动变速器液压油温等参数。
2、信息转换:所获得的信息被转换成电信号并输入到电控单元(ECU)。
3、ECU处理:ECU根据这些信号,按照设定的换挡规律,向换挡电磁阀、油压电磁阀等发出电子控制信号。
4、液压控制信号转换:换挡电磁阀和油压电磁阀再将ECU 发出的控制信号转变为液压控制信号。
5、控制阀动作:阀板中的各个控制阀根据这些液压控制信号,控制换挡执行机构的动作,从而实现自动换挡。
此外,电控液力自动变速器能对不同负荷和车速选择最佳速比,使发动机工作在相应最佳转速。
所有换档由变速器自行完成,驾驶员仅需使用加速踏板表达车速变化意图,并通过选档杆选择所需的运行状态。
请注意,以上信息仅供参考,如有关于汽车技术或维修的具体问题,建议咨询专业人士。
液力自动变速器工作原理

液力自动变速器工作原理一、概述液力自动变速器是一种常见的汽车传动装置,它通过液力传递和自动调节传动比实现发动机和车轮之间的动力传递。
本文将详细介绍液力自动变速器的工作原理。
二、液力自动变速器的组成液力自动变速器主要由液力变矩器、行星齿轮组、离合器和液压系统等组成。
2.1 液力变矩器液力变矩器是液力自动变速器的核心部件,它由泵轮、涡轮和导向叶片组成。
液力变矩器的工作原理是利用液体的运动和压力来传递动力。
2.2 行星齿轮组行星齿轮组是液力自动变速器中用于实现不同传动比的部件。
它由太阳轮、行星轮、内齿轮和外齿轮等组成。
通过控制离合器的开合状态,可以实现不同的传动比。
2.3 离合器离合器用于连接或断开发动机和液力自动变速器之间的动力传递。
液力自动变速器中通常有多个离合器,通过控制离合器的开合状态,可以实现不同的传动比。
2.4 液压系统液压系统是液力自动变速器的控制系统,它通过液压信号控制液力变矩器、离合器和行星齿轮组的工作状态,实现变速器的换挡和传动比的调节。
三、液力自动变速器的工作原理液力自动变速器的工作原理可以分为三个阶段:液力传递阶段、换挡阶段和锁定阶段。
3.1 液力传递阶段在液力传递阶段,发动机的动力通过液力变矩器传递给涡轮,涡轮再将动力传递给行星齿轮组,最终驱动车轮。
在这个阶段,液力变矩器的泵轮和涡轮之间形成液力耦合,实现动力的传递。
3.2 换挡阶段当车辆需要换挡时,液压系统控制相应的离合器开合,改变液力传递路径,实现不同的传动比。
通过控制离合器的开合状态,可以将动力传递给不同的行星齿轮组,从而实现不同的速比。
3.3 锁定阶段在高速行驶时,液力自动变速器会进入锁定阶段。
在锁定阶段,液力变矩器的涡轮和泵轮通过液力锁定装置直接连接,消除液力传递损失,提高传动效率。
四、液力自动变速器的优缺点液力自动变速器具有以下优点: 1. 平顺的换挡感受,提高驾驶舒适性。
2. 宽广的传动比范围,适应不同驾驶条件。
任务一 介绍电控液力自动变速器

任务一介绍电控液力自动变速器自动变速器的特点:它能根据发动机的负荷和车速的变化情况自动的选定档位,并进行档位变换,即自动的改变传动比。
自动变速器的优点:1.整车具有更好的驾驶性能 2.良好的行驶性能 3.较好的行车安全性 4.降低废气排放缺点:1.结构较复杂2.传动效率低二.电控液力自动变速器的组成由液力变矩器,齿轮变速机构,液压操纵系统和电子控制系统四个部分组成. 1.液力变矩器安装在发动机与变速器之间,将发动机转去传给变速器输入轴。
相当于汽车上的离合器,但在传递力矩的方式上有不同于普通离合器。
液力变矩器是靠液力来传递力矩,它可改变发动机的转距,并能实现无级变速。
2. 齿轮变速机构齿轮变速机构可形成不同的传动比,组合成电控自动变速器不同的档位。
3.液压操纵系统(1)换挡执行机构电控自动变速器的换挡执行机构,包括离合器,制动器,单向离合器三种. (2)液压控制系统主要控制换挡执行机构的工作,由液压泵及各种液压控制阀和液压管路等组成. 4.电子控制系统主要包括电子控制单元,各类传感器及执行器等. 电子控制系统中的传感器及各种控制开关将发动机工况,车速等信号传递给电子控制单元,电子控制单元发出指令给执行器,执行器和液压系统按一定的规律控制换挡执行机构工作,实行自动变档。
三.电控液力自动变速器的控制原理它通过传感器和开关监测汽车和发动机的运行状态,以及节气门开度,并将所获得的信息转换成电信号输入到电控单元。
电控单元根据这些信号,确定换档时机,输出换档电信号,通过电磁阀控制液压控制装置的换档阀,使其打开或关闭通往换档离合器和制动器的油路,从而控制换档时刻和档位的变换,以实现自动变速。
四,电控液力自动变速器的分类1,按汽车驱动方式的不同,分为后驱动自动变速器和前驱动2,按前进挡的档位数不同分为三个前进档,四个前进档,五个前进档3,按齿轮变速器类型的不同分分为行星齿轮式和平行轴式4,按控制方式不同分类分为液力控制自动变速器和电子控制五,自动变速器的换挡方式有按钮式或拉杆式两种类型自动变速器的挡位分为P、R、N、D、2、1或L等3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合器片前端与后
端的压力相同,
使锁止离合器分
离。
2 )锁止离合器接合状态
当车速以
中速至高速行 驶时,油液流 至锁止离合器 的后端。这样, 锁止离合器处 于接合状态, 使锁止离合器 片与前盖一起 转动。
带锁止离合器的液力变矩器既利
用了液力变矩器在涡轮转速较低时具 有的增扭特性,又利用了液力偶合器 在涡轮转速较高时所具有的高传动效 率的特性。
5)行星架固定,太阳轮主动,齿圈被动
行星架固定,行星 齿轮只能自转,太阳轮 经行星齿轮带动齿圈旋 转输出动力。齿圈的旋 转方向与太阳轮相反。 传动比为: i12=z2/z1=- α 为倒挡减速挡。
6)行星架固定,齿圈主动,太阳轮被动
行星架固定,行星 齿轮只能自转,齿圈 经行星齿轮带动太阳 轮旋转输出动力。太 阳轮的旋转方向与齿 圈相反,传动比为:
控制行星齿轮机构元件的旋转,而单向离合器则是 以机械方式对行星齿轮机构的元件进行锁止。
1.多片离合器
(1)作用
自动变速器中的湿式
多片离合器是用来连接输
入轴或输出轴和某个基本
元件,或将行星齿轮机构
中某两个基本元件连接在
一起实现转矩的传递。
点击播放
离合器片
离合器
(2)构造:一般为多片摩擦式,是液压控制的执行元件。 基本组成:离合器鼓、离合器活塞、回位弹簧、离合器片(钢 片、摩擦片)、花键毂 摩擦片与旋转的花键毂的齿键连接,可轴向移动,为输入端, 片上有钢基粉末冶金层或合成纤维层。 从动钢片与转动鼓的内花键连接也可轴向移动,可输出扭矩。 活塞为环状,另外活塞上有密封圈、回位弹簧。
设太阳轮、齿圈和行星架的转速分别
为n1、n2和n3,齿数分别为zl、z2和z3,齿 圈与太阳轮的齿数比为α。根据能量守恒 定律,可得单排行星齿轮机构一般运动规 律的特性方程式:
n1+αn2-(1+α)n3=0
其中:α=Z2/Z1>1
单排行星齿轮机构的传动原理
行星齿轮机构工作时将太阳轮、齿 圈和行星架这三者中的任一元件作为主 动件,使它与输入轴联结,将另一元件
传动比为 :
i31=1/(1 +α)
为前进超速挡, 增速相对较大。
3 )太阳轮固定,齿圈主动,行星架被动
传动比为:
i23=1+z2/z1
=1+1/α 为前进降速挡,
减速相对较小。
4)太阳轮固定,行星架主动,齿圈被动
传动比为:
i32=z2/(z1+z2)
= α/(1+
α)
为前进超速挡, 增速相对较小。
在泵轮与涡轮上,均径向焊接带有一定弯度的
叶片,用来传递动力。 泵轮与涡轮叶片内缘有导流环,装合后构成循 环圆,可促进油液循环。
液力偶合器工作原理:
(1)“涡流”的产生
当泵轮随飞轮转动时,由于离心力的作用, 液体沿泵轮叶片间的通道向外缘流动,外缘油 压高于内缘油压,油液从泵轮外缘冲向涡轮外 缘,又从涡轮内缘流入泵轮内缘,可见在轴向 断面(循环圆)内,液体流动形成循环流,称
2)涡轮
涡轮同样也是有许多曲面叶片的 圆盘,其叶片的曲线方向不同于泵轮 的叶片。涡轮通过花键与变速器的输
入轴相啮合,涡轮的叶片与泵轮的叶
片相对而设,相互间保持非常小的间
隙。
3)导轮
导轮是有叶片的小圆盘,位于泵轮
和涡轮之间。它安装于导轮轴上,通过
单向离合器固定于变速器壳体上。 导轮上的单向离合器可以锁住导轮 以防止反向转动。这样,导轮根据工作 液冲击叶片的方向进行旋转或锁住。
泵轮与壳连成一体为 主动元件; 壳体做成两半,用螺
壳 涡轮 泵轮
栓连接,壳外有起动齿圈
起动 涡轮悬浮在变矩器内 齿圈
与从动轴相连;
导轮悬浮在泵轮与涡
轮之间,通过单向离合器 及导轮固定套固定在变速
导轮 壳
器外壳上,单向离合器使
导轮可以顺时针方向转动 而不能逆时针方向转动。
液力变矩器的实物图
液力变矩器结构示意图
7
8
没有
没有
任意两个
不定
第三元件
不定
同向同速
不转动
行星齿轮机构与外啮合齿轮机构相比具有 以下优点: 1)所有行星齿轮均参与工作,都承受载荷 ,行星齿轮工作更安静,强度更大。 2)行星齿轮工作时,齿轮间产生的作用力 由齿轮系统内部承受,不传递到变速器壳体,变 速器可以设计得更薄、更轻。 3)行星齿轮机构采用内啮合与外啮合相结 合的方式,与单一的外啮合相比,减小了变速器 尺寸。 4)行星齿轮系统的齿轮处于常啮合状态, 不存在挂挡时的齿轮冲击,工作平稳,寿命长。
二、齿轮变速机构
1.平行轴式齿轮变速机构 (1)基本变速机构的组成:
输入轴 输出轴 倒挡轴 轴承 变速齿轮
点击播放
2)变速原理
主动轮1
i12=n1/n2= z2/z1= M2/M1 z1 ,n1 , M1为主动齿轮 的参数。 z2 ,n2 , M2为
从动齿轮的参数。
从动轮2
i=
从动齿轮齿数 主动齿轮齿数
1)泵轮
泵轮在变矩器壳体内,许多曲面叶片 径向安装在内。在叶片的内缘上安装有导 环,提供一通道使ATF流动畅通。变矩器通
过驱动端盖与曲轴连接。当发动机运转时,
将带动泵轮一同旋转,泵轮内的ATF依靠离 心力向外冲出。发动机转速升高时泵轮产 生的离心力亦随着升高,由泵轮向外喷射 的ATF的速度也随着升高。
需加装单向离合器和锁止离合器,以提
高传动效率,降低燃料消耗。
变矩器的性能参数
变矩器的性能参数
4.液力变矩器的种类
(1)三元件液力变矩器
其工作轮数目为三个:
泵轮、涡轮、导轮
(2)四元件液力变矩器
其工作轮数目为四个:
泵轮、涡轮、双导轮
5.液力变矩器的锁止机构
锁止离合器锁止的液力变矩器
变矩器的锁止离合器与外壳相连,也就是与泵 轮相接,而锁止离合器片与涡轮相接,带锁止离合 器的液力变矩器的活塞在油压的作用下,可以将多
作为被动件与输出轴联结,再将第三个
元件加以约束制动。这样整个行星齿轮
机构即以一定的传动比传递动力。
点击播放
1)齿圈固定,太阳轮主动,行星架被动
太阳轮带动行 星齿轮沿静止的齿 圈旋转,从而带动 行星架以较慢的速 度与太阳轮同向旋 转,传动比为: i13=1 +α 为前进降速挡, 减速相对较大。
2)齿圈固定,行星架主动,太阳轮被动
液力变矩器的的工作原理 减矩过程:MT=MP-MS (导轮不转) MT=MP(加装单向离合器后 ,导轮转动)
3.液力变矩器的工作特性
定义:当发动机的转速和转矩一定,泵轮 的转速和转矩也一定时,涡轮与泵轮之间 的转矩比、转速比、和传动效率三者的变 化规律。 转矩比=涡轮输出转矩/泵轮输出转矩 转速比=涡轮转速/泵轮转速
的扭矩(Mb)的关系式为: Mw ≤ Mb 液力耦合器的传动效率
η=Nw/Nв=Mwnw/Mвnв
η=nw/nв=i(Mв=Mw) 当 i=1时η=100%, 但最高效 率只可达97%左右。
液力偶合器的缺点:
液力偶合器不能使输出扭矩增大,只起
液力联轴离合器的作用。因此,汽车上很少 采用。 它不能使发动机与传动系彻底分离,为 解决换挡问题,在液力偶合器和机械变速器
主动盘
壳体 活塞 弹簧 卡环 压盘 从动盘
输入轴
花键毂
(3)工作情况:
离合器接合:当压力油经油道进入活塞左面的 液压缸时,液压力克服弹簧力使活塞右移,将 所有离合器片压紧。 离合器分离:当控制阀将作用在离合器液压缸 的油压力撤除后,离合器活塞在回位弹簧的作 用下回复原位,并将缸内的变速器油从进油孔 排出。
液力传动的特性
变扭比(K)=MW/Mb,一般为2~4倍。
转速比(i)=nw/nb≤1
传动效率(η)=输出功率/输入功率 =Nw/Nb<1
(1)怠速时,MW很小,汽车不能行使。 (2)起步时, MW最大。 (3)逐渐加速时, MW减小。 (4)偶合点时,k=1,
MW= Mb
为提高变矩器在偶合区工作的性能,
传动比=输入轴转速/输出轴转速
液力变矩器的工作特性分析
分析:变矩器工作时,作用在涡轮上的扭 矩( Mw )不仅有泵轮施加给涡轮的扭矩(Mb), 还有导轮的反作用力矩(Md),即:Mw=Mb+Md。 a.当nw﹤0.85 nb时,此时nb>nw,油液速 度Vc流向导轮的正面, Md >0, Mw=Mb+Md , 可见Mw> Mb ,起变扭作用。 b.当nw=0.85 nb 时,油液速度Vc 与导轮 叶片相切, Md =0,Mw= Mb ,为偶合器(液力 联轴器)。此转速称为“偶合工作点”。
为“涡流”。
(2)环流的产生
因涡流的产生,液体冲向涡轮使两轮
间产生牵连运动,涡轮产生绕轴旋转的扭
矩。可见,循环圆内的液体绕轴旋转形成
“环流”。
上述两种油流的合成,形成一条首尾
相接的螺旋流。只有当涡轮的扭矩大于汽 车的行驶阻力矩时,汽车才能行驶。
液力偶合器涡流、环流的产生
液力偶合器工作特性: 涡轮的扭矩(Mw)和泵轮
液力变矩器中三个元件的功用:
泵轮:将发动机的机械能转变
为自动变速器油的动能。
涡轮:将自动变速器油的动能
转变为涡轮轴上的机械能。
导轮:改变自动变速器油的流 动方向,从而达到增矩的作用。
液力变矩器涡流与环流
液力变矩器的工作原理
点击播放
液力变矩器的工作原理
增矩过程:MW=MB+MD
液力变矩器的工作原理 偶合点:MW=MB
i21=-z1/z2
=-1/ α
为倒挡超速挡。