旋转知识点总结
旋转知识点总结学霸

旋转知识点总结学霸一、数学中的旋转在数学中,旋转是一个非常基本的概念,它用来描述一个对象绕着某个固定点进行转动的过程。
旋转可以应用到几何、代数和分析等多个数学领域。
1. 几何中的旋转在几何中,我们经常会用到旋转来描述图形的转动。
绕着一个固定点进行旋转的图形通常被称为旋转体。
旋转体的性质和旋转规律对于我们理解图形的变化、计算图形的面积和体积都非常重要。
在数学学习中,我们通常会接触到二维平面上的旋转和三维空间中的旋转,需要掌握旋转的基本规律和性质,以便应用到解决实际问题中。
2. 代数中的旋转代数中的旋转主要涉及到矩阵和复数。
在矩阵中,我们可以通过矩阵的乘法来描述一个向量绕着某个点进行旋转的过程。
复数可以被看作是平面上的点,而复数的乘法可以被看作是对这个点进行旋转和拉伸的操作。
因此,代数中的旋转也是非常重要的一个概念,它有广泛的应用。
3. 分析中的旋转在分析中,我们通常会将旋转考虑为一个变换。
通过研究旋转的连续性和可微性,我们可以得到一系列关于旋转的重要结论和性质。
在微积分学习中,我们也会遇到旋转的相关问题,需要用到一些微积分技巧来解决。
二、物理中的旋转在物理学中,旋转也是一个非常基本和重要的概念,它在描述物体的转动、角动量和惯性等方面都有着广泛的应用。
1. 物体的转动物体的转动是物理学中的一个常见现象,比如地球的自转、行星的公转等。
通过研究物体的转动,我们可以得到一些关于角度、角速度和角加速度等重要参数的信息。
这些参数对于我们理解物体的运动以及解决实际问题都非常重要。
2. 角动量角动量是描述物体旋转运动的一个重要物理量,它与物体的质量、速度和转动半径等相关。
角动量在物理学中有着重要的应用,比如在解释自行车行驶时为什么要倾斜车身,或者在解释陀螺的旋转运动等方面都有着重要作用。
3. 惯性惯性也是物理学中一个重要的概念,它描述了物体对于转动的抵抗能力。
对于不同形状和质量的物体,它们的惯性也会有所不同。
了解物体的惯性对于我们设计机械结构、计算力矩和转动动能等方面都非常重要。
旋转知识点总结

旋转知识点总结旋转是一种常见的几何变换,它改变了物体的方向、位置和角度。
在计算机图形学、几何学、物理学和工程学等领域都有广泛的应用。
下面是对旋转相关知识点的一些总结:1. 旋转的定义:旋转是一种刚体运动,它将物体绕着特定的轴线转动一定的角度。
旋转由旋转中心、旋转轴和旋转角度三个要素来描述。
2. 旋转的方向:旋转可以是顺时针方向或逆时针方向。
在三维空间中,右手法则可以确定旋转的方向。
3. 旋转角度的表示:旋转角度可以用弧度制或角度制来表示。
弧度制是使用弧长与半径的比值来表示角度,角度制则是使用度数来表示。
4. 旋转矩阵:旋转可以用旋转矩阵来表示。
旋转矩阵是一个二维矩阵,其中每个元素表示旋转后的坐标与旋转前的坐标之间的关系。
5. 旋转轴的表示:旋转轴可以用向量来表示,向量的方向和大小决定了旋转轴的方向和旋转角度的大小。
6. 旋转的基本性质:旋转具有一些基本的性质,包括不变性、可逆性、可叠加性等。
这些性质对于旋转的应用非常重要。
7. 旋转的合成:旋转可以进行合成,即先进行一个旋转,再进行另一个旋转。
合成旋转可以通过旋转矩阵的乘法来实现。
8. 旋转的变换:旋转可以用来进行物体的变换,包括位置的变换、形状的变换和姿态的变换等。
旋转变换可以通过矩阵乘法来实现。
9. 欧拉角和四元数:欧拉角和四元数是常用的旋转表示方法。
欧拉角使用三个独立的角度来表示旋转,而四元数使用一个四维向量来表示旋转。
10. 旋转的应用:旋转在计算机图形学中有广泛的应用,包括三维建模、动画、物理模拟等。
旋转也被广泛应用于机器人学、飞行控制、游戏开发等领域。
11. 旋转的误差:由于测量误差和计算误差等原因,旋转变换可能会引入一定的误差。
为了减少误差,可以使用数值方法和优化算法等技术来进行旋转估计和校正。
12. 旋转的性能优化:旋转的计算通常比较复杂,对于大规模的数据和复杂的模型,旋转计算可能会成为性能瓶颈。
为了提高性能,可以使用并行计算、SIMD指令、快速算法等技术来加速旋转计算。
数学旋转和平移知识点总结

数学旋转和平移知识点总结一、旋转的基本概念1.1 旋转的概念所谓旋转,就是通过一个固定的点,将平面上的点或者图形绕着这个点进行转动的过程。
这个固定的点被称为旋转中心,转动的角度叫做旋转角。
在数学中,我们通常用一个坐标系来描述旋转的过程,通过将点或者图形绕着坐标系的原点旋转,来描述旋转的过程。
1.2 旋转的表示在数学中,我们可以通过旋转矩阵、三角函数等方式来表示旋转变换。
旋转矩阵是用来描述旋转变换的一个重要工具,它能够将点或者图形绕着旋转中心进行旋转,并将旋转后的点或者图形表示出来。
三角函数能够帮助我们计算旋转后的点的坐标,从而描述旋转的过程。
1.3 旋转的性质旋转具有一些重要的性质,例如角度不变性、共线性不变性、长度比例不变性等。
这些性质在实际问题中有着重要的应用,能够帮助我们更好地理解旋转变换。
1.4 旋转的定理在数学中,我们有着一些关于旋转的重要定理,例如旋转定理、旋转对称定理等。
这些定理能够帮助我们解决与旋转相关的各种问题,是数学中的重要内容。
1.5 旋转的应用旋转在实际生活和工程中有着广泛的应用,例如在建筑设计、机械加工、航天航空等领域。
旋转能够帮助我们更好地描述和分析各种物体的形状和结构,具有重要的工程应用价值。
二、平移的基本概念2.1 平移的概念平移是将平面上的点或者图形沿着某一方向进行平行移动的过程。
在数学中,我们通常用向量或者坐标变换来描述平移的过程,通过平移向量或者平移矩阵来表示平移变换。
2.2 平移的表示在数学中,平移变换可以通过向量加法或者矩阵相加来表示,从而描述平移的过程。
平移变换可以将点或者图形沿着某一方向进行平行移动,并得到平移后的点或者图形的位置。
2.3 平移的性质平移具有一些重要的性质,例如平移不改变长度、方向和大小等。
这些性质在实际问题中有着重要的应用,能够帮助我们更好地理解平移变换。
2.4 平移的定理在数学中,我们有着一些关于平移的重要定理,例如平移定理、平移对称定理等。
认识旋转知识点总结初中

认识旋转知识点总结初中一、旋转的基本概念1. 旋转的定义旋转是物体围绕某一固定轴线或者某一固定点进行的运动。
在旋转运动中,物体的各个点围绕着轴线或者固定点进行圆周运动,同时保持相对位置不变。
2. 旋转的方向围绕轴线进行旋转运动的物体,其运动可以是顺时针方向或者逆时针方向。
在物理学中,通常将顺时针方向定为正向,逆时针方向定为负向。
3. 旋转的角度旋转运动可以用角度来描述。
一个完整的旋转是360度,也可以表示为2π弧度。
物体围绕轴线或者固定点所经过的角度称为旋转角。
二、旋转运动的基本定律1. 旋转惯量旋转惯量是描述物体围绕轴线旋转运动的一种物理量,它与物体的质量和几何形状有关。
物体的旋转惯量越大,其旋转运动越难以改变。
2. 角动量在旋转运动中,角动量是描述物体旋转运动的一种物理量,它等于物体的旋转惯量乘以物体围绕轴线旋转的角速度。
3. 旋转运动的动能物体进行旋转运动时,具有旋转动能。
其大小等于物体的旋转惯量乘以物体所具有的角速度的平方再除以2。
4. 角速度角速度是描述物体围绕轴线旋转运动的物理量,它等于物体围绕轴线旋转的角度变化量与时间的比值。
5. 动量定理在旋转运动中,动量定理也适用。
它可以描述物体围绕轴线旋转运动时所受到的力和物体的角加速度之间的关系。
三、旋转运动的应用1. 陀螺的原理陀螺是一种利用旋转运动原理制作的玩具。
它的工作原理是利用陀螺的高速旋转使得陀螺保持一定的平衡状态,从而能够在平滑的表面上保持稳定的旋转运动。
2. 自行车轮的稳定性自行车的骑行稳定性也与旋转运动有关。
自行车前轮的旋转运动可以使得自行车保持稳定的前进方向,而不会出现侧倾的情况。
3. 地球自转和公转运动地球自转和公转运动也是旋转运动的一种应用。
地球每天围绕自己的轴线旋转一圈,并且围绕太阳做公转运动,这些运动都是旋转运动的应用。
四、旋转运动的实验1. 旋转惯量实验通过测量不同物体的旋转惯量,可以观察到物体的形状和质量对旋转惯量的影响,从而了解旋转运动的基本定律。
旋转知识点总结

旋转知识点总结旋转知识点归纳知识点1:旋转的定义及其有关概念在平面内,将一个图形绕一个定点O沿某个方向转动一个角度,这样的图形运动称为旋转。
定点O称为旋转中心,转动的角称为旋转角。
如果图形上的点P经过旋转到点P',那么这两个点叫做这个旋转的对应点。
如图1,线段AB绕点O顺时针转动90度得到AB',这就是旋转,点O就是旋转中心,∠BOB'和∠AOA'都是旋转角。
说明:旋转的范围是在平面内旋转,否则有可能旋转为立体图形,因此“在平面内”这一条件不可忽略。
决定旋转的因素有三个:一是旋转中心;二是旋转角;三是旋转方向。
知识点2:旋转的性质由旋转的定义可知,旋转不改变图形的大小和形状,这说明旋转前后的两个图形是全等的。
由此得到如下性质:⑴经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,对应点的排列次序相同。
⑵任意一对对应点与旋转中心的连线所成的角都是旋转角。
⑶对应点到旋转中心的距离相等。
⑷对应线段相等,对应角相等。
例1:如图2,D是等腰Rt△ABC内一点,BC是斜边,如果将△ADB绕点A逆时针方向旋转到△ADC的位置,则∠ADD'的度数是()。
分析:抓住旋转前后两个三角形的对应边相等、对应角相等等性质,本题就很容易解决。
由△ADC是由△ADB旋转所得,可知△ADB≌△ADC,∴AD=AD',∠DAB=∠D'AC,∵∠DAB+∠___,∴∠D'AC+∠___,∴∠ADD'=45,故选D。
评注:旋转不改变图形的大小与形状,旋转前后的两个图形是全等的,紧紧抓住旋转前后图形之间的全等关系,是解决与旋转有关问题的关键。
知识点3:旋转作图1.明确作图的条件:(1)已知旋转中心;(2)已知旋转方向与旋转角。
2.理解作图的依据:(1)旋转的定义:在平面内,将一个图形绕一个定点O沿某个方向转动一个角度的图形变换叫做旋转;(2)旋转的性质:经过旋转,图形上的每一点都绕旋转中心沿相同的方向转动了相同的角度,任意一对对应点与旋转中心的连线所组成的角都是旋转角,对应点到旋转中心的距离相等。
旋转图形知识点总结

旋转图形知识点总结一、旋转的基本概念1. 旋转的定义:旋转是指把一个图形绕着一个固定的点旋转一定的角度,使得原图形和旋转后的图形具有相同的形状和大小。
2. 旋转的中心:旋转的中心是一个固定的点,图形绕着这个点进行旋转。
3. 旋转角度:旋转角度是指图形经过旋转后,原始图形和旋转后的图形之间的角度差。
通常用度数来表示旋转角度。
4. 旋转方向:旋转方向是指图形在旋转过程中的运动方向,可以是顺时针方向或者逆时针方向。
二、旋转图形的特点1. 旋转图形的不变性:当一个图形绕着一个固定的点进行旋转时,它的形状和大小不会发生改变,只是方向和位置发生了变化。
2. 旋转图形的对称性:旋转图形和原始图形之间具有一定的对称性,通过旋转可以得到图形的对称图形。
三、旋转的基本操作1. 如何进行旋转:要进行图形的旋转操作,首先需要确定旋转的中心点和旋转的角度,然后按照旋转规则进行操作。
2. 旋转后的图形:根据旋转的角度和方向,可以得到旋转后的图形,通常可以通过计算或者直接作图的方式来得到旋转后的图形。
四、旋转图形的相关性质和定理1. 判断旋转对称图形:通过观察图形的对称性,可以判断出一个图形是否具有旋转对称性。
2. 旋转对称图形的性质:旋转对称图形具有一些特殊的性质,比如对称轴上的点经过旋转后还是对称轴上的点。
3. 旋转变换的相关定理:旋转变换有一些相关的定理,比如旋转变换是一种保持长度和角度不变的变换。
五、常见的旋转图形1. 旋转正多边形:正多边形是一种常见的图形,在进行旋转操作时,可以通过旋转规则来得到旋转后的正多边形。
2. 旋转圆形:圆形是一种特殊的图形,通过旋转操作可以得到不同位置和方向的圆形。
3. 旋转长方形和正方形:长方形和正方形在进行旋转操作时,可以根据旋转的规则来得到旋转后的图形。
六、应用举例1. 旋转图形的应用:旋转图形不仅在几何学中有应用,还可以在实际生活中得到应用,比如在工程设计、建筑设计等领域中可以通过旋转图形来实现设计需求。
旋转的知识点总结

旋转的知识点总结一、旋转的基本概念1. 旋转的定义旋转是物体绕着某一点或某一条轴心进行的运动。
在旋转运动中,物体的各个部分绕着轴心或转动中心做圆周运动,同时保持相对位置不变。
2. 旋转的基本术语(1)轴心:旋转的固定点或固定轴。
(2)转动中心:物体绕轴心旋转时,轴心在物体外部的点称为转动中心。
(3)转动轴:绕着轴心旋转的直线称为转动轴。
(4)转动惯量:物体绕轴心旋转时所具有的惯性度量。
(5)角速度:描述物体旋转的速度大小和方向的物理量。
(6)角加速度:描述物体旋转的加速度大小和方向的物理量。
二、旋转的数学描述1. 转动角度旋转的大小通常用角度或弧度来描述。
角度是一种常用的角度单位,表示一个圆心角所占的平面角度为360度。
弧度是一种物理角度单位,表示一个圆心角所对应的圆弧长度等于半径的长度。
2. 旋转的向量描述在物理学中,旋转通常被描述为一个向量。
这个向量被称为“角速度向量”,它表示物体垂直于转动平面的旋转方向和速度大小。
3. 旋转的运动方程旋转的运动方程描述了物体在旋转运动中的运动规律。
通常包括角速度、转动半径、转动角度、角加速度等物理量之间的关系。
三、旋转的力学原理1. 物体的转动惯量转动惯量是描述物体绕轴心旋转时所具有的惯性度量。
转动惯量取决于物体的形状和质量分布。
通常用符号I表示,单位是千克·米平方。
2. 物体的角动量物体的角动量是描述物体旋转运动状态的物理量。
它与物体的转动惯量和角速度有关。
通常用符号L表示,单位是千克·米平方/秒。
3. 牛顿第二定律在旋转运动中的应用牛顿第二定律(F=ma)在旋转运动中的形式为τ=Iα,其中τ表示力矩,I表示物体的转动惯量,α表示角加速度。
这个公式描述了物体在受力作用下的转动运动规律。
四、旋转的应用1. 刚体旋转刚体旋转是刚体围绕轴心或转动中心进行的旋转运动。
刚体旋转的应用广泛,包括汽车的转向、水泵的旋转、风车的旋转等。
2. 陀螺运动陀螺是一种常见的旋转运动装置,可以应用于导航、稳定、测量等领域。
旋转知识点总结

旋转知识点总结一、旋转1.旋转的概念:在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转.这个定点叫做旋转中心,转动的角叫做旋转角.2.旋转三要素:①旋转中心;②旋转方向;③旋转角度3.旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角(3)旋转前后的图形全等.4.网格中的旋转:①确定旋转中心、旋转方向及旋转角;②找原图形的关键点;③连接关键点与旋转中心,按旋转方向与旋转角将它们旋转,得到各关键点的对应点;④按原图形依次连接各关键点的对应点,得到旋转后的图形.二、中心对称1.中心对称:中心对称是指把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形.三、尺规作图(旋转)1.作图方法:以旋转点为中心找出各点旋转对应角度后得到的对应点,再顺次连接得到旋转后的图形.四、关于原点对称的点的坐标1.关于原点对称后点的坐标:若对称前的点坐标为(x,y),那么对称后的点坐标为(-x,-y).五、旋转90°的点的坐标1.绕原点旋转90°后的点的坐标:(1)顺时针旋转:若对称前的点坐标为(x,y),那么对称后的点坐标为(y,-x).(2)逆时针旋转:若对称前的点坐标为(x,y),那么对称后的点坐标为(-y,x).六、常见全等模型(手拉手模型)1.手拉手模型:两个等腰三角形共顶点时,就有全等三角形.结论:(1)△ABE≌△DBC(2)AE=DC(3)AE交DC于点H,∠AHD=∠ABD(4)HB平分∠AHC七、常见全等模型(半角模型)1.半角模型:共顶点的两个角度,当一个角等于另一个角的一半时,可以将三角形旋转,得到全等三角形.结论:(1)△AEF≌△AGF(2)EF=BF+DEDA CB八、常见全等模型(对角互补四边形旋转模型)1.对角互补四边形旋转模型:四边形对角互补且有一组邻边相等时,可以将三角形旋转,得到等腰三角形或正方形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
旋转知识点归纳知识点1:旋转的定义及其有关概念在平面内,将一个图形绕一个定点O 沿某个方向转动一个角度,这样的图形运动称为旋转,定点O 称为旋转中心,转动的角称为旋转角;如果图形上的点P 经过旋转到点P ',那么这两个点叫做这个旋转的对应点. 如图1,线段AB 绕点O 顺时针转动090得到B A '',这就是旋转,点O 就是旋转中心,A AO B BO '∠'∠,都是旋转角.说明: 旋转的范围是在平面内旋转,否则有可能旋转为立体图形,因此“在平面内”这一条件不可忽略.决定旋转的因素有三个:一是旋转中心;二是旋转角;三是旋转方向.知识点2:旋转的性质由旋转的定义可知,旋转不改变图形的大小和形状,这说明旋转前后的两个图形是全等的.由此得到如下性质:⑴经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,对应点的排列次序相同.⑵任意一对对应点与旋转中心的连线所成的角都是旋转角.⑶对应点到旋转中心的距离相等.' 图⑷对应线段相等,对应角相等.例1 、如图2,D 是等腰Rt △ABC 内一点,BC 是斜边,如果将△ADB 绕点A 逆时针方向旋转到△C D A '的位置,则ADD '∠的度数是( )DA.25B.30 C.35 D.45分析:抓住旋转前后两个三角形的对应边相等、对应角相等等性质,本题就很容易解决.由△C D A '是由△ADB 旋转所得,可知△ADB ≌△C D A ',∴AD =D A ',∠DAB =∠AC D ',∵∠DAB +∠DAC =090,∴∠AC D '+∠DAC =090,∴∠045='D AD ,故选D.评注:旋转不改变图形的大小与形状,旋转前后的两个图形是全等的,紧紧抓住旋转前后图形之间的全等关系,是解决与旋转有关问题的关键.知识点3:旋转作图1.明确作图的条件:(1)已知旋转中心;(2)已知旋转方向与旋转角.2.理解作图的依据:(1)旋转的定义: 在平面内,将一个图形绕一个定点O 沿某个方向转动一个角度的图形变换叫做旋转;(2)旋转的性质:经过旋转,图形上的每一点都绕旋转中心沿相同的方向转动了相同的角度,任意一对对应点与旋转中心的连线所组成的角都是旋转角,对应点到旋转中心的距离相等.3.掌握作图的步骤:(1)分析题目要求,找出旋转中心、旋转角;(2)分析图形,找出构成图形的关键点;(3)沿一定的方向,按一定的角度,通过截取线段的方法,找出各个关键点;(4)连接作出的各个关键点,并标上字母;(5)写出结论.例2 如图3,小明将△ABC 绕O 点旋转得到△C B A ''',其中点C B A '''、、分别是A 、B 、C 的对应点.随即又将△ABC 的边AC 、BC 及旋转中心O 擦去(不留痕迹),他说他还能把旋转中心O 及△ABC 的位置找到,你认为可以吗?若可以,试确定旋转中心及的位置;如不可以,请说明理由.分析:本题的关键是要学生先确定旋转中心的位置.根据“对应点到旋转中心的距离相等”这一特征,可推断出旋转中心是对应点连线(A A '和B B ')的垂直平分线的交点.这样旋转中心就可以确定了,从而△ABC 的位置也就可以确定了.解:连接A A ',B B ',分别作A A ',B B '的垂直平分线,相交于O 点,则O点即为旋转中图2心.再作C '关于点的对应点,连接,则的位置就确定了.如图4所示.评注:旋转角相等及对应点到旋转中心的距离相等是解决这类问题的关键.考点4:钟表的旋转问题钟表的时针与分针每时每刻都以轴心为旋转中心作旋转运动,其中时针12小时旋转一周,则每小时旋转,301236000=这样时针每分钟旋转;5.00分针每小时旋转一周,则每分钟旋转.66036000= 例3 从1点到1点25分,分针转了多少度角?时针转了多少度角?1点25分时时针与分针的夹角是多少度?分析:从1点到1点25分,分针与时针都转了25分钟,所以分针旋转的角度为,15025600=⨯时针旋转的角度为;5.12255.000=⨯1点整的时候,分针与时针的夹角为030,分针与时针分别同时旋转0150与05.12后,分针与时针的夹角为.5.1075.12301500000=--解:分针旋转的角度为;15025600=⨯时针旋转的角度为;5.12255.000=⨯分针与时针的夹角为.5.1075.12301500000=--评注:(1)时针每分钟旋转05.0;(2)分针每分钟旋转.60这两个条件是旋转问题中的隐含条件,也是解决此类问题的突破口解读生活中的旋转一. 旋转及其基本性质A 图3 '1.旋转的概念在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角.2.旋转的基本性质(1)旋转前后两个图形的对应点到旋转中心的距离相等;(2)对应点与旋转中心的连线所成的角彼此相等.3.理解旋转中的不变量图形旋转的主要因素是旋转的方向和旋转的角度,图形在旋转过程中,图形中的每一点都按同样的方向旋转了相同的角度.图形在旋转后点的位置改变,但线段的长度不变,对应点到旋转中心的距离不变,每对对应点与旋转中心连线所成的角都相等.总结:旋转过程中,每一个点都绕旋转中心沿相同的方向旋转了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.二.旋转前后两个图形的比较图形是由点组成的,图形中的主要元素有线段和角,也有一些其他可度量的元素,所以从这两个方面加以分析.旋转的特点有以下几个方面:(1)旋转前后两个图形的形状和大小没有发生改变,位置发生了改变;(2)对应线段相等,对应角相等;(3)每对对应点与旋转中心连线所成的角都是相等的,它们都是旋转角.三.旋转作图1.旋转作图的依据是:图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,对应点到旋转中心的距离相等.2.旋转作图的条件(1)图形原来所在的位置;(2)旋转中心;(3)图形旋转的方向;(4)图形的旋转角度.3.旋转作图的具体步骤为:(1)分析题目的要求,找出旋转中心、旋转角;(2)分析所作的图形,找出构造图形的关键点;(3)沿一定的方向,按一定的角度,通过攫取线段的方法,旋转各个关键点。
①连:即连图形中的每一个关键点与旋转中心;②转:即把连线按要求绕旋转中心转过一定角度;③截:即在角的另一边上截取关键点到旋转中心的距离,得到各点的对应点;为了避免作图时的混乱,每个点独立完成后,再进行下一个点的旋转;(4)连接所作的各个关键点,并标上相应的字母;(5)写出结论(方格纸内作图可以略写结论).四.旋转作图的考查形式(1)已知原图、旋转中心和一对对应点,求作旋转后的图形;(2)已知原图、旋转中心和一对对应线段,求作旋转后的图形;(3)已知原图、旋转中心和旋转角,求作旋转后的图形.五.典例剖析例1如图1,D 是等腰Rt ABC △内一点,BC 是斜边,如果将ABD △绕点A 逆时针方向旋转到ACD '△的位置,则ADD '∠的度数是(D )A.25B.30 C.35 D.45 解析:根据旋转性质可知△ABD ≌△D AC ',∴∠BAD =∠D CA ',AD =D A ',∵∠BAD +∠CAD =090,∴∠D CA '+∠CAD =090,∴ADD '∠=()000459018021=-,故应选D. 评注:本题应用旋转性质得到两三角形全等,然后根据全等三角形的性质和三角形内角和定理求解即可.例2如图2,该图形围绕自己的旋转中心,按下列角度旋转后,不能..与其自身重合的是( ) A.72 B.108 C.144 D.216解析:整个图形可以看作是图形的五分之一绕中心位置,按照同一方向连续旋转72、144、216、0288、0360和原来图形共同组成的,所以本题应选B。
评注:解决本题的关键是通过动手操作和动脑分析,找到“基本图案”,并分析得到旋转角,对本题来说,只要找到了“基本图案”,所有的旋转角一定都是72的倍数.CD ' A D B 图1 图2例3在如图3的方格纸中,每个小方格都是边长为1个单位的正方形,ABC △的三个顶点 都在格点上(每个小方格的顶点叫格点).(1)画出ABC △向平移4个单位后的111A B C △;(2)画出ABC △绕点O 顺时针旋转90后的222A B C △,并求点A 旋转到2A 所经过的路线长.分析:在作图的时候要找到关键点的位置,本题有两步作图,第一步是平移,第二步是旋转,按照平移和旋转的作图步骤容易得到最后的图形. 点A 旋转到2A 所经过的路线长为以OA 为半径,圆心角为90的弧长.解:(1)画出111A B C △. (2)画出△222A B C .连结OA ,2OA ,222313OA =+=.点A 旋转到2A 所经过的路线长为.2131801390ππ=⋅=l 评注:在方格纸上作简单的旋转图形,旋转角度通常是90,这样旋转前后图形的对应点与旋转中心的连线互相垂直,实际上就是在方格纸上找垂线,再根据旋转的性质找线段相等,从而确定每个对应点.学好旋转的三个要点旋转在实际生活中随处可见.因此,学好旋转的知识有利于我们解决实际问题,学习时应注意把握好以下几点:一、正确理解旋转的概念在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为图4图3旋转,这个定点叫做旋转中心.旋转不改变图形的形状和大小.理解这个概念应注意以下两点:1.旋转和平移一样,是图形的一种基本变换;2.图形旋转的决定因素是旋转中心和旋转的角度.例 如图1,ABC △是等腰直角三角形,90AB AC BAC ==︒,∠,D 是BC 上一点,ACD △经过旋转后到达ABE △的位置.(1)旋转中心是哪一点?(2)旋转了多少度?(3)若P 是AC 的中点,那么经过上述旋转后,点P 旋转到了什么位置?解:(1)点A 是旋转中心;(2)顺时针旋转了90︒;(3)点P 旋转到了AB 的中点.二、掌握旋转的特征图形中每一点都绕着旋转中心旋转了同样大小的角度;对应点到旋转中心的距离相等,对应线段、对应角都相等;旋转前后图形的大小、形状都不发生变化.例2 如图2所示,是国际奥林匹克运动会会旗(五环旗)的标志图案,它是由五个半径相同的圆组成的,它象征着五大洲的体育健儿,为发展奥林匹克精神而团结起来,携手拼搏.观察此图案,结合我们所学习的图形变换知识,完成下列题目:(1)整个图案可以看做是什么图形?(2)此图案可以看做是把一个圆经过多次什么变换运动得到的?解:(1)这个图案是轴对称图形.(2)既可以看做是由一个圆经过4次平移得到的,又可以看做是一个圆经过4次旋转得到的(你能分析吗,提示:旋转中心可以不在图案上).三、会寻找旋转中心知道了旋转中心及旋转角,可以作出一个图形旋转后的图形.那么知道一个图形及其旋转后的图形时,如何确定旋转中心呢?确定旋转中心的关键是确定两个图形上的两组对应点构成的对应线段的旋转中心,由旋转特征可知,这两组对应点的旋转中心就是整个图形的旋转中心.AC B EP 图1 图2由旋转特征可知,如果已知图形上点A关于旋转中心O的对应点是A',则有OA OA'=,所以点O必在线段AA'的垂直平分线上;如果图形上点B关于旋转中心O的对应点是B',则OB OB'=,所以点O必在线段BB'的垂直平分线上.这样两个对应点A和A'以及B和B'连线的垂直平分线的交点就是旋转中心.例3如图3所示,四边形ABCD绕某点旋转后到四边形A B C D'''',你能确定旋转中心吗?试一试.分析:我们可以用待定位置法.假定点O就是旋转中心,由于对应点到旋转中心的距离相等,则有OA OA OB OB''==,,从而O一定是线段AA'和线段BB'的垂直平分线的交点上.解:如图3所示,连结AA BB'',.分别作AA BB'',的垂直平分线,两直线交于点O.则点O就是旋转中心.例2如图4,ABC△是等边三角形,点D G,分别是AB AC,的中点,四边形BDEF 和四边形AGHK都是正方形.(1)试确定正方形AGHK绕某点旋转得正方形EFBD的旋转中心.(2)正方形BDEF旋转多少度时可以与正方形AGHK重合?分析:因为四边形AGHK和四边形BDEF都是正方形,所以情况较多,我们只选择其中一个讲解,其它情况请同学们自己探索,欢迎你把自己的探索成果告诉我们.解:(1)选择BD和GH作为对应线段(点B对应点G,点D的对应点为点H).连接DG DH BG,,,则易知DB DG GH==,连接点D与线段BG的中点M并延长,连接点G与线段DH的中点并延长,两直线相交于点O,则有GO垂直平分DH DO,垂直平分BG,则点O就是旋转中心.BOG∠为旋转角.(2)150DGH DGA AGH=+=︒∠∠∠,1752NGH DGH==︒∠∠,75MGO NGH==︒∠∠(对顶角).图1图4又90GMO =︒∠,所以15MOG =︒∠.所以旋转角230BOG MOG ==︒∠∠.所以当正方形BDEF 绕点O 顺时针旋转30︒时,可与正方形GHKA 重合.旋转坐标新意多求旋转后点的坐标的问题是学习旋转是常见的问题。