大学文科数学知识点与试题及解答
大学文科高数试题及答案

大学文科高数试题及答案一、选择题(每题4分,共40分)1. 假设函数f(x)在点x=a处可导,那么下列说法正确的是:A. f(x)在x=a处连续B. f(x)在x=a处不可导C. f(x)在x=a处可能不连续D. f(x)在x=a处的导数为0答案:A2. 极限lim(x→0)(sinx/x)的值是:A. 1B. 0C. 2D. 不存在答案:A3. 以下哪个选项是微分方程的解:A. y = e^x + CB. y = e^(-x) + CC. y = x^2 + CD. y = sin(x) + C答案:A4. 函数f(x)=x^2在区间[0,2]上的最大值是:A. 0B. 1C. 4D. 2答案:C5. 积分∫(0到1) x dx的值是:A. 0B. 1/2C. 1D. 2答案:B6. 以下哪个函数是偶函数:A. f(x) = x^3B. f(x) = x^2C. f(x) = sin(x)D. f(x) = |x|答案:B7. 以下哪个选项是函数f(x)=x^2的原函数:A. x^3B. 2xC. x^3/3D. x^2/2答案:C8. 如果函数f(x)在区间(a,b)上单调递增,则:A. f(x)在区间(a,b)上一定连续B. f(x)在区间(a,b)上可能不连续C. f(x)在区间(a,b)上一定存在最大值D. f(x)在区间(a,b)上一定存在最小值答案:B9. 以下哪个选项是函数f(x)=ln(x)的导数:A. 1/xB. xC. ln(x)D. 1答案:A10. 以下哪个选项是函数f(x)=e^x的不定积分:A. e^x + CB. e^(-x) + CC. e^x/x + CD. e^x * x + C答案:A二、填空题(每题4分,共20分)1. 函数f(x)=x^3在x=1处的导数是________。
答案:32. 极限lim(x→∞)(1/x)的值是________。
答案:03. 函数f(x)=x^2+2x+1的最小值是________。
高考数学试卷每题考点文科

一、选择题1. 【考点】集合的概念及运算题目:设集合A={x|x≤2},集合B={x|x≥3},则A∩B=()A. {x|x≤2}B. {x|x≥3}C. ∅D. {x|x≤2或x≥3}解析:本题考查集合的概念及运算。
根据集合的交集运算,A∩B表示同时属于A和B的元素,即{x|x≤2}∩{x|x≥3},由于没有任何元素同时满足x≤2和x≥3,因此A∩B=∅。
2. 【考点】函数的概念及性质题目:若函数f(x)=x²+2x-3在x=1处的导数为0,则f(x)的对称轴为()A. x=1B. x=-1C. x=0D. x=-2解析:本题考查函数的概念及性质。
首先求出f(x)的导数f'(x)=2x+2,然后令f'(1)=0,解得x=-1。
对称轴是函数图像关于x轴的对称轴,因此f(x)的对称轴为x=-1。
3. 【考点】三角函数的概念及性质题目:若sinα+cosα=√2,则sin²α+cos²α=()A. 2B. 1C. 0D. -1解析:本题考查三角函数的概念及性质。
由三角函数的和角公式sinα+cosα=√2,得到sinα=√2/2,cosα=√2/2。
根据三角函数的基本关系sin²α+cos²α=1,可得sin²α+cos²α=1。
二、填空题4. 【考点】数列的概念及性质题目:数列{an}中,a₁=1,an=an-₁+2n-1,则aₙ=()解析:本题考查数列的概念及性质。
根据递推公式an=an-₁+2n-1,可列出前几项:a₂=a₁+2=3,a₃=a₂+4=7,a₄=a₃+6=13。
观察发现,每一项都是前一项加上一个奇数,因此aₙ=1+3+5+...+(2n-1)=n²。
5. 【考点】平面几何的概念及性质题目:在直角坐标系中,点A(2,3),点B(-1,1),则线段AB的中点坐标为()解析:本题考查平面几何的概念及性质。
大学文科数学复习题(带答案)

大学文科数学复习题一、填空题 1、 设函数1(x)ln f x x =- 则函数的定义域是( (0,)+∞ ),f(e)=( e1-1 )2、 函数y =(21)y u x ==- 复合而成3、 20lim(23)x x x →-+=(3) 239lim()3x x x →--=(6) 22523lim()31x x x x →∞-++ 4、32x y x -=+,当( x →-2 )时是无穷大量,当( x →3 )为无穷小量 5、若函数1(x)(1)2xf x=+,由lim (x)x f →∞=(e ) 若1(x)sin g x x=,则0lim (x)x g →=( 0 )6、设2(x),(1)=1lim (x)=1x f x ax b f f →=++且,则 a= (-1 ) b= ( 1 )7、设(x)cos ,(x)=( )(0)=( )f x f f ''=则,8、曲线2y x =单调增加区间为( (0,)+∞ ),其在点(1,1)处的切线方程为(210x y --=)9、若()321f x x x =-+-,则=')0(f ( 2 ),''(0)f =( 0 ).10、若s i n 5,y x y '=+=则(xx 21cos +),dy=(dx xx )(21cos + )11、当x=( )时,函数3(x)3x,f x=-取得极大值,其值为( ) 12.设函数()1arctan 2f x x=+,则函数()f x 的定义域为( ()\{2}x R ∈- ); 13. 若函数ln 55xx xy x e ==,则()5(1ln )xy x x '=+;14. 若函数()1x f x e +=,则()()()1n x f x e +=;15. 极限=→20cos -1limxxx ( 1/2 )16. 极限=++∞→xxx sin x lim( 1 )17. 不定积分21ln 1(1ln )2x dx x C x+⎛⎫=++ ⎪⎝⎭⎰ 18. 设函数cos , 0() ,0x x f x x a x <⎧=⎨-≥⎩在0x =点连续,则=a ___-1____.19. 设2)(x x f =, 则[()]f f x '= 22x .20. sin limx xx→+∞= 021. 曲线1y x=在点(1,1)处的法线方程为 y=x22. (1cos )x dx -⎰= sin x x c -+ .二、选择题 1、设函数()ln(1)f x x =-,则函数()f x 的定义域为( C );A) (1,2) , B) [1,2] , C) (1,2] , D) [1,2). 2、设()()2,cos f x x x x ϕ==,则()()2lim x f x πϕ→=⎡⎤⎣⎦;BA) 2cos4π , B) 0 , C)12, D) 1. 3、设()()2,sin f x x x x ϕ==,(){}();f x ϕ'=⎡⎤⎣⎦ CA) sin 2x , B) 2sin x , C) 22cos x x , D) 2cos x .4、极限2311lim ()34x x x x →-=+-;BA)12, B) 13 , C) 0 , D) 1.5.极限3331lim ()21x x x x x →∞-+=+-.BA) 1, B) 32, C) 0, D) 23.6.下列命题中正确的是( A );A) 1lim sin1x x x →∞=, B) 01lim sin 1x x x→= ,C) 1lim sin 0x x x →∞=, D) 0sin lim0x xx→=. 7、若函数()11xf x x ⎛⎫=+ ⎪⎝⎭,则()()lim x f x →+∞=;A) 1, B) e , C)1e, D) 0. 8、若函数()11xf x x ⎛⎫=+ ⎪⎝⎭,则()()0lim x f x +→=;BA) 1 , B) e , C)1e, D) 0. 9、设()3f x x ax b =++,且()13f =,()0lim 2x f x →=,则(D );A) 2,0a b ==, B) 2,1a b =-=, C) 2,1a b ==-, D) 0,2a b ==. 10、设1()1xf x x-=+,则(0)()f '=;AA) 2-, B) 1-, C) 0, D) 2. 11、曲线21y x =-+单调上升区间为( );AA) (,0]-∞, B) (,1]-∞, C) [0,)+∞, D) [1,)+∞. 12、曲线2y x =在点(1,1)的切线方程为 ( );CA) 1(1)y x -=--, B) 11(1)2y x -=- , C) 12(1)y x -=-, D) 11y x -=- . 13、若()551f x x x =+-,则(5)()fx =( );DA) 0, B) 12, C) 24, D) 120.14、当()x =时,函数3()32f x x x =-+取得极大值,该极大值等于4;BA) 1, B) 1-, C) 0, D) 3.15. 当1x =时,函数3()31f x x x =-+取得极小值,该极小值等于( B ).A) 0, B) 1-, C) 2-, D) 3-. 16. 下列函数为初等函数的是( B )(B). y =(C).⎪⎩⎪⎨⎧=≠--=11112x x x x y (D).⎩⎨⎧≥<+=001x x x x y17. 当x →0时,与sin x 等价的无穷小是( A )(A) 2x x + (B) x x sinx 2 18. 设)0(f '存在,则0(0)()limx f f x x→--=( D )(A) )0(f '- (B) )0(2f '- (C) )0(2f ' (D) )0(f ' 19. 物体在某时刻的瞬时速度,等于物体运动在该时刻的( D ) (A)函数值 (B)极限 (C) 积分 (D)导数 20. 若)(x f 的导函数是x sin ,则)(x f 有一个原函数为( C ) (A) x cos 1+(B) sin x x + (C) sin x x - (D)x cos 1-三、求下面极限1、222111lim(...)1n n n n n →∞+++++, 因为:01111111022222→=≤+++++≤+=+←nn n n n n n n n n n 所以原式=02、101020(x 1)(2x 5)lim()(3x 7)x →∞---=201032 3、3211lim();28x x x →---4、81lim(1)x x x -→∞-e 1=5、25sin 3x 6lim 2x x →--=∞6、3tan limx x xx →- 解: 30tan lim x x x x →-=220sec 1lim 3x x x →-=22222001cos sin 1lim lim 3cos 33x x x x x x x →→-==7、20(1)lim sin x x x e x→-解:20(1)lim sin x x x e x →-=001lim lim sin x x x x e x x →→-=01lim11xx e →⋅= 四、求下面函数的导数、微分或不定积分 1、x)y =; 略2、1arcsin arctan 2t y t=+,求dy 略3、2cos x y e x =解:y '=222cos sin xxe x e x -=2(2cos sin )x e x x -4、053=-+x y exy,求dy()xyxyxy xe y ye y y y y x y e +-='⇒=-'+'+22350535、已知2ln(1)ln y x x =+-,求dy解:因为y '=2211x x x -+所以dy =221d (1)x x x x -+ 6、求不定积分21xdx x -⎰解:21x dx x -⎰=211dx x x ⎡⎤-=⎢⎥⎣⎦⎰211d d x x x x -⎰⎰=1ln x C x--+ 五、解答1.求函数()ln(21)f x x =-+的定义域解:290x ->且210x ->,所以函数()ln(21)f x x =-的定义域:132x << 2. 欲做一个体积为72立方厘米的带盖箱子,其底面长方形的两边成一比二的关系,怎样做法所用的材料最省?解:设底面长方形的两边的边长为x 厘米,x 2厘米,则高为2362.72xx x =厘米表面积x x x x x x x x S 21642).36.2(2).36.(2).2.(222+=++=求导 021682,=-=xx S 所以在区间),0(+∞上只有唯一的驻点3=x又因为在实际问题中存在最值,所以驻点3=x 就是所求的最值点。
大学文科高等数学教材答案

大学文科高等数学教材答案第一章:函数与极限1. 题目一:求函数的极限解答:在数学中,我们经常需要求解函数在某一点的极限。
以函数$f(x)$为例,当$x$无限接近某一实数$a$时,我们想要求出$f(x)$的极限值。
可以表示为:$$\lim_{x\to a}f(x)$$其中,$\lim$代表极限的意思。
对于常见的函数,我们可以用一些基本的极限公式来计算。
2. 题目二:求函数的导数解答:在微积分中,函数的导数是描述函数变化率的重要工具。
对于函数$f(x)$,它的导数表示为$f'(x)$或者$\frac{df(x)}{dx}$。
导数的计算可以使用多种方法,如求导法则、链式法则等。
3. 题目三:求函数的积分解答:函数的积分是导数的逆运算,可以用于求解函数曲线下的面积、求解定积分等问题。
对于函数$f(x)$,它的不定积分表示为$\int f(x)dx$,定积分表示为$\int_{a}^{b}f(x)dx$。
第二章:微分学1. 题目一:求解微分方程解答:微分方程是描述自变量和其导数之间关系的方程。
常见的微分方程类型包括常微分方程和偏微分方程。
求解微分方程可以使用分离变量法、常数变易法、欧拉法等方法。
2. 题目二:泰勒展开解答:泰勒展开是一种将函数在某一点附近展开成无穷级数的方法。
通常,我们可以使用泰勒展开来近似计算函数的值。
对于函数$f(x)$,其在$x=a$处的泰勒展开公式为:$$f(x)=f(a)+f'(a)(x-a)+\frac{f''(a)}{2!}(x-a)^2+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^n+R_n(x)$$其中,$f'(a)$表示$f(x)$在$x=a$处的导数,$R_n(x)$为泰勒余项。
第三章:积分学1. 题目一:定积分的计算解答:定积分是对函数在一定区间上的积分运算。
求解定积分可以使用简单的几何方法,也可以使用牛顿-莱布尼茨公式、换元积分法等方法。
高等数学文科类教材答案

高等数学文科类教材答案一、导数与微分1.1 导数的定义及性质1.1.1 导数的定义导数的定义是:设函数f(x)在点x_0的某个邻域内有定义,则称函数f(x)在点x_0处可导,如果极限lim_(Δx→0) [f(x_0+Δx)-f(x_0)]/Δx存在。
若该极限存在,则称该极限为函数f(x)在点x_0处的导数,记为f'(x_0)。
具体表达式为:f'(x_0)=lim_(Δx→0) [f(x_0+Δx)-f(x_0)]/Δx。
1.1.2 导数的性质导数具有以下性质:- 若函数f(x)在点x_0处可导,则函数f(x)在点x_0处连续;- 若函数f(x)在点x_0处可导,则函数f(x)在点x_0的邻域内具有局部线性近似性质,即函数f(x)在点x_0处可通过一条斜率为f'(x_0)的切线局部近似;- 若函数f(x)在点x_0处可导,则函数f(x)在点x_0的邻域内单调性与导数正负性质一致;- 若函数f(x)在点x_0处可导,则函数f(x)在点x_0处的切线方程为y=f'(x_0)(x-x_0)+f(x_0)。
1.1.3 常见函数导数- 常数函数的导数为0,即d/dx(c)=0,其中c为常数;- 幂函数的导数为幂函数的导数,即d/dx(x^n) = nx^(n-1),其中n为正整数;- 指数函数的导数为自身的导数,即d/dx(a^x) = ln(a)*a^x,其中a为正实数且a≠1;- 对数函数的导数为自身导数的倒数,即d/dx(log_a x) =1/(ln(a)*x),其中a为正实数且a≠1;1.2 微分的定义及应用1.2.1 微分的定义微分的定义是:设函数y=f(x)在点x_0的某个邻域内有定义,当自变量x在x_0处发生增量Δx时,函数增量为Δy=f(x_0+Δx)-f(x_0),则称Δy是函数y=f(x)在点x_0处的微分。
具体表达式为:dy=f`(x_0)dx1.2.2 微分的应用微分在实际问题中有广泛的应用,例如:- 利用微分可以进行近似计算,例如可以利用微分计算较小增量下函数值的变化情况;- 微分可以帮助求极值,通过分析函数的单调性和导数的变化可以确定函数的最大值和最小值;- 在物理学中,微分可以用于描述质点在某个瞬间的运动情况,例如速度和加速度等。
历年高考文科数学真题汇编+答案解析(1):集合、复数、框图、简单逻辑、推理、平面向量、不等式与线性规划

A. {0}
B. {1}
【解析】∵ A {x | x 1} ,∴ A B {1,2} .
C. {1, 2}
D. {0,1, 2}
【答案】C
7(2017 全国 I 卷文 1)已知集合 A= x|x 2 ,B=x|3 2x 0 ,则
A.
A
B=
x|x
3
2
B. A B
C.
A
B
x|x
a
|
0、| b
|
0
.
5π
D.
6
∵
(a
b)
b
,∴
(a
b)
b
a
b
|
b
|2
0
,即
a
b
|
b
|2
.
设
a
与b
之间的夹角为
,则
cos
|
aa||bb
|
|
|b |2 a || b
|
| |
ba
| |
,∵ |
a
|
2|
b
| ,∴
cos
1 2
.
∵ 0 π ,∴ π . 3
【答案】B 3.(2019 全国 II 卷文 3)已知向量 a=(2,3),b=(3,2),则|a-b|=
【解析】 (1 i)(2 i) 3 i .
C. 3 i D. 3 i
【答案】D 7.(2017 全国 I 卷文 3)下列各式的运算结果为纯虚数的是
A. i(1 i)2
B. i2 (1 i)
C. (1 i)2
D. i(1 i)
【解析】A: i(1 i)2 i 2i 2 ,B: i2 (1 i) (1 i) i 1,
统计、概率-全国各地文科数学高考试题汇总 知识点总结(近5年)
全国各地文科数学(统计、概率)高考试题汇总(近5年)知识点归纳1 事件的定义:随机事件;必然事件;不可能事件2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率mn总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A .3、等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n,这种事件叫等可能性事件,其事件A 的概率()mP A n=4、互斥事件的概念:不可能同时发生的个事件叫做互斥事件 A 、B 互斥,即事件A 、B 不可能同时发生,这时P(A •B)=0)P(A+B)=P (A )+ P(B)。
若事件A 与B 不是互斥,运用P (A+B )=1-P (A B •)进行计算5、对立事件的概念:事件A和事件B 必有一个发生的互斥事件 A 、B 对立,即事件A 、B 不可能同时发生,但A 、B 中必然有一个发生,()()A P A p -=1 6、事件的和的意义:事件A 、B 的和记作A +B ,表示事件A 、B 至少有一个发生 当A 、B 为互斥事件时,事件A +B 是由“A 发生而B 不发生”以及“B 发生而A 不发生”构成的, 因此当A 和B 互斥时,事件A +B 的概率满足加法公式:P (A +B )=P (A )+P (B )(A 、B 互斥),且有P (A +A )=P (A )+P (A )=17、相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立相互独立事件同时发生的概率:()()()P A B P A P B ⋅=⋅8、独立重复试验的定义:在同样条件下进行的各次之间相互独立的一种试验独立重复试验的概率公式:如果在一次试验中某事件发生的概率是p,那么在n 次独立重复试验中这个事恰好发生K 次的概率n k k n n P P C k P --=)1()( 表示事件A在n 次独立重复试验中恰好发生了.....k .次.的概率 9、解答概率问题的三个步骤:(1)确定事件的性质:事件是等可能,互斥,独立还是重复独立事件; (2)判断事件的运算:所求事件是由哪些基本事件通过怎样运算而得;(3)运用公式计算其事件的概率:等可能事件:()mP A n=,独立事件:()()()P A B P A P B ⋅=⋅互斥事件: P (A +B )=P (A )+P (B ),对立事件:P (A )=1-P (A )2011山东18.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女。
大学文科数学试题(附答案)精选全文完整版
大学文科数学试题(附答案)一、 判断题(对画“√”,错画“×”, 共6题,每题3分,共18分)1.任意修改收敛数列{}n a 的前100项,数列{}n a 仍收敛,且极限不变. ( )2.若0lim[()()]0x x f x g x →−=,则必有00lim ()lim ()x x x x f x g x →→=. ( )3.函数()f x 在某个区间上的极大值一定大于极小值. ( )4.当0→x 时,无穷小量34x x −+是关于x 的4阶无穷小量. ( )5.概率的公理化定义虽然不能用来直接确定事件的概率,但它给了概率所必须满足 的最基本规律,为建立严格的概率理论提供了坚实的基础. ( )6.微分方程xyx y dx dy tan +=的通解是Cx x y =sin . ( ) 二、填空题(共6题,每题3分,共18分)1.已知(sin )cos 12x f x =+,则(cos )2xf =___________.2.直线L 与x 轴平行且与曲线y x e x=−相切,则切点坐标为_____________.3.已知()f x 的一个原函数是2x e −,则'()=xf x dx ⎰________________________.4.利用定积分的几何意义,计算0=⎰_________(0)a >,这个结果表示的是________________________的面积.5.函数1xy x =的极大值点是 ,极大值为 .6.三台机器在一天内正常工作的概率分别为:第一台0.9,第二台0.7,第三台0.6,且它们发生故障是相互独立的,则三台机器同时发生故障的概率________. 三、计算题(要求有计算过程,共6题,每题4分,共24分)1.102030(1)(35)lim (611)n n n n →∞−+−;2.301lim sin 3x x x →+;3.152lim ()1xx x x −→+∞++; 4. 设()y y x =是方程cos()0x y e xy +−=所确定的隐函数,求0x dy =;5.; 6.dxxee⎰1|ln|.四、应用题(共3题,第1题7分,第2题8分,第3题10分,共25分)1.把长度为l的线段分成两段,分别围成正方形和圆形,问如何分该线段可以使得正方形和圆的面积之和最小(即求此时正方形的周长和圆的周长)?2.求曲线3(03)y x x=≤≤分别绕x轴和y轴旋转所得到的旋转体的体积.3.甲、乙、丙三个分厂生产同一批次规格相同的灯管,产量之比为1:2:1.已知甲、乙、丙三个分厂产品的合格率依次是0.93,0.92,0.98.现任取一灯管,求(1) 取到不合格灯管的概率;(2) 若取到不合格灯管,求它是由乙分厂生产的概率.五、问答题(共3题,每题5分,共15分)1.叙述函数)(xfy=在],[ba上的拉格朗日中值定理的作用与几何意义,并画出几何示意图.2.简述古典概型的特点,并举一个古典概型在教育系统的应用实例.3.微分方程研究的内容是什么?举几个微分方程在现实应用中的成功实例.大学文科数学试题 答案一、判断题(对画“√”,错画“×”, 共6题,每题3分,共18分) 1.√ 2.× 3.× 4.× 5.√ 6.√ 二、填空题(共6题,每题3分,共18分)1.22sin 2x; 2. ()01,−; 3.22(21)x x e C −−++; 4. 24a π,半径为a 的四分之一的圆的面积; 5. 1,ee e ; 6. 0.012.三、计算题(要求有计算过程, 共6题,每题4分,共24分)1. 203036;2. 16; 3. 5e −; 4. dx −;5. ln 1|C −+;6. 22e−.四、应用题(共3题,第1题7分,第2题8分,第3题10分,共25分) 1. 正方形的周长为44lπ+,圆的周长为4l ππ+. 2.(1)3326021877x V y dx x dx πππ===⎰⎰; (2)22727237295y V x dy y dy πππ===⎰⎰. 3.(1)令B 为任取一件为不合格灯管,i A 分别为任取一件为甲、乙、丙分厂生产的灯管1,2,3i =, 则由全概率公式得)(B P =31()(|)i i i P A p B A ==∑0.250.070.50.080.250.020.0625⨯+⨯+⨯=.(2)利用贝叶斯公式 31()()(|)(|)()()(|)i i i i i i i P A B P A P B A P A B P B P A P B A ===∑, 1,2,3i =. 计算得2(|)P A B =0.50.08=64%0.0625⨯.五、问答题(共3题,每题5分,共15分)1.拉格朗日中值定理是联系函数局部性质与整体性质的纽带.其几何意义是:联结两点的一条光滑曲线上至少存在一条切线与这两点的连线平行(示意图从略).2. 古典概型的特点是:有限性(每次试验有有限个样本点);等可能性(每次试验,每个样本点出现的可能性相同).例如,主考教师从装有n道题的袋中随机抽一题进行测试,就属于古典概型.3. 微分方程研究含有未知函数的导数或微分的方程,然后从中求得这个未知函数.19世纪,天文学家利用微分方程发现海王星,20世纪,科学家利用微分方程推断出阿尔卑斯山肌肉丰满的冰人的遇难时间,如今微分方程更是广泛用于预测人口数量,进行天气预报等方面,这些都是微分方程的成功应用实例.。
全国普通高等学校招生统一考试文科数学带解析
全国普通高等学校招生统一考试文科数学(带解析)一、选择题1.已知集合{1,0,1}A =-,{|11}B x x =-≤<,则AB =() (A ){0}(B ){1,0}-(C ){0,1}(D ){1,0,1}-【难度】1【考点】集合的运算【答案】B【解析】因为1,0,1,B B B -∈∈∉所以{}1,0AB =-. 2.设,,a b c R ∈,且a b >,则()(A )ac bc >(B )11a b <(C )22a b >(D )33a b > 【难度】1【考点】不等式的性质【答案】D【解析】排除法,取0c =,则ac bc =,故A 错误;取1,1a b ==-,则11a b>,22a b =,故B ,C 错误;选D. 3.下列函数中,既是偶函数又在区间(0,)+∞上单调递减的是()(A )1y x = (B) x y e -=(C )21y x =-+ (D) lg ||y x =【难度】1【考点】函数综合【答案】C【解析】 y=1x是奇函数,y=e3 是非奇非偶函数, y=x2+1既是偶函数又在区间(0,+ ∞)上单调递减,y=lg ∣x ∣是偶函数,在(0,+ ∞)上单调递增.解答本题也可以借助图象,利用数形结合解决.4.在复平面内,复数(2)i i -对应的点位于()(A )第一象限(B )第二象限(C )第三象限(D )第四象限【难度】1【考点】复数综合运算【答案】A【解析】复数i (2i )=2i+1对应的点为()1,2,在第一象限.5.在ABC ∆中,3a =,5b =,1sin 3A =,则sin B=() (A )15(B )59(C )5(D )1 【难度】2【考点】解斜三角形【答案】 B【解析】由正弦定理,得15sin 53sin 39b A B a ⨯===,选B. 6.执行如图所示的程序框图,输出的S 值为()(A )1(B )23(C )1321(D )610987 【难度】2【考点】算法和程序框图【答案】C【解析】第一次执行循环:1122113S +==⨯+,1i =; 第二次执行循环:221133221213S ⎛⎫+ ⎪⎝⎭==⨯+,2i =,满足i ≥2,结束循环,输出1321S =. 7.双曲线221y x m -=的充分必要条件是() (A )12m >(B )1m ≥(C )1m >(D )2m > 【难度】2 【考点】双曲线【答案】C【解析】由双曲线的方程可知,21,,a b m c ===,>1m >.8.如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点,P 到各顶点的距离的不同取值有()A(A )3个(B )4个(C )5个(D )6个【难度】2【考点】点线面的位置关系【答案】B【解析】设正方体的棱长为3,计算得''3PA PC PD ===,'6PA PC PB ===,3PB =,'23PD =,故P 到各顶点的距离的不同取值有4个.二、填空题9.若抛物线22y px =的焦点坐标为(1,0),则p =____;准线方程为_____. 【难度】1【考点】抛物线【答案】2,1x =-【解析】由12p x ==,得2p =, 其准线方程为12p x =-=-. 10.某四棱锥的三视图如图所示,该四棱锥的体积为__________.【难度】1【考点】空间几何体的三视图与直观图【答案】3【解析】该四棱锥的底面是一个边长为3的正方形,高为1, 故该棱锥的体积为213133⨯⨯=. 11.若等比数列{}n a 满足2420a a +=,3540a a +=,则公比q =__________;前n 项n S =_____. 【难度】2【考点】等比数列【答案】2,()421n -【解析】 352440220a a q a a +===+, 由()22411220a a a +=+=,解得14a =,故()()41242112n n nS -==--. 12.设D 为不等式组0,20,30x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为___________.【难度】2【考点】线性规划【解析】画出不等式组0,20,30x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩表示的平面区域D ,如图所示.点()1,0到直线20x y -=5=.13.函数12log ,1()2,1x x x f x x ≥⎧⎪=⎨⎪<⎩的值域为_________.【难度】2【考点】分段函数,抽象函数与复合函数【答案】(),2-∞【解析】当1x ≥时,()12log 0f x x =≤;当1x <时,()()20,2x f x =∈,故函数的值域为(),2-∞.14.已知点(1,1)A -,(3,0)B ,(2,1)C ,若平面区域D 由所有满足AP AB AC λμ=+(12λ≤≤,01μ≤≤)的点P 组成,则D 的面积为__________.【难度】3【考点】线性规划【答案】3【解析】()2,1AB =,()1,2AC =,()()()2,11,22,2AP AB AC λμλμλμλμ=+=+=++,设(),P x y ,则()1,1AP x y =-+,所以12,12,x y λμλμ-=+⎧⎨+=+⎩即23,323.3y x x y μλ-+⎧=⎪⎪⎨--⎪=⎪⎩因为12λ≤≤,01μ≤≤, 所以23013y x -+≤≤且23123x y --≤≤,即230,20,260,290.x y x y x y x y --≤⎧⎪-≥⎪⎨--≥⎪⎪--≤⎩ 画出平面区域,如下图所示,||5CD =,E 到直线230x y --=的距离为5, 故四边形BDCE 的面积为3.三、解答题15.已知函数21()(2cos 1)sin 2cos 42f x x x x =-+(Ⅰ)求()f x 的最小正周期及最大值; (Ⅱ)若(,)2παπ∈,且2()2f α=,求α的值. 【难度】3 【考点】三角函数综合【答案】(Ⅰ)2(Ⅱ)916πα= 【解析】 (Ⅰ),因为()()212cos 1sin 2cos 42f x x x x =-+ 1cos 2sin 2cos 42x x x =+()1sin 4cos 42x x =+ 2sin(4)24x π=+ 所以()f x 的最小正周期为2π,最大值为2. 因为(,)2παπ∈,所以9174(,)444πππα+∈. 因为2()f α=,所以22()sin(4)4f παα=+=,即sin(4)14πα+=. 所以5442ππα+=,故916πα=. 16.下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月15日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)【难度】3【考点】概率综合【答案】(Ⅰ)613(Ⅱ)413(Ⅲ)从3月5日开始连续三天的空气质量指数方差最大 【解析】(Ⅰ)在3月1日至3月13日这13天中,1日,2日,3日,7日,12日,13日共6天的空气质量优良,所以此人到达当日空气质量优良的概率为613。
高考文科数学大题解析全
高考文科数学一轮复习大题篇----导数的综合应用【归类解析】题型一 证明不等式【解题指导】 (1)证明f (x )>g (x )的一般方法是证明h (x )=f (x )-g (x )>0(利用单调性),特殊情况是证明f (x )min >g (x )max (最值方法),但后一种方法不具备普遍性.(2)证明二元不等式的基本思想是化为一元不等式,一种方法为变换不等式使两个变元成为一个整体,另一种方法为转化后利用函数的单调性,如不等式f (x 1)+g (x 1)<f (x 2)+g (x 2)对x 1<x 2恒成立,即等价于函数h (x )=f (x )+g (x )为增函数. 【例】设函数f (x )=ln x -x +1. (1)讨论f (x )的单调性;(2)证明:当x ∈(1,+∞)时,1<x -1ln x <x .(1)解 由题设知,f (x )的定义域为(0,+∞), f ′(x )=1x-1,令f ′(x )=0,解得x =1.当0<x <1时,f ′(x )>0,f (x )单调递增;当x >1时,f ′(x )<0,f (x )单调递减. (2)证明 由(1)知,f (x )在x =1处取得极大值也为最大值,最大值为f (1)=0. 所以当x ≠1时,ln x <x -1.故当x ∈(1,+∞)时,ln x <x -1,ln 1x <1x -1,即1<x -1ln x<x .【训练】已知函数f (x )=x ln x -e x +1. (1)求曲线y =f (x )在点(1,f (1))处的切线方程; (2)证明:f (x )<sin x 在(0,+∞)上恒成立. (1)解 依题意得f ′(x )=ln x +1-e x ,又f (1)=1-e ,f ′(1)=1-e ,故所求切线方程为y -1+e =(1-e)(x -1),即y =(1-e)x . (2)证明 依题意,要证f (x )<sin x , 即证x ln x -e x +1<sin x , 即证x ln x <e x +sin x -1.当0<x ≤1时,e x +sin x -1>0,x ln x ≤0, 故x ln x <e x +sin x -1,即f (x )<sin x .当x >1时,令g (x )=e x +sin x -1-x ln x , 故g ′(x )=e x +cos x -ln x -1. 令h (x )=g ′(x )=e x +cos x -ln x -1, 则h ′(x )=e x -1x -sin x ,当x >1时,e x -1x >e -1>1,所以h ′(x )=e x -1x -sin x >0,故h (x )在(1,+∞)上单调递增.故h (x )>h (1)=e +cos 1-1>0,即g ′(x )>0, 所以g (x )在(1,+∞)上单调递增, 所以g (x )>g (1)=e +sin 1-1>0, 即x ln x <e x +sin x -1,即f (x )<sin x . 综上所述,f (x )<sin x 在(0,+∞)上恒成立. 题型二 不等式恒成立或有解问题【解题指导】 利用导数解决不等式的恒成立问题的策略 (1)首先要构造函数,利用导数求出最值,求出参数的取值范围. (2)也可分离变量,构造函数,直接把问题转化为函数的最值问题. 【例】已知函数f (x )=1+ln xx.(1)若函数f (x )在区间⎝⎛⎭⎫a ,a +12上存在极值,求正实数a 的取值范围; (2)如果当x ≥1时,不等式f (x )≥kx +1恒成立,求实数k 的取值范围.【解】 (1)函数的定义域为(0,+∞), f ′(x )=1-1-ln x x 2=-ln xx2, 令f ′(x )=0,得x =1.当x ∈(0,1)时,f ′(x )>0,f (x )单调递增; 当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.所以x =1为函数f (x )的极大值点,且是唯一极值点, 所以0<a <1<a +12,故12<a <1,即实数a 的取值范围为⎝⎛⎭⎫12,1. (2)当x ≥1时,k ≤x +11+ln xx 恒成立,令g (x )=x +11+ln xx (x ≥1),则g ′(x )=⎝⎛⎭⎫1+ln x +1+1x x -x +11+ln xx 2=x -ln xx2.再令h (x )=x -ln x (x ≥1),则h ′(x )=1-1x ≥0,所以h (x )≥h (1)=1,所以g ′(x )>0,所以g (x )为单调增函数,所以g (x )≥g (1)=2, 故k ≤2,即实数k 的取值范围是(-∞,2].【训练】已知函数f (x )=ax +ln x ,x ∈[1,e],若f (x )≤0恒成立,求实数a 的取值范围. 【解】 ∵f (x )≤0,即ax +ln x ≤0对x ∈[1,e]恒成立, ∴a ≤-ln xx,x ∈[1,e].令g (x )=-ln xx ,x ∈[1,e],则g ′(x )=ln x -1x 2,∵x ∈[1,e],∴g ′(x )≤0,∴g (x )在[1,e]上单调递减, ∴g (x )min =g (e)=-1e ,∴a ≤-1e .∴实数a 的取值范围是⎝⎛⎦⎤-∞,-1e . 题型三 求函数零点个数【解题指导】 (1)可以通过构造函数,将两曲线的交点问题转化为函数零点问题. (2)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断方程根的情况.【例】设函数f (x )=12x 2-m ln x ,g (x )=x 2-(m +1)x ,当m ≥1时,讨论f (x )与g (x )图象的交点个数.【解】 令F (x )=f (x )-g (x ) =-12x 2+(m +1)x -m ln x ,x >0,问题等价于求函数F (x )的零点个数. F ′(x )=-x -1x -mx ,当m =1时,F ′(x )≤0,函数F (x )为减函数, 注意到F (1)=32>0,F (4)=-ln 4<0,所以F (x )有唯一零点.当m >1时,若0<x <1或x >m ,则F ′(x )<0; 若1<x <m ,则F ′(x )>0,所以函数F (x )在(0,1)和(m ,+∞)上单调递减,在(1,m )上单调递增, 注意到F (1)=m +12>0,F (2m +2)=-m ln(2m +2)<0,所以F (x )有唯一零点.综上,函数F (x )有唯一零点,即两函数图象总有一个交点. 【训练】设函数f (x )=ln x +mx,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3的零点的个数.【解】 (1)由题设,当m =e 时,f (x )=ln x +ex ,则f ′(x )=x -ex2(x >0),由f ′(x )=0,得x =e.∴当x ∈(0,e)时,f ′(x )<0,f (x )在(0,e)上单调递减, 当x ∈(e ,+∞)时,f ′(x )>0,f (x )在(e ,+∞)上单调递增, ∴当x =e 时,f (x )取得极小值f (e)=ln e +ee =2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x ≥0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增; 当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图象(如图),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.题型四 根据函数零点情况求参数范围【解题指导】 函数的零点个数可转化为函数图象的交点个数,确定参数范围时要根据函数的性质画出大致图象,充分利用导数工具和数形结合思想.【例】已知函数f (x )=2ln x -x 2+ax (a ∈R ).若函数g (x )=f (x )-ax +m 在⎣⎡⎦⎤1e ,e 上有两个零点,求实数m 的取值范围. 【解】 g (x )=2ln x -x 2+m , 则g ′(x )=2x-2x =-2x +1x -1x.因为x ∈⎣⎡⎦⎤1e ,e ,所以当g ′(x )=0时,x =1. 当1e ≤x <1时,g ′(x )>0;当1<x ≤e 时,g ′(x )<0. 故g (x )在x =1处取得极大值g (1)=m -1. 又g ⎝⎛⎭⎫1e =m -2-1e 2,g (e)=m +2-e 2, g (e)-g ⎝⎛⎭⎫1e =4-e 2+1e 2<0,则g (e)<g ⎝⎛⎭⎫1e , 所以g (x )在⎣⎡⎦⎤1e ,e 上的最小值是g (e). g (x )在⎣⎡⎦⎤1e ,e 上有两个零点的条件是⎩⎪⎨⎪⎧g 1=m -1>0,g ⎝⎛⎭⎫1e =m -2-1e 2≤0,解得1<m ≤2+1e 2, 所以实数m 的取值范围是⎝⎛⎦⎤1,2+1e 2. 【训练】已知函数f (x )=x ln x ,g (x )=-x 2+ax -3(a 为实数),若方程g (x )=2f (x )在区间⎣⎡⎦⎤1e ,e 上有两个不等实根,求实数a 的取值范围. 【解】 由g (x )=2f (x ),可得2x ln x =-x 2+ax -3,a =x +2ln x +3x ,设h (x )=x +2ln x +3x (x >0),所以h ′(x )=1+2x -3x2=x +3x -1x 2.所以x 在⎣⎡⎦⎤1e ,e 上变化时,h ′(x ),h (x )的变化情况如下:x ⎝⎛⎭⎫1e ,11 (1,e) h ′(x ) - 0 +h (x )极小值又h ⎝⎛⎭⎫1e =1e +3e -2,h (1)=4,h (e)=3e +e +2. 且h (e)-h ⎝⎛⎭⎫1e =4-2e +2e<0. 所以h (x )min =h (1)=4,h (x )max =h ⎝⎛⎭⎫1e =1e +3e -2, 所以实数a 的取值范围为4<a ≤e +2+3e ,即a 的取值范围为⎝⎛⎦⎤4,e +2+3e .专题突破训练1.已知函数f (x )=ln x +x ,g (x )=x ·e x -1,求证:f (x )≤g (x ). 【证明】 令F (x )=f (x )-g (x )=ln x +x -x e x +1(x >0), 则F ′(x )=1x +1-e x -x e x =1+x x -(x +1)e x=(x +1)⎝⎛⎭⎫1x -e x .令G (x )=1x -e x ,可知G (x )在(0,+∞)上为减函数,且G ⎝⎛⎭⎫12=2-e>0,G (1)=1-e<0,∴存在x 0∈⎝⎛⎭⎫12,1,使得G (x 0)=0,即1x 0-0e x =0. 当x ∈(0,x 0)时,G (x )>0,∴F ′(x )>0,F (x )为增函数; 当x ∈(x 0,+∞)时,G (x )<0, ∴F ′(x )<0,F (x )为减函数. ∴F (x )≤F (x 0)=ln x 0+x 0-x 00e x+1,又∵1x 0-0e x =0,∴1x 0=0e x,即ln x 0=-x 0,∴F (x 0)=0,即F (x )≤0,∴f (x )≤g (x ).2.已知f (x )=e x -ax 2,若f (x )≥x +(1-x )·e x 在[0,+∞)恒成立,求实数a 的取值范围. 【解】 f (x )≥x +(1-x )e x ,即e x -ax 2≥x +e x -x e x , 即e x -ax -1≥0,x ≥0.令h (x )=e x -ax -1(x ≥0),则h ′(x )=e x -a (x ≥0), 当a ≤1时,由x ≥0知h ′(x )≥0, ∴h (x )≥h (0)=0,原不等式恒成立. 当a >1时,令h ′(x )>0,得x >ln a ; 令h ′(x )<0,得0≤x <ln a . ∴h (x )在[0,ln a )上单调递减, 又∵h (0)=0,∴h (x )≥0不恒成立, ∴a >1不合题意.综上,a 的取值范围为(-∞,1].3.已知函数f (x )=ax -e x (a ∈R ),g (x )=ln x x .(1)求函数f (x )的单调区间;(2)∃x ∈(0,+∞),使不等式f (x )≤g (x )-e x 成立,求a 的取值范围. 【解】 (1)因为f ′(x )=a -e x ,x ∈R . 当a ≤0时,f ′(x )<0,f (x )在R 上单调递减; 当a >0时,令f ′(x )=0,得x =ln a .由f ′(x )>0,得f (x )的单调递增区间为(-∞,ln a ); 由f ′(x )<0,得f (x )的单调递减区间为(ln a ,+∞).综上所述,当a ≤0时,f (x )的单调递减区间为(-∞,+∞),无单调递增区间; 当a >0时,f (x )的单调递增区间为(-∞,ln a ),单调递减区间为(ln a ,+∞). (2)因为∃x ∈(0,+∞),使不等式f (x )≤g (x )-e x ,则ax ≤ln x x ,即a ≤ln xx 2.设h (x )=ln xx 2,则问题转化为a ≤⎝⎛⎭⎫ln x x 2max , 由h ′(x )=1-2ln xx 3,令h ′(x )=0,得x = e. 当x 在区间(0,+∞)内变化时,h ′(x ),h (x )随x 变化的变化情况如下表:由上表可知,当x =e 时,函数h (x )有极大值,即最大值为12e ,所以a ≤12e .故a 的取值范围是⎝⎛⎦⎤-∞,12e . 4.设函数f (x )=ax 2-x ln x -(2a -1)x +a -1(a ∈R ).若对任意的x ∈[1,+∞),f (x )≥0恒成立,求实数a 的取值范围.【解】 f ′(x )=2ax -1-ln x -(2a -1)=2a (x -1)-ln x (x >0), 易知当x ∈(0,+∞)时,ln x ≤x -1, 则f ′(x )≥2a (x -1)-(x -1)=(2a -1)(x -1). 当2a -1≥0,即a ≥12时,由x ∈[1,+∞)得f ′(x )≥0恒成立,f (x )在[1,+∞)上单调递增,f (x )≥f (1)=0,符合题意.当a ≤0时,由x ∈[1,+∞)得f ′(x )≤0恒成立,f (x )在[1,+∞)上单调递减, f (x )≤f (1)=0,显然不合题意,a ≤0舍去.当0<a <12时,由ln x ≤x -1,得ln 1x ≤1x -1,即ln x ≥1-1x,则f ′(x )≤2a (x -1)-⎝⎛⎭⎫1-1x =⎝⎛⎭⎫x -1x (2ax -1), ∵0<a <12,∴12a>1.当x ∈⎣⎡⎦⎤1,12a 时,f ′(x )≤0恒成立, ∴f (x )在⎣⎡⎭⎫1,12a 上单调递减, ∴当x ∈⎣⎡⎭⎫1,12a 时,f (x )≤f (1)=0, 显然不合题意,0<a <12舍去.综上可得,a ∈⎣⎡⎭⎫12,+∞.5.已知函数f (x )为偶函数,当x ≥0时,f (x )=2e x ,若存在实数m ,对任意的x ∈[1,k ](k >1),都有f (x +m )≤2e x ,求整数k 的最小值.【解】 因为f (x )为偶函数,且当x ≥0时,f (x )=2e x , 所以f (x )=2e |x |,对于x ∈[1,k ],由f (x +m )≤2e x 得2e |x+m |≤2e x ,两边取以e 为底的对数得|x +m |≤ln x +1,所以-x -ln x -1≤m ≤-x +ln x +1在[1,k ]上恒成立, 设g (x )=-x +ln x +1(x ∈[1,k ]), 则g ′(x )=-1+1x =1-xx ≤0,所以g (x )在[1,k ]上单调递减, 所以g (x )min =g (k )=-k +ln k +1,设h (x )=-x -ln x -1(x ∈[1,k ]),易知h (x )在[1,k ]上单调递减, 所以h (x )max =h (1)=-2,故-2≤m ≤-k +ln k +1, 若实数m 存在,则必有-k +ln k ≥-3,又k >1,且k 为整数,所以k =2满足要求,故整数k 的最小值为2. 7.已知函数f (x )=a +x ·ln x (a ∈R ),试求f (x )的零点个数. 【解】 f ′(x )=(x )′ln x +x ·1x =x ln x +22x ,令f ′(x )>0,解得x >e -2,令f ′(x )<0,解得0<x <e -2, 所以f (x )在(0,e -2)上单调递减, 在(e -2,+∞)上单调递增. f (x )min =f (e -2)=a -2e,显然当a >2e 时,f (x )min >0,f (x )无零点,当a =2e 时,f (x )min =0,f (x )有1个零点,当a <2e 时,f (x )min <0,f (x )有2个零点.8.已知f (x )=1x +e x e -3,F (x )=ln x +e xe -3x +2.(1)判断f (x )在(0,+∞)上的单调性; (2)判断函数F (x )在(0,+∞)上零点的个数. 【解】 (1)f ′(x )=-1x 2+e x e =x 2e x -ee x 2,令f ′(x )>0,解得x >1,令f ′(x )<0,解得0<x <1, 所以f (x )在(0,1)上单调递减, 在(1,+∞)上单调递增. (2)F ′(x )=f (x )=1x +e xe -3,由(1)得∃x 1,x 2,满足0<x 1<1<x 2,使得f (x )在(0,x 1)上大于0,在(x 1,x 2)上小于0,在(x 2,+∞)上大于0, 即F (x )在(0,x 1)上单调递增,在(x 1,x 2)上单调递减,在(x 2,+∞)上单调递增, 而F (1)=0,x →0时,F (x )→-∞, x →+∞时,F (x )→+∞,画出函数F (x )的草图,如图所示.故F (x )在(0,+∞)上的零点有3个.9.已知函数f (x )=13x 3-12x 2-2x +c 有三个零点,求实数c 的取值范围.【解】 f ′(x )=x 2-x -2=(x +1)(x -2), 由f ′(x )>0可得x >2或x <-1, 由f ′(x )<0可得-1<x <2,所以函数f (x )在(-∞,-1),(2,+∞)上是增函数, 在(-1,2)上是减函数,所以函数f (x )的极大值为f (-1)=76+c ,极小值为f (2)=c -103.而函数f (x )恰有三个零点,故必有⎩⎨⎧76+c >0,c -103<0,解得-76<c <103,所以使函数f (x )恰有三个零点的实数c 的取值范围是⎝⎛⎭⎫-76,103. 10.已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e 2x(x >0). (1)若g (x )=m 有零点,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根.【解】 (1)∵g (x )=x +e 2x ≥2e 2=2e(x >0),当且仅当x =e 2x 时取等号,∴当x =e 时,g (x )有最小值2e.∴要使g (x )=m 有零点,只需m ≥2e. 即当m ∈[2e ,+∞)时,g (x )=m 有零点.(2)若g (x )-f (x )=0有两个相异实根,则函数g (x )与f (x )的图象有两个不同的交点. 如图,作出函数g (x )=x +e 2x(x >0)的大致图象.∵f (x )=-x 2+2e x +m -1 =-(x -e)2+m -1+e 2, ∴其对称轴为x =e , f (x )max =m -1+e 2.若函数f (x )与g (x )的图象有两个交点,则m -1+e 2>2e ,即当m >-e 2+2e +1时,g (x )-f (x )=0有两个相异实根.∴m 的取值范围是(-e 2+2e +1,+∞).11.已知函数f (x )=(3-a )x -2ln x +a -3在⎝⎛⎭⎫0,14上无零点,求实数a 的取值范围. 【解】 当x 从0的右侧趋近于0时,f (x )→+∞, 所以f (x )<0在⎝⎛⎭⎫0,14上恒成立不可能. 故要使f (x )在⎝⎛⎭⎫0,14上无零点,只需对任意的x ∈⎝⎛⎭⎫0,14,f (x )>0恒成立,即只需当x ∈⎝⎛⎭⎫0,14时,a >3-2ln xx -1恒成立.令h (x )=3-2ln xx -1,x ∈⎝⎛⎭⎫0,14, 则h ′(x )=2ln x +2x-2x -12,再令m (x )=2ln x +2x -2,x ∈⎝⎛⎭⎫0,14, 则m ′(x )=-21-x x 2<0,于是在⎝⎛⎭⎫0,14上, m (x )为减函数,故m (x )>m ⎝⎛⎭⎫14=6-4ln 2>0, 所以h ′(x )>0在⎝⎛⎭⎫0,14上恒成立, 所以h (x )在⎝⎛⎭⎫0,14上为增函数, 所以h (x )<h ⎝⎛⎭⎫14在⎝⎛⎭⎫0,14上恒成立. 又h ⎝⎛⎭⎫14=3-163ln 2, 所以a ≥3-163ln 2,故实数a 的取值范围是⎣⎡⎭⎫3-163ln 2,+∞.高考文科数学一轮复习大题篇----概率统计题型一 概率与统计的综合应用【例】某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图.记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数. (1)若n =19,求y 与x 的函数解析式;(2)若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值;(3)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件? 【解】 (1)当x ≤19时,y =3 800;当x >19时,y =3 800+500(x -19)=500x -5 700. 所以y 与x 的函数解析式为y =⎩⎪⎨⎪⎧3 800,x ≤19,500x -5 700,x >19(x ∈N ). (2)由柱状图知,需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故n 的最小值为19.(3)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3 800,20台的费用为4 300,10台的费用为4 800,因此这100台机器在购买易损零件上所需费用的平均数为1100(3 800×70+4 300×20+4 800×10)=4 000;若每台机器在购机同时都购买20个易损零件,则这100台机器中有90台在购买易损零件上的费用为4 000,10台的费用为4 500,因此这100台机器在购买易损零件上所需费用的平均数为1100(4 000×90+4 500×10)=4 050.比较两个平均数可知,购买1台机器的同时应购买19个易损零件.【思维升华】概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点和热点.它与其他知识融合、渗透,情境新颖,充分体现了概率与统计的工具性和交汇性.【训练】某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.(1)求图中实数a的值;(2)若该校高一年级共有640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;(3)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.【解】(1)由已知,得10×(0.005+0.010+0.020+a+0.025+0.010)=1,解得a=0.030. (2)根据频率分布直方图,可知成绩不低于60分的频率为1-10×(0.005+0.010)=0.85.由于该校高一年级共有学生640人,利用样本估计总体的思想,可估计该校高一年级期中考试数学成绩不低于60分的人数为640×0.85=544.(3)易知成绩在[40,50)分数段内的人数为40×0.05=2,这2人分别记为A,B;成绩在[90,100]分数段内的人数为40×0.1=4,这4人分别记为C,D,E,F.若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,则所有的基本事件有(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个.如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10.记“这2名学生的数学成绩之差的绝对值不大于10”为事件M ,则事件M 包含的基本事件有(A ,B ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共7个,故所求概率P (M )=715.题型二 概率与统计案例的综合应用【例】某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:喜欢甜品 不喜欢甜品合计 南方学生 60 20 80 北方学生 10 10 20 合计7030100(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率. 附:P (χ2≥k 0) 0.100 0.050 0.010 k 02.7063.8416.635χ2=nn 11n 22-n 12n 212n 1+n 2+n +1n +2.【解】 (1)将2×2列联表中数据代入公式计算,得 χ2=100×60×10-20×10270×30×80×20=10021≈4.762. 由于4.762>3.841,所以有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.(2)设这5名数学系的学生喜欢甜品的为a 1,a 2,不喜欢甜品的为b 1,b 2,b 3,从5名数学系的学生中任取3人的一切可能结果所组成的基本事件空间Ω={(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 2,b 3),(a 1,b 1,b 2),(a 1,b 2,b 3),(a 1,b 1,b 3),(a 2,b 1,b 2),(a 2,b 2,b 3),(a 2,b 1,b 3),(b 1,b 2,b 3)}. Ω由10个基本事件组成,且这些基本事件出现是等可能的.用A 表示“3人中至多有1人喜欢甜品”这一事件,则A ={(a 1,b 1,b 2),(a 1,b 2,b 3),(a 1,b 1,b 3),(a 2,b 1,b 2),(a 2,b 2,b 3),(a 2,b 1,b 3),(b 1,b 2,b 3)},A 由7个基本事件组成,因而P (A )=710.【思维升华】 统计以考查抽样方法、样本的频率分布、样本特征数的计算为主,概率以考查概率计算为主,往往和实际问题相结合,要注意理解实际问题的意义,使之和相应的概率计算对应起来,只有这样才能有效地解决问题.【训练】某校计划面向高一年级1 200名学生开设校本选修课程,为确保工作的顺利实施,先按性别进行分层抽样,抽取了180名学生对社会科学类、自然科学类这两大类校本选修课程进行选课意向调查,其中男生有105人.在这180名学生中选择社会科学类的男生、女生均为45人.(1)分别计算抽取的样本中男生、女生选择社会科学类的频率,并以统计的频率作为概率,估计实际选课中选择社会科学类的学生人数;(2)根据抽取的180名学生的调查结果,完成以下2×2列联表.并判断能否在犯错误的概率不超过0.025的前提下认为科类的选择与性别有关?选择自然科学类选择社会科学类合计 男生 女生 合计附:χ2=nn 11n 22-n 12n 212n 1+n 2+n +1n +2,其中n =a +b +c +d . P (χ2≥k 0)0.500 0.400 0.250 0.150 0.100 k 0 0.455 0.708 1.323 2.072 2.706 P (χ2≥k 0) 0.050 0.025 0.010 0.005 0.001 k 03.8415.0246.6357.87910.828【解】 (1)由条件知,抽取的男生有105人,女生有180-105=75(人).男生选择社会科学类的频率为45105=37,女生选择社会科学类的频率为4575=35.由题意,知男生总数为1 200×105180=700,女生总数为1 200×75180=500,所以估计选择社会科学类的人数为 700×37+500×35=600.(2)根据统计数据,可得列联表如下:选择自然科学类选择社会科学类总计 男生 60 45 105 女生 30 45 75 总计9090180则χ2=180×60×45-30×452105×75×90×90=367≈5.142 9>5.024, 所以在犯错误的概率不超过0.025的前提下能认为科类的选择与性别有关.专题突破训练1.某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100]分别加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;(2)规定日平均生产件数不少于80的为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?P (χ2≥k 0) 0.100 0.050 0.010 0.001 k 02.7063.8416.63510.828附:χ2=nn 11n 22-n 12n 212n 1+n 2+n +1n +2.【解】 (1)由已知得,样本中有25周岁以上(含25周岁)组工人60名,25周岁以下组工人40名.所以样本中日平均生产件数不足60的工人中,25周岁以上(含25周岁)组工人有60×0.005×10=3(人),记为A 1,A 2,A 3;25周岁以下组工人有40×0.005×10=2(人),记为B 1,B 2. 从中随机抽取2名工人,所有的可能结果共有10种,它们是(A 1,A 2),(A 1,A 3),(A 2,A 3),(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2).其中,至少有1名“25周岁以下组”工人的可能结果共有7种,它们是(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2).故所求的概率P =710.(2)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上(含25周岁)组”中的生产能手有60×(0.02+0.005)×10=15(人),“25周岁以下组”中的生产能手有40×(0.032 5+0.005)×10=15(人), 据此可得2×2列联表如下:生产能手 非生产能手总计 25周岁以上(含25周岁)组 15 45 60 25周岁以下组15 25 40 总计3070100所以得χ2=nn 11n 22-n 12n 212n 1+n 2+n +1n +2=100×15×25-15×45260×40×30×70=2514≈1.79. 因为1.79<2.706.所以没有90%的把握认为“生产能手与工人所在的年龄组有关”.2.某省电视台为了解该省卫视一档成语类节目的收视情况,抽查东、西部各5个城市,得到观看该节目的人数的统计数据(单位:千人),并画出如下茎叶图,其中一个数字被污损.(1)求东部各城市观看该节目的观众的平均人数超过西部各城市观看该节目的观众的平均人数的概率;(2)该节目的播出极大地激发了观众对成语知识学习积累的热情,现从观看节目的观众中随机统计了4位观众学习成语知识的周均时间(单位:小时)与年龄(单位:岁),并绘制了如下对照表:根据表中数据,试求回归直线方程y ^=b ^x +a ^,并预测年龄为55岁的观众周均学习成语知识的时间. 参考公式:b ^=∑ni =1x i y i -n x y ∑ni =1x 2i -n x2,a ^ =y -b ^x .【解】 (1)设被污损的数字为a ,则a 有10种情况. 由88+89+90+91+92>83+83+87+90+a +99, 得a <8,∴有8种情况使得东部各城市观看该节目的观众的平均人数超过西部各城市观看该节目的观众的平均人数, 所求概率为810=45.(2)由表中数据,计算得x =35,y =3.5,b ^=∑4i =1x i y i -4x y ∑4i =1x 2i -4x 2=525-4×35×3.55 400-4×352=0.07,a ^=y -b ^ x =3.5-0.07×35=1.05. ∴y ^=0.07x +1.05.当x =55时,y ^=4.9.即预测年龄为55岁的观众周均学习成语知识的时间为4.9小时.3.长沙某购物中心在开业之后,为了解消费者购物金额的分布情况,在当月的电脑消费小票中随机抽取n 张进行统计,将结果分成6组,分别是[0,100),[100,200),[200,300),[300,400),[400,500),[500,600],制成如图所示的频率分布直方图(假设消费金额均在[0,600]元的区间内).(1)若按分层抽样的方法在消费金额为[400,600]元区间内抽取6张电脑小票,再从中任选2张,求这2张小票均来自[400,500)元区间的概率;(2)为做好五一劳动节期间的商场促销活动,策划人员设计了两种不同的促销方案. 方案一:全场商品打八折.方案二:全场购物满100元减20元,满300元减80元,满500元减120元,以上减免只取最高优惠,不重复减免,利用直方图的信息分析:哪种方案优惠力度更大,并说明理由(直方图中每个小组取中间值作为该组数据的替代值).【解】 (1)由题意知,在[400,500)元区间内抽4张,分别记为a ,b ,c ,d ,在[500,600]元区间内抽2张,分别记为E ,F ,设“2张小票均来自[400,500)元区间”为事件A ,从中任选2张,有以下选法:ab ,ac ,ad ,aE ,aF ,bc ,bd ,bE ,bF ,cd ,cE ,cF ,dE ,dF ,EF ,共15种.其中,2张小票均来自[400,500)元区间的有ab ,ac ,ad ,bc ,bd ,cd ,共6种, ∴P (A )=25.(2)方法一 由频率分布直方图可知,各组频率依次为0.1,0.2,0.25,0.3,0.1,0.05.方案一:购物的平均费用为0.8×(50×0.1+150×0.2+250×0.25+350×0.3+450×0.1+550×0.05)=0.8×275=220(元).方案二:购物的平均费用为50×0.1+130×0.2+230×0.25+270×0.3+370×0.1+430×0.05=228(元).∵220<228,∴方案一的优惠力度更大.方法二由频率分布直方图可知,各组频率依次为0.1,0.2,0.25,0.3,0.1,0.05,方案一:平均优惠金额为0.2×(50×0.1+150×0.2+250×0.25+350×0.3+450×0.1+550×0.05)=0.2×275=55(元).方案二:平均优惠金额为20×(0.2+0.25)+80×(0.3+0.1)+120×0.05=47(元).∵55>47,∴方案一的优惠力度更大.4.某校高三期中考试后,数学教师对本次全部数学成绩按1∶30进行分层抽样,随机抽取了20名学生的成绩为样本,成绩用茎叶图记录如图所示,但部分数据不小心丢失,同时得到如下表所示的频率分布表:(1)求表中a,b的值及成绩在[90,110)范围内的样本数,并估计这次考试全校高三学生数学成绩的及格率(成绩在[90,150]内为及格);(2)若从茎叶图中成绩在[100,130)范围内的样本中一次性抽取两个,求取出两个样本数字之差的绝对值大于10的概率.【解】(1)由茎叶图知成绩在[50,70)范围内的有2人,在[110,130)范围内的有3人,∴a=0.1,b=3.成绩在[70,90)内的样本数为0.25×20=5.∴成绩在[90,110)内的样本数为20-2-5-5=8.估计这次考试全校高三学生数学成绩的及格率为P=1-0.1-0.25=0.65.(2)所有可能的结果为(100,102),(100,106),(100,106),(100,116),(100,118),(100,128),(102,106),(102,106),(102,116),(102,118),(102,128),(106,106),(106,116),(106,118),(106,128),(106,116),(106,118),(106,128),(116,118),(116,128),(118,128),共21个,取出的两个样本中数字之差的绝对值大于10的结果为(100,116),(100,118),(100,128),(102,116),(102,118),(102,128),(106,118),(106,128),(106,118),(106,128),(116,128),共11个,∴P(A)=1121.0高考文科数学一轮复习大题篇----立体几何题型一平行、垂直关系的证明【例】如图,在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.【证明】(1)∵三棱柱ABC-A1B1C1是直三棱柱,∴CC1⊥平面ABC.∵AD⊂平面ABC,∴AD⊥CC1.又∵AD⊥DE,DE∩CC1=E,DE,CC1⊂平面BCC1B1,∴AD⊥平面BCC1B1.∵AD⊂平面ADE,∴平面ADE⊥平面BCC1B1.(2)∵△A1B1C1中,A1B1=A1C1,F为B1C1的中点,∴A1F⊥B1C1.∵CC1⊥平面A1B1C1,A1F⊂平面A1B1C1,∴A1F⊥CC1.又∵B1C1∩CC1=C1,B1C1,CC1⊂平面BCC1B1,∴A1F⊥平面BCC1B1.又∵AD⊥平面BCC1B1,∴A1F∥AD.∵A1F⊄平面ADE,AD⊂平面ADE,∴直线A1F∥平面ADE.【思维升华】(1)平行问题的转化利用线线平行、线面平行、面面平行的相互转化解决平行关系的判定问题时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而应用性质定理时,其顺序正好相反.在实际的解题过程中,判定定理和性质定理一般要相互结合,灵活运用.(2)垂直问题的转化在空间垂直关系中,线面垂直是核心,已知线面垂直,既可为证明线线垂直提供依据,又可为利用判定定理证明面面垂直作好铺垫.应用面面垂直的性质定理时,一般需作辅助线,基本作法是过其中一个平面内一点作交线的垂线,从而把面面垂直问题转化为线面垂直问题,进而可转化为线线垂直问题.【训练】】如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面P AD⊥平面ABCD,P A ⊥PD,P A=PD,E,F分别为AD,PB的中点.(1)求证:PE⊥BC;(2)求证:平面P AB⊥平面PCD;(3)求证:EF∥平面PCD.【证明】(1)因为P A=PD,E为AD的中点,所以PE⊥AD.因为底面ABCD为矩形,所以BC∥AD,所以PE⊥BC.(2)因为底面ABCD为矩形,所以AB⊥AD.又因为平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD,AB⊂平面ABCD,所以AB⊥平面P AD,又PD ⊂平面P AD , 所以AB ⊥PD .又因为P A ⊥PD ,P A ∩AB =A ,P A ,AB ⊂平面P AB , 所以PD ⊥平面P AB . 又PD ⊂平面PCD , 所以平面P AB ⊥平面PCD .(3)如图,取PC 的中点G ,连接FG ,DG .因为F ,G 分别为PB ,PC 的中点, 所以FG ∥BC ,FG =12BC ,因为四边形ABCD 为矩形,且E 为AD 的中点, 所以DE ∥BC ,DE =12BC .所以DE ∥FG ,DE =FG .所以四边形DEFG 为平行四边形, 所以EF ∥DG .又因为EF ⊄平面PCD ,DG ⊂平面PCD , 所以EF ∥平面PCD .题型二 立体几何中的计算问题【例】如图,在多面体ABCA 1B 1C 1中,四边形ABB 1A 1是正方形,△A 1CB 是等边三角形,AC =AB =1,B 1C 1∥BC ,BC =2B 1C 1.(1)求证:AB 1∥平面A 1C 1C ; (2)求多面体ABCA 1B 1C 1的体积.(1)【证明】 如图,取BC 的中点D ,连接AD ,B 1D ,C 1D , ∵B 1C 1∥BC ,BC =2B 1C 1,∴BD ∥B 1C 1,BD =B 1C 1,CD ∥B 1C 1,CD =B 1C 1, ∴四边形BDC 1B 1,CDB 1C 1是平行四边形, ∴C 1D ∥B 1B ,C 1D =B 1B ,CC 1∥B 1D , 又B 1D ⊄平面A 1C 1C ,C 1C ⊂平面A 1C 1C , ∴B 1D ∥平面A 1C 1C .在正方形ABB 1A 1中,BB 1∥AA 1,BB 1=AA 1, ∴C 1D ∥AA 1,C 1D =AA 1, ∴四边形ADC 1A 1为平行四边形, ∴AD ∥A 1C 1.又AD ⊄平面A 1C 1C ,A 1C 1⊂平面A 1C 1C , ∴AD ∥平面A 1C 1C ,∵B 1D ∩AD =D ,B 1D ,AD ⊂平面ADB 1, ∴平面ADB 1∥平面A 1C 1C ,又AB 1⊂平面ADB 1,∴AB 1∥平面A 1C 1C . (2)【解】 在正方形ABB 1A 1中,A 1B =2, ∵△A 1BC 是等边三角形,∴A 1C =BC =2,∴AC 2+AA 21=A 1C 2,AB 2+AC 2=BC 2,∴AA 1⊥AC ,AC ⊥AB .又AA 1⊥AB ,∴AA 1⊥平面ABC , ∴AA 1⊥CD ,易得CD ⊥AD ,又AD ∩AA 1=A ,∴CD ⊥平面ADC 1A 1.易知多面体ABCA 1B 1C 1是由直三棱柱ABD -A 1B 1C 1和四棱锥C -ADC 1A 1组成的, 直三棱柱ABD -A 1B 1C 1的体积为12×⎝⎛⎭⎫12×1×1×1=14,四棱锥C -ADC 1A 1的体积为13×22×1×22=16,∴多面体ABCA 1B 1C 1的体积为14+16=512.【思维升华】 (1)若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,等积转换法多用来求三棱锥的体积.(2)若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.【训练】如图,已知多面体P ABCDE 的底面ABCD 是边长为2的菱形,P A ⊥底面ABCD ,ED ∥P A ,且P A =2ED =2.(1)证明:平面P AC ⊥平面PCE ;(2)若∠ABC =60°,求三棱锥P -ACE 的体积. (1)【证明】 如图,连接BD ,交AC 于点O , 设PC 的中点为F ,连接OF ,EF .易知O 为AC 的中点, 所以OF ∥P A ,且OF =12P A .因为DE ∥P A ,且DE =12P A ,所以OF ∥DE ,且OF =DE , 所以四边形OFED 为平行四边形, 所以OD ∥EF ,即BD ∥EF .因为P A⊥平面ABCD,BD⊂平面ABCD,所以P A⊥BD.因为四边形ABCD是菱形,所以BD⊥AC.因为P A∩AC=A,P A,AC⊂平面P AC,所以BD⊥平面P AC.因为BD∥EF,所以EF⊥平面P AC.因为EF⊂平面PCE,所以平面P AC⊥平面PCE.(2)【解】因为∠ABC=60°,所以△ABC是等边三角形,所以AC=2.又P A⊥平面ABCD,AC⊂平面ABCD,所以P A⊥AC.所以S△P AC=12P A×AC=2.因为EF⊥平面P AC,所以EF是三棱锥E-P AC的高.易知EF=DO=BO=3,所以三棱锥P-ACE的体积V三棱锥P-ACE=V三棱锥E-P AC=13S△P AC×EF=13×2×3=233.题型三立体几何中的探索性问题【例】如图,梯形ABCD中,∠BAD=∠ADC=90°,CD=2,AD=AB=1,四边形BDEF 为正方形,且平面BDEF⊥平面ABCD.(1)求证:DF⊥CE;(2)若AC与BD相交于点O,那么在棱AE上是否存在点G,使得平面OBG∥平面EFC?并说明理由.(1)【证明】连接EB.∵在梯形ABCD中,∠BAD=∠ADC=90°,AB=AD=1,DC=2,∴BD=2,BC=2,∴BD2+BC2=CD2,∴BC ⊥BD .又∵平面BDEF ⊥平面ABCD ,平面BDEF ∩平面ABCD =BD ,BC ⊂平面ABCD , ∴BC ⊥平面BDEF ,∴BC ⊥DF .又∵正方形BDEF 中,DF ⊥EB ,且EB ,BC ⊂平面BCE ,EB ∩BC =B , ∴DF ⊥平面BCE .又∵CE ⊂平面BCE ,∴DF ⊥CE .(2)【解】 在棱AE 上存在点G ,使得平面OBG ∥平面EFC ,且AG GE =12.理由如下:连接OG ,BG ,在梯形ABCD 中,∠BAD =∠ADC =90°,AB =1,DC =2, ∴AB ∥DC ,∴AO OC =AB DC =12.又∵AG GE =12,∴OG ∥CE .又∵正方形BDEF 中,EF ∥OB ,且OB ,OG ⊄平面EFC ,EF ,CE ⊂平面EFC , ∴OB ∥平面EFC ,OG ∥平面EFC . 又∵OB ∩OG =O ,且OB ,OG ⊂平面OBG , ∴平面OBG ∥平面EFC .【思维升华】 对于线面关系中的存在性问题,首先假设存在,然后在该假设条件下,利用线面关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论则否定假设.【训练】如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC .(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⎛ −1 − 1 1 2 1 ⎞ ⎛ −1 r3 −r 1 r +r2 1 ⎯⎯→ ⎜ 0 1 − 2 −1 0 ⎟ ⎯⎯⎯ ⎜ 0 ⎯ → ⎟ r3−2r2 ⎜ ⎜ ⎜ 0 ⎜ 0 2 − 1 1 0⎟ ⎝ ⎠ ⎝
⎛ −1 r +r2 1 ⎯⎯⎯ ⎜ 0 →⎜ r3 −2r2 ⎜ 0 ⎝ ⎛ −1 r +r3 1 ⎯⎯⎯ ⎜ 0 →⎜ r2 +2r3 ⎜ 0 ⎝
2 2x 4. lim(1 − ) x →∞ x
解
⎛ ⎞ ⎛ ⎞ ⎜ 1 ⎟ ⎜ 1 ⎟ 原式= lim ⎜ 1 + x ⎟ = lim ⎜ 1 + x →∞ x →∞ x⎟ ⎜ − ⎟ ⎜ − ⎟ 2⎠ ⎝ 2⎠ ⎝
x −2 −4
2x
−4
x −2
⎡ ⎤ ⎞ ⎥ ⎢⎛ ⎢ ⎜ 1 + 1 ⎟ ⎥ = e −4 . = lim ⎜ x →∞ ⎢ x⎟ ⎥ ⎜ − ⎟ ⎥ ⎢⎝ 2⎠ ⎥ ⎢ ⎣ ⎦
南开大学2008级大学文科数学统考试卷 (A卷) 2010年1月17日 一、 (本题 10 分)袋中装有 10 个号码球, 分别标有 1~10 号。现从袋中任取 3 个球, 记录下其号码,求(1)最小号码为 5 的概率; (2) 中间号码为 5 号的概率.
解 A={最小号码为5} , B={中间号码为5} ,
4. 2
.
5 . 函 数 y = x3 − x + 1 在 点 ( 1 , 1 ) 处 的 切 线 方 程 为 . 6.设 y = 5sin(ln x ) ,则 dy= dx.
4. 2
6. 5
5. y = 2 x − 1
sin(ln x )
1 ln 5 cos(ln x ) x
7.若函数 f ′( x ) =
P ( B | A) = P ( B | A) ,求 P ( B | A) .
解 设 P ( B | A) = P ( B | A) = a ,
P ( B ) = P ( BA ∪ B A) = P ( A) P ( B | A) + P ( A) P ( B | A) = P ( A)a + P ( A)a = ( P ( A) + P ( A))a = a 1 ∴ a = P( B) = . 3 1 2 P ( B | A) = 1 − P ( B | A) = 1 − = . 3 3
1⎞ 0⎟ , 满 足 ⎟ 1⎟ ⎠
AX + B = 2 X ,求矩阵 X.
解法二 AX +B = 2 X 变形,得 (2 E − A) X = B
(2 E − A | B ) =
⎛ −1 − 1 1 2 1 ⎞ ⎜ 0 1 − 2 −1 0 ⎟ ⎟ ⎜ ⎜ −1 1 0 3 1 ⎟ ⎠ ⎝ 0 −1 1 −2 0 3 1 1⎞ −1 0 ⎟ ⎟ 3 0⎟ ⎠
π
2
π
6.
x 3 ln xdx ∫
4 3
x u = ln x , x dx = d = dv , 解 4 1 4 1 3 3 ∫ x ln xdx = = x ln x − x + C . 4 16
.
⑴被积函数是两类不同性质函数的乘积; ⑵按“反、对、幂、指、三”顺序选择u和v.
⎛ −1 − 1 0 ⎞ X = ⎜ 0 − 1 − 1⎟ ⎜ ⎟ ⎜ −1 0 − 1 ⎟ ⎝ ⎠
−1
⎛ 2 1⎞ ⎜ −1 0 ⎟ ⎜ ⎟ ⎜ 3 1⎟ ⎝ ⎠
⎛ −1 − 1 0 ⎞ X = ⎜ 0 − 1 − 1⎟ ⎜ ⎟ ⎜ −1 0 − 1 ⎟ ⎝ ⎠
−1
⎛ 2 1⎞ ⎜ −1 0 ⎟ ⎜ ⎟ ⎜ 3 1⎟ ⎝ ⎠
⎛ 1 −1 1 1 ⎞ r2 − r1 ⎛ 1 ⎜ 1 1 −1 1 ⎟ r3 − r1 ⎜ 0 → A=⎜ ⎟ ⎯⎯⎯ ⎜ ⎜ 1 1 1 −1 ⎟ ⎜0 ⎝ ⎠ ⎝
⎛1 0 0 1 ⎞ ⎜ 0 1 0 −1 ⎟ r1 − 2 r2 ⎯⎯⎯ ⎜ → ⎟ ⎜ 0 0 1 −1 ⎟ ⎝ ⎠
即得与原方程组同解的方程组 即
7.
∫
a
0
x a 2 − x 2 dx
解: 令 x = a sin t , 则 d x = a cos t dt , 且
当 x = 0 时, t = 0 ; x = a 时, t = π . 2
2 2 解法二: 令 u = − , 则 x = − x u
2 2x 4. lim(1 − ) x →∞ x
原式 = lim(1 + u)
u→0
2
−2 u
= lim[(1 + u) ] = e −4 .
u→0
1 u −4
2 2x 4. lim(1 − ) x →∞ x
2 2 x ln(1− ) 2 2x x , 解法三: 取对数得 (1 − ) = e x 2 2ln(1 − ) ( 0 ) 2 0 x ∵ lim 2 x ln(1 − ) = lim x →∞ x →∞ x 1 2 x 2( − ) x = −4, = lim x →∞ 1 x
求事件 A, B, C 中至少有一个发生的概率. 解 P ( A ∪ B ∪ C ) = 1 − P ( A ∪ B ∪ C ) = 1 − P ( ABC )
= 1 − P ( A) P ( B ) P (C ) = 1 − (1 − 0.2)(1 − 0.4)(1 − 0.5) = 0.76.
1 四、设 A,B 为两个随机事件,已知 P ( A) = P ( B ) = ,且 3
0 −1 1 −2 0 3 0 1 0 0 0 1
1 1⎞ ⎛ −1 r3 ÷3 −1 0 ⎟ ⎯⎯→ ⎜ 0 ⎯⎜ ⎟ ⎜ 0 3 0⎟ ⎠ ⎝ 2 1⎞ ⎛ 1 r +r3 1 1 0 ⎟ ⎯⎯⎯ ⎜ 0 ⎟ r2 +2r3 →⎜ ⎜ 0 1 0⎟ ⎠ ⎝ 0 1 0
0 −1 1 −2 0 1 0 0 1
10.“原函数”与“不定积分”这两个概念的区别是 联系是 . 10. 原函数是一个函数,不定积分是一族函数; 它们的导数相等,而且原函数的全体就是不定积分。
;
二、计算下列各题: (每小题 6 分,共 42 分) ⎛ 2 ⎛ 3 1 −1 ⎞ 1 . 已 知 A = ⎜ 0 1 2 ⎟ , B = ⎜ −1 ⎟ ⎜ ⎜ ⎜ 1 −1 2 ⎟ ⎜ 3 ⎠ ⎝ ⎝
⎧ x1 = − x4 ⎪ ⎨ x2 = x4 ( x4可取任意值 ) ⎪x = x ⎩ 2 4
⎧ x1 + x4 = 0 ⎪ ⎨ x 2 − x4 = 0 ⎪x − x = 0 4 ⎩ 3
取
x4 = c , c为任意实数, x2 = c ,
x3 = c ,
得原方程组的全部解:
x1 = − c ,
x4 = c .
解 设事件A表示“人工降雨”, A 表示“不进行人工降雨”; 则事件A, A 构成一个完备事件组. 事件B表示“下雨”.
B = BA ∪ B A
P ( B ) = P ( BA ∪ B A) = P ( A) P ( B | A) + P ( A) P ( B | A)
=(0.9)×(0.8)+(0.1)×(0.15)=0.735.
2 C5 1 P ( A) = 3 = , C10 12 1 1 C4C5 1 P( B) = = . 3 6 C10
二、(本题 10 分)由现在的天气状况分析,政府有 90% 的概率进行人工降雨,10%的概率不进行人工降雨。 若进行人工降雨后下雨的概率为 0.8, 不进行人工降 雨而下雨的概率为 0.15, 试求 (1)下雨的概率; (2)在已知没有下雨的条件下, 求没有进行人工降雨的概率.
det(2 A ) =
A
为
3 .
阶 方 阵 , 若 det( A ) = 4 , 则
⎛ 1 3.设矩阵 A = ⎜ 2 ⎜ ⎜ ⎝ −3
0 1 2
1 ⎞ 0 ⎟ ,则 r(A)= ⎟ ⎟ −3 ⎠
.
⎛ 4 −8 ⎞ 1. ⎜ 8 −4 ⎟ ⎝ ⎠
2. 32
3. 3
x 2 + 5cos( x − 1) 4. lim = x →1 x+2
1 0
1 x
, (x>0), 则 f (x)=
. .
则 8. ∫ (2 x 4 + kx )dx = 2 (其中 k 为常数), k= 若
d 9.设 f (x)为连续函数, 结论 ∫ f ( x )dx = f ( x ) 是否正 dx 确?为什么? .
7. 2 x + C
16 8. 5
9.正确,根据微积分学基本定理:连续函数一定存在原函数。
1⎞ 0⎟ , 满 足 ⎟ 1⎟ ⎠
AX + B = 2 X ,求矩阵 X.
解
AX +B = 2 X
变形,得
(2 E − A) X = B
若2E-A 可逆, 则 X = (2 E − A)−1 B .
⎛ −1 − 1 1 ⎞ ⎛ 2 1⎞ ⎜ 0 1 − 2 ⎟ X = ⎜ −1 0 ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ −1 1 0 ⎟ ⎜ 3 1⎟ ⎝ ⎠ ⎝ ⎠
x2 + 2 x − 3 3. lim x →1 x3 − x
2x + 2 4 = = 2. 原式 = lim 2 解: x →1 3 x − 1 2
解法二:
( x + 3)( x − 1) 原式 = lim x( x + 1)( x − 1) x →1
x+3 = lim = 2. x →1 x ( x + 1)
∴ 原式 = e
2 lim 2 x ln(1− ) x →∞ x
= e −4 .
tan x − 1 5. lim x→ π sin 4 x 4