流体力学与传热学ppt课件

合集下载

(流体力学与传热英文课件)Pressure drop and loss due to friction

(流体力学与传热英文课件)Pressure drop and loss due to friction

The equation(1.4-10) is the equation usually used to calculate skin friction loss in straight pipe.
For laminar flow only, combining Eqs. (1.4-20 ) and (1.4-10) .gives
f 16 Re
64
Re
(1.4-22 )
It is not possible to predict theoretically the Fanning friction factor f for turbulent flow as was done for laminar flow.
1.4.3 Turbulent Flow in Pipes and Channels
Although the problem has not been completely solved, useful relationships are available.
• For turbulent flow the friction factor must be determined empirically, and it not only depends upon the Reynolds number but also on surface roughness of the pipe.
L R
Rearranging equation (1.4-2 ) gives
w
Rp 2L
Substituting from equation above into equation (1.4-7) gives
fV 2 w /2R V p 2//2 2 L4D L pf V 2 2

传热学(全套课件666P) ppt课件

传热学(全套课件666P) ppt课件
1A 1 (T 1 4T 2 4) ( 1-9 )
§1-3 传热过程和传热系数
一、传热过程 1 、概念
热量由壁面一侧的流体通过壁面传到 另一侧流体中去的过程称传热过程。
2 、传热过程的组成 传热过程一般包括串联着的三个环节组成, 即:
① 热流体 → 壁面高温侧; ② 壁面高温侧 → 壁面低温侧; ③ 壁面低温侧 → 冷流体。 若是稳态过程则通过串联环节的热流量相同。
二、对流
1 、基本概念
1) 对流:是指由于流体的宏观运动,从而使 流体各部分之间发生相对位移,冷热流体 相互掺混所引起的热量传递过程。 对流仅发生在流体中,对流的同时必伴随 有导热现象。
2) 对流换热:流体流过一个物体表面时的 热量传递过程,称为对流换热。
2 、对流换热的分类
1)根据对流换热时是否发生相变分:有
第一章


§1-0 概 述
一、基本概念
❖ 1 、传热学 ❖ 传热学是研究热量传递规律的学科。 ❖ 1)物体内只要存在温差,就有热量从物
体的高温部分传向低温部分; ❖ 2)物物体。
2 、热量传递过程 根据物体温度与时间的关系,热量传递过程 可分为两类:
t f1 tw1
Ah 1
tw1 tw2 A /
t w 2 t f 2 Ah 2
(d) (e) (f)
三式相加,整理可得:
A(t f 1 t f 2 )
1 1
h1 h2
也可以表示成:
(1-10)
A(tkf1tf2)A k t (1-11)
式中, k称为传热系数,单位为

W/ m2K
⑤热辐射现象仍是微观粒子性态的一种宏 观表象。
⑥ 物体的辐射能力与其温度性质有关。这 是热辐射区别于导热,对流的基本特点。

【流体力学与传热】3.1 颗粒沉降

【流体力学与传热】3.1  颗粒沉降

As A ds2
As da2
as
As Vs
6 dv
as
As Vs
6 ds
as
As Vs
6 da
A V
As 1
A
As As V 6
A A V adv
As A
dv2
d
2 s
d d
v s
2
As As V 6 da da
A A V dv 6 dv
二、颗粒群的特性
1 粒度分布 泰勒标准筛、筛过量(物)、筛余(留)量
ut=
d
2 p
p 18m
g
u't ( d ' p )2 ( 0.05 )2 60%
ut
d p,min
0.0647
(3)若将上述降尘室用隔板分隔成2层(不考虑隔 板的厚度),如需完全除去的尘粒直径相同,则颗 粒的沉降速度不变,降尘室底面积为原来的2倍。
dmin
18m Vs g s A0
100%去除——室顶到室底
所需沉降时间=H/u0
在室内停留时间=L/u 分离满足的条件:
HL
u0 u
分离所需最低沉降速度
u0
Hu L
HBu LB
Vs A0
最低沉降速度~能被分离的最小粒径(设在Stokes区)
u0
gdm2 in s 18m
Vs A0
dmin
18m Vs g s A0
②横截面大——操作气速低不被卷起 底面积大——分离效率高
③体积庞大,属于低效设备,适用分离粗颗粒(一 般分离粒径大于75mm的颗粒),或作为预分离设 备。 ④气体在降尘室的均匀分布,气速不宜过高,不超 过1.5m·s-1。

传热学基本知识PPT课件

传热学基本知识PPT课件

Qt1t2t3 t1t4
R1R2R3
R
通过各层的导热量相同, 各层导热所遵循的规律相同
2021
29
传热学基本知识
热传导
4、导热计算 3)单层圆筒壁的稳定热传导
特点:单层圆筒壁的导热面积不是常量,随圆
筒半径而变、同时温度也只是随半径而变。
Q t1 t2 R
t
A均
A均=2πr均L
r均
r2 r1 ln r2
导热分为两类
稳定导热:温度不随时间而变化的导热 不稳定导热:温度随时间而变化的导热
知识回顾
2021
23
传热学基本知识
热传导
2、傅里叶导热定律
热传导的速率与垂直于热流方向的表面积成正比,与壁面两侧的温差成正比,与壁厚成反比。
QAt1t2
q
Q A
t
Q
t
t R
A
Q 导热量,传热速率 , W;
导热动力 导热阻力
自然对流
泡状沸腾或泡核沸腾(传热系数大)
膜状沸腾
2021
36
蒸汽冷凝时的对流传热
蒸汽冷凝的对流传热
蒸汽是工业上最常用的热源,在锅炉内利用煤燃烧 时产生的热量将水加热汽化,使之产生蒸汽。蒸汽在饱 和温度下冷凝成同温度的冷凝水时,放出冷凝潜热,供 冷流体加热。
2021
37
蒸汽冷凝时的对流传热
(1) 蒸汽冷凝的方式
t t1t2 l n t1 t2 2021
当⊿t1/⊿t2<2时
⊿t=(⊿t1+⊿t2)/2
15
(2)双侧变温时的平均温度差
并流
逆流
错流
折流
①并流时的(对数)平均温度差

(完整PPT)传热学

(完整PPT)传热学
温度
温度对导热系数的影响因材料而异,一般情况下,随着温度的升高 ,导热系数会增加。
压力
对于某些材料,如气体,压力的变化会对导热系数产生显著影响。
稳态与非稳态导热过程
稳态导热
物体内部各点温度不随时间变化而变化的导热过程。在稳态导热过程中,热流 密度和温度分布保持恒定。
非稳态导热
物体内部各点温度随时间变化而变化的导热过程。在非稳态导热过程中,热流 密度和温度分布会发生变化,通常需要考虑时间因素对导热过程的影响。
辐射换热计算方法
辐射换热量计算
通过斯蒂芬-玻尔兹曼定律计算两 个物体之间的辐射换热量,需要 考虑物体的发射率、温度以及物 体间的角系数等因素。
角系数计算
角系数表示一个表面对另一个表 面辐射能量的相对大小,可以通 过几何方法或数值方法计算得到 。
辐射换热网络模型
对于多个物体之间的复杂辐射换 热问题,可以建立辐射换热网络 模型,通过求解线性方程组得到 各个物体之间的辐射换热量。
06 传热学实验技术 与设备
实验测量技术与方法
温度测量
使用热电偶、热电阻等 温度传感器,配合数据 采集系统,实现温度的
精确测量。
热量测量
采用量热计、热流计等 设备,测量传热过程中
的热量变化。
热阻测量
通过测量传热设备两侧 温差和传热量,计算得
到热阻。
热流密度测量
利用热流计等设备,测 量单位面积上的热量传
(完整PPT)传热学
contents
目录
• 传热学基本概念与原理 • 导热现象与规律 • 对流换热原理及应用 • 辐射换热基础与特性 • 传热过程数值计算方法 • 传热学实验技术与设备 • 传热学在工程领域应用案例
01 传热学基本概念 与原理

1_流体力学与传热学

1_流体力学与传热学

P p lim A
A 0
返回首页
第二节 流体静力学
一、流体静压强及其特性
P Z dA n

流体静压强的方向与受 压面垂直并指向受压面
Y X 0

作用于同一点上各方 向的静压强大小相等
流体静 压强的 特性
第二节 流体静力学
二、流体静压强的分布规律
分析静止液体中压强分布 作用于轴向的外力有:
可忽略。 2、气体有显著的压缩性和膨胀性,t与P的变化对v 影响很大。 3、当气体的温度不过低压强不过高时,T、P、v三
者关系服从理想气体状态方程。
第二节 流体静力学
目的:学习和讨论流体静止状态下 的力学规律及其应用
流体静止时的特点:
不显示其粘滞性,不存在切相应力
流体静止是运动中的一种特殊状态
流体静力学研究的中心问题:
流体静压强的分布规律
第二节 流体静力学
一、流体静压强及其特性
静水压力与静水压强

静止液体作用在与之接触的表面上的水压力称为 静水压力P.
在静水中表面积为A的水体,微小面积△A所受作 用力△P, P P 该微小面积上的平均压强为 A 当△A无限缩小至趋于点K时,K点的静水压强
p1
2
2
图2-5
圆管中有压流动的总水头线与测压管水头线
第四节 流动阻力和水头损失
能量损失的计算
沿程损失
hf
l v2 d 2g
沿管长 均匀发 生
局部损失
局部障 碍引起 的
hm
v2 2g
整个管路的能量损失等于:
各管段的沿程损失和局部 损失之和
第五节 流动阻力和水头损失
整个管路的能量损失等于各管段的沿程损失和局部损失之和.

传热学课件课件

传热学课件课件

传热学课件引言传热学是研究热量传递规律的学科,是工程热力学和流体力学的重要分支。

在实际工程应用中,传热问题无处不在,如能源转换、化工生产、建筑环境等领域。

因此,掌握传热学的基本原理和方法,对于工程技术人员来说具有重要意义。

本文将简要介绍传热学的基本概念、原理和方法,并探讨其在工程实际中的应用。

一、传热学基本概念1.热量传递方式热量传递方式主要包括三种:导热、对流和辐射。

(1)导热:热量通过固体、液体或气体的分子碰撞传递,其传递速率与物体的导热系数、温度差和物体厚度有关。

(2)对流:热量通过流体的宏观运动传递,其传递速率与流体的流速、密度、比热容和温度差有关。

(3)辐射:热量以电磁波的形式传递,其传递速率与物体表面的温度、发射率和距离有关。

2.传热方程传热方程是描述热量传递规律的数学表达式,主要包括傅里叶定律、牛顿冷却公式和斯蒂芬-玻尔兹曼定律。

(1)傅里叶定律:描述导热过程中热量传递的规律,公式为Q=-kA(dT/dx),其中Q表示热量传递速率,k表示导热系数,A表示传热面积,dT/dx表示温度梯度。

(2)牛顿冷却公式:描述对流过程中热量传递的规律,公式为Q=hA(TwTf),其中Q表示热量传递速率,h表示对流换热系数,Tw 表示固体表面温度,Tf表示流体温度。

(3)斯蒂芬-玻尔兹曼定律:描述辐射过程中热量传递的规律,公式为Q=εσA(T^4T^4),其中Q表示热量传递速率,ε表示发射率,σ表示斯蒂芬-玻尔兹曼常数,T表示物体表面温度。

二、传热学原理和方法1.传热问题的分类传热问题可分为稳态传热和非稳态传热两大类。

(1)稳态传热:系统内各部分温度不随时间变化,热量传递速率恒定。

(2)非稳态传热:系统内各部分温度随时间变化,热量传递速率随时间变化。

2.传热分析方法(1)解析法:通过对传热方程的求解,得到温度分布和热量传递速率。

适用于简单几何形状和边界条件的问题。

(2)数值法:采用数值离散化方法求解传热方程,适用于复杂几何形状和边界条件的问题。

流体力学与传热学详解

流体力学与传热学详解

/ m2
30
传热学
两个思考题
热量到底是怎么流动的? 怎样使热量流得快(慢)一点?
32
0.绪论
本节内容主要讲述热能传递的基本理论知识; 概述
研究热量传递规律的科学,主要有热量传递 的机理、 规律、计算和测试方法
热力学第二定律: 热量可以自发地由高温热源传给低温热源 有温差就会有传热, 温差是热量传递的动力
(c) 圆角 0.2
(d) 流线形 0.04 22
管道出口损失系数ζ
1.0
23
管道变截面结构损失系数
管道突扩结构损 失系数ζ
管道突缩结构损 失系数ζ
24
90o 弯头损失系数ζ
25
4. 复合管系
串联管系:
Q1 Q2 Q3
hw,AB hw1 hw2 hw3
1.沿程阻力——沿程损失(长度损失、摩擦损失)
hf

l d
v2 2g
p f

l d

v2 2

λ——沿程阻力系数
2.局部阻力——局部损失
hj

v2 2g

pj


v2 2

达西-魏斯巴赫公式
ζ——局部阻力系数
6
沿程阻力
沿程阻力系数跟黏性有关—— 牛顿粘性实验


gz2
hw
he ws
hw u2 u1 q 0
管道流动损失 hw hf hj
hf : 直管中沿程流动损失(J/kg) hj : 附加管件损失(J/kg)
hf

l de
V2 2
4A de U
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2) 物理条件 物性参数λ、ρ 、c 和η 的数值,是否随温度和压力变化;有无 内热源、大小和分布
3) 时间条件 稳态对流换热过程不需要时间条件—与时间无关
4) 边界条件 第一类边界条件:已知任一瞬间对流换热过程边界上的温度值 第二类边界条件:已知任一瞬间对流换热过程边界上的热流密度值
§8.3 边界层概念及边界层换热微分方程组
计算出在参考温差下的对流传热系数
温度梯度或温度场取决于流体热物性、流动状态(层流或湍流)、流速的大 小及其分布、表面粗糙度等。
温度场取决于流场
§8.2 对流传热问题的数学描写
1、假设条件
为简化分析,对于影响常见对流换热问题的主要因素,做如下假设:
1) 流动是二维的; 2) 流体为不可压缩的牛顿型流体; 3) 流体物性为常数,无内热源;
比拟法 数值法
通过研究动量传递及热量传递的共性或类似特性,以建立起表 面传热系数见的相互关系的方法。
近20年内得到迅速发展,并将会日益显示出其重要的作用。
7、如何从解得的温度场来计算对流传热系数
当粘性流体在壁面上流动时,由于粘性的作 用,流体的流速在靠近壁面处随离壁面的距 离的缩短而逐渐降低;
在贴壁处被滞止,处于无滑移状态(即:y=0, u=0) 在这极薄的贴壁流体层中,热量只能以导热方式传递
c 数值解法:近年来发展迅速 可求解很复杂问题:三维、紊流、变物性、超音速
2)动量传递和热量传递的类比法 利用湍流时动量传递和热量传递的类似规律,由湍流时的局部 表面摩擦系数推知局部表面传热系数
3)实验法 用相似理论指导
4、对流传热过程的单值性条件
完整数学描述:对流传热微分方程组+ 单值性条件
1) 几何条件 平板、圆管;竖直圆管、水平圆管;长度、直径等
能量守恒方程
惯性力
体积力 压力梯度 粘性力
t u x t v y t a x 2t2 y 2t2
能量变化 对流项
导热项
3、表面传热系数的确定方法
1)微分方程式的数学解法
a 精确解法(分析解): 根据边界层理论,得到边界层微分方程组常微分方程求解
b 近似积分法: 假设边界层内的速度分布和温度分布,解积分方程
2) 必须有直接接触(流体与壁面)和宏观运动;也必须有温差 3) 由于流体的黏性和受壁面摩擦阻力的影响,紧贴壁面处会形成
速度梯度很大的边界层;
3、对流传热的基本计算式
牛顿 冷却公式
hA (twt)
q A h(tw t)
[W ] [W m 2 ]
注:h的大小反映了对流传热能力的强弱,而非物性参数。
4、表面传热系数(对流换热系数)
定义式: h[A(twt)]
只是对流传热系数h的一种定义方式,并未揭示出h与 影响它的各物理量之间的内在关系
对流传热的核心问题:如何确定h及增强换热的措施
5、影响对流传热系数h 的各种因素
流体流动起因 流体的流动状态 流体有无相变 换热表面的几何因素 流体的物理性质
1) 流动起因
h强制h自然
自然对流:流体因各部分温度不同
而引起的密度差异所产
生的流动
强制对流:由外力作用所产生的流
动(泵、风机等)
2) 流动状态
h紊流 h层流
层流运动:流体微团沿着主流方向做有规 则的分层运动
湍流运动:流体质点做复杂无规则的运动
3) 流体有无相变
h相变 h单相
单相换热:流体显热的变化实现对流换热中的热量
qw,x


t y
w,x
流体的热导 W(率 m C)
t yw,x—在坐(x标 ,0处 ) 流体的温度梯度
壁面与流体之间的对流传热量(根据牛顿冷却公式)
qw,xhx(tw- t)
h x— 壁x处 面局部表 W ( 面 m 2C 传 ) 热
1、流动边界层
1) 物理现象 当粘性流体在壁面上流动时,由于粘性的作用,在靠近壁面处流速 逐渐减小,而在贴壁处流体将被滞止而处于无滑移状态
u
y
4) 流速不高,忽略粘性耗散(摩擦损失) ;
4个未知量:速度 u, v;温度 t;压力 p
需要4个方程
连续性方程 (1) 动量方程 (2) 能量方程 (1)
2、对流传热微分方程组
连续性方程
u v 0 x y
ቤተ መጻሕፍቲ ባይዱ
动量方程
uu u xv u yFx x p x 2u 2 y2u 2 vu x vv v yFy p y x2v2 y2v2
工程流体力学与传热学
信息学院·次英
第八章 对流传热的理论基础
§8.1 对流传热概说
1、对流传热概念
流体流经固体时流体与固体壁面之间的热量传递现象 对流传热与热对流不同,既有热对 流,也有导热;不是基本传热方式 实例:暖气管道;电子器件冷却等
2、对流传热的特点
1) 导热与热对流同时存在;(边界层 u=0)
在稳定的状态下 壁面与流体之间的对流传热量就等于贴壁处静止流体层的导热量
hx
tw

t
yt w,x
对流传热过程微分方程式
hx取决于流体热导率、温度差和贴壁的温度梯度
要求解一个对流换热问题,获得该问题的对流传热系数或交换的热流量
获得流场的温度分布,即温度场
确定壁面上的温度梯度
h f(v ,tw ,tf, ,c p , , ,,l)
对流传热分类树
6、对流传热的研究方法
分析法 对描写某一类对流换热问题的偏微分方程及相应的定解条件 进行数学求解,从而获得速度场和温度场的分析解的方法。
实验法
目前工程设计的主要依据。 为了减少实验次数,提高实验测定结果的通用性,实验测定应 当在相似原理指导下进行。
变换
相变换热:在有相变的换热过程中,流体相变热
(潜热)的释放或吸收常常其主要作用
4) 换热表面的几何因素
换热表面的形状,大小,换热表面与流体运动方向的相对位置以及换热表 面的状态(光滑或粗糙)
5) 流体的物理性质 流体的热物理性质对换热的影响很大: 热导率λ ;密度ρ;比热容c ; 动力粘度η ;运动粘度ν ;体胀系数β 综上所述,表面传热系数是众多因素的函数
相关文档
最新文档