画pcb的注意事项
关于画PCB一些常见的要注意的问题总结

关于画PCB一些常见的要注意的问题总结1、电源①画PCB时,一定要搞清楚电源主干线的流向,一定是先经过滤波电容再到设备,一般都是先经过大电容然后经过小电容,再到负载设备;②电源走线线宽一定要足够,要做加粗处理,否则可能存在供电瓶颈。
2、晶振①晶振电路一般采用π型滤波形式,且电容放在晶振前面,信号先经过电容再到IC管脚;②走线要采取差分走线;③晶体走线需要加粗处理,8-12mil ;④对信号要采取包地处理,每隔50mil放置一个屏蔽地过孔;⑤晶体晶振本体下方所有层原则上不允许走线,尤其是关键信号线。
3、继电器①继电器是干扰源,需要净空走线,即本体下方尽量不走线也不敷铜,并且走线要加粗。
4、USB①USB的D+和D-要走差分线,要求90欧姆差分阻抗。
5、走线问题①不允许走线出现锐角和直角;②走线时要尽量保证信号线之间形成的环路面积最小;③走线要均匀,尽量满足3W原则,即相邻线的中心距不少于3倍线宽,可保证70%的电场不互相干扰;④IC引脚之间不要走线;⑤贴片电阻电容焊盘之间不要走线。
6、丝印①芯片的1脚标识一定要清楚明白;②板子上的丝印不要相互重叠,要保证关键丝印的完整性;③丝印不要放在器件正下方,那样丝印会被器件遮挡;④没必要的丝印要删除;⑤常用丝印的字宽和字高比例:4/25mil、5/30mil、6/45mil。
7、敷铜①敷铜后,一般要将IC管脚间的铜割除干净;②铜皮与过孔一般采用全连接方式以保证地平面的完整性,铜皮与焊盘一般采用十字连接方式,有利于均匀散热和焊接;③一些尖岬铜皮,可以放置几个过孔充分的和底层的铜皮连接;④板子上的孤铜要去掉。
8、布局①按功能模块化布局;②对相关模块如有必要,则需要在丝印层进行功能标识;9、过孔①元器件的GND管脚周围一般需要添加几个回流过孔;②过孔之间距离不要太近;③过孔尽量不要放到焊盘上,容易造成漏锡和焊接不良;④过孔通常要做盖油处理,方法:打开过孔属性,将Solder Mask Expansions项下的两个选项都勾选,这两个选项分别是Force complete tenting on top和Force complete tenting on bottom。
PCB设计注意事项及经验大全

PCB设计注意事项及经验大全一、布线规则与原则1.信号与电源线要分离:信号线和电源线要分开布局,以避免相互干扰。
2.高速信号线要走短且直:高速信号线尽量缩短长度,减小传输时延,且线路要尽量直线走向,减少信号反射和串扰。
3.临近信号要保持足够的间距:不同信号线之间要保持足够的间距,以防止互相干扰。
4.差分线要相邻走向:差分线要尽量保持相邻走向,减小差分信号的共模噪声。
5.地线布线要低阻抗:地线是重要的回路,要保持低阻抗,尽量缩短环路和减小地回流路径长度。
二、元件布局与散热1.元件布局要紧凑:元件要尽量集中布置,减少信号线长度和信号间的干扰。
2.散热要考虑:对于发热较大的元件,如功率放大器、处理器等,要合理布局散热器件,以保证稳定工作。
3.保持压降相对较小:电源接入处的元件要尽量靠近,以减小功率线上的压降,提供充足的电源稳定性。
三、层间布局与屏蔽1.层间走线布局:对于复杂的PCB设计,应合理利用多层间的铜层,将信号线、电源线、地线等分层布置,以减小干扰。
2.地线屏蔽:对于高频信号,可以在其周围增加地线屏蔽,减小信号的辐射和受到外部干扰的可能性。
四、防静电与防EMC干扰1.防静电:PCB设计中需要注意防止静电累积,合理布局接地,增加防静电保护元件。
2.防EMC干扰:合理规划布局,合理安排信号线与电源线的分布,使用屏蔽罩、滤波器等元件,以减小电磁干扰对电路的影响。
五、选择合适的材料和工艺1.PCB材料选择:根据实际需求选择合适的PCB材料,如高频电路应使用特殊材料,而一般电路可以使用常规材料。
2.焊盘和线宽:根据元件要求和电流大小选择适当的焊盘和线宽,以保证信号传输的稳定性和电流的可靠传输。
经验总结:1.保持良好的文档记录:对于每次设计的PCB,要保持详细的文档记录,包括设计思路、参数、布局规则等,以备后期维护和修改。
2.多层板设计注意:在进行多层板设计时,要仔细考虑信号和电源的分层布局,以便将高速信号分离,同时要避免不必要的层间换线,以减少成本和复杂性。
PCB设计原则与注意事项

PCB设计原则与注意事项一、PCB设计原则:1.尽量缩短信号线长度:信号线越短,抗干扰能力越强,同时可以降低信号传输的延迟,提高信号传输速率。
因此,在进行PCB布局时,应尽量缩短信号线的长度。
2.保持信号完整性:在高速信号传输时,需要考虑信号的传输带宽、阻抗匹配等问题,以减少信号损耗和反射。
应尽量避免信号线的突变和长距离平行走线,采用较大的走线宽度和间距,以降低串扰和母线阻抗不匹配等问题。
3.合理划分电源与地线:电源和地线是PCB设计中的关键因素。
一方面,为了降低电源线和信号线之间的干扰,应将它们相互分隔,避免交叉走线。
另一方面,为了保持电源和地线的低阻抗,应采用够粗的金属层和走线宽度,并合理布局电源与地线。
4.规避高频干扰:高频信号很容易产生干扰,可通过以下方法来规避:(1)合理布局和分配信号线与地线,尽量减少信号走线的面积。
(2)在PCB板上增加电源和信号屏蔽,尽量避开信号线和输入/输出端口。
(3)采用地面屏蔽和绕线封装,以减少漏磁和辐射。
5.考虑散热问题:在进行高功耗电路的设计时,应合理布局散热元件,以保证其有效散热。
尽量将散热元件如散热片与大地层紧密接触,并增加足够的散热通道,以提高散热效果。
此外,还应根据安装环境和工作条件,选择合适的散热材料和散热方式。
6.设计可靠性:设计时应考虑PCB板的可靠性,包括电路连接的牢固性、电子元件的固定可靠性和抗振性、PCB板的抗冲击性等。
为了保证可靠性,应合理布局和固定电子元件,并留足够的可靠连接头用于焊接,避免对电子元件造成损害。
二、PCB设计注意事项:1.保持走线的一致性:尽量保持走线的宽度、间距和走向一致,以提高走线的美观性和可维护性。
2.合理分配电源与地线:根据电路的要求,合理分配电源和地线,避免电源过于集中或不均匀,以减少电源线的压降和供电不稳定等问题。
3.考虑EMC问题:电磁兼容性(EMC)是一个重要的问题,应根据产品的要求,选用合适的屏蔽和过滤技术,以降低电磁干扰或受到的干扰。
画pcb要注意的点

画pcb要注意的点
在设计和绘制PCB(Printed Circuit Board,印刷电路板)时,有许多重要的注意事项需要考虑,以确保最终的电路板能够正常工
作并符合预期的性能要求。
以下是一些关于画PCB时需要注意的重点:
1. 确保电路板尺寸和布局合适:在设计PCB时,首先要确保电
路板的尺寸和布局能够容纳所有的元件和连接线路,同时要考虑到
电路板的外部尺寸和形状,以确保适配于最终的应用环境。
2. 确保元件布局合理:在布局元件时,要注意避免元件之间的
干扰和干扰,尽量使元件之间的距离足够远,以减少电磁干扰和串
扰的影响。
3. 确保连接线路设计合理:连接线路的设计要考虑到信号传输
的稳定性和可靠性,要避免过长的连接线路和过多的转弯,以减少
信号衰减和延迟。
4. 确保地线和电源线的设计:地线和电源线是PCB设计中非常
重要的部分,要确保地线和电源线的布局合理,避免出现地回路和
电源噪声的问题。
5. 确保PCB层间连接设计:在多层PCB设计中,要注意层间连
接的设计,确保信号传输的稳定性和可靠性,同时要避免层间连接
导致的信号干扰和串扰。
6. 确保元件焊接质量:在焊接元件时,要确保焊接质量良好,
避免出现焊接不良和短路的问题,以确保电路板的正常工作。
7. 确保PCB的阻抗匹配:在高频电路设计中,要注意PCB的阻抗匹配,确保信号传输的稳定性和可靠性。
总的来说,设计和绘制PCB时需要综合考虑电路布局、元件布局、连接线路设计、地线和电源线设计、层间连接设计、元件焊接质量和阻抗匹配等方面的因素,以确保最终的电路板能够正常工作并符合预期的性能要求。
pcb的注意事项

pcb的注意事项PCB(Printed Circuit Board)作为电子产品的基础组成部分,其设计和制作过程中需要注意一些重要事项。
本文将从不同的角度,对PCB的注意事项进行详细阐述,以帮助读者更好地了解和应用PCB技术。
一、PCB设计注意事项1. 尺寸和布局:在设计PCB时,应根据电子产品的尺寸要求进行布局,合理安排各个元件的位置和大小,确保线路的通路畅通。
同时,应保持线路的短小精悍,以减少信号干扰和功耗。
2. 电源和地线:电源和地线是PCB设计中最重要的两个元件。
电源线应尽量短,避免与其他信号线交叉或平行布线,以减少电磁干扰。
地线应做到整体连续,最好是一个面全连通。
3. 线宽和间距:PCB线宽和间距的选择直接影响信号传输和电流承载能力。
一般情况下,线宽和间距应根据电流大小和所需电阻值选择合适的数值,以确保线路的稳定性和可靠性。
4. 焊盘和引脚:在PCB设计中,焊盘的大小和形状应根据元件的引脚尺寸和形状进行合理设计,以确保焊接质量和可靠性。
同时,焊盘之间的间距应足够,以免导致焊接短路或漏焊等问题。
5. 电磁兼容性:在PCB设计过程中,应考虑到电磁兼容性(EMC)的要求,避免电磁干扰对其他电子设备的影响。
可以采用屏蔽罩、地线切割、分区等措施来减少电磁辐射和敏感度。
二、PCB制作注意事项1. 材料选择:在PCB制作过程中,应选择符合要求的高质量材料,如FR-4玻璃纤维覆铜板、有机硅基材料等。
这些材料具有良好的绝缘性能、机械强度和耐高温性能。
2. 印刷工艺:PCB的印刷工艺是保证线路精度和质量的关键。
应选择适合的印刷工艺,如干膜光刻、电镀、蚀刻等,确保线路的精确度和可靠性。
3. 钻孔和插孔:在PCB制作中,钻孔和插孔的质量直接影响到元件的安装和连接。
应选择合适的钻孔和插孔工艺,确保孔径和孔位的准确度和精度。
4. 焊接质量:焊接是PCB制作中最重要的环节之一。
应选择合适的焊接工艺和设备,确保焊接质量和可靠性。
PCB画板流程总结及注意事项

1.拿到一个新板,首先花一点时间仔细把原理图看一遍。
看原理图的方法,可以从任意一个接口入手,通过网络查看的方式,把接到这个接口上的所有网络,一直向前查看,直到主芯片。
这样将所有接口网络疏理完,整个原理图也就差不多疏理完了。
这样接下来的PCB布局布线,自己心中才有一定的基础。
并且在PCB的布局布线过程中要随时查看原理图,以原理图为基础。
2.PCB布局开始前,先看看原始的文档,有没有可以复用的,可以复用的先保留(比如很多情况下的DDR和主芯片部分可以复用),其不能复用的全部打散拉出去,删除不必要的连线及过孔。
在处理这些时可以关掉其他没必要的层面及元素(Solder mask Top, Solder mask Bottom,lines,text,ref,type,attributes,keepout)。
3.接下来,把所有的结构件定位好。
把主芯片小系统按照各接口数据流最顺的方式定位好方向及位置。
把各接口及排插按照要求(组装及功能要求)摆放好。
4.从原理图入手,将各个功能模块单独布局好,先不用考虑放到一起去,可以在板外布局。
5.各功能模块布局好后,从各接口入手,将功能模块按照数据流方向及走线最顺的原则整合在一起。
当然在整合的过程中,各功能模块的布局可以微调,以达到各模块之间合理衔接,整板布局均匀、美观、合理的效果。
6.各接口及排插上的附属器件(比如各接口排插上的磁珠,滤波电容,面板排插的器件等)可以与接口排插一起布局好,作为一个整体一起移动。
7.主芯片的滤波电容可以先不管,全部拉到外面,等主芯片所有的信号管脚都扇出完成,最后处理电源的时候再把电容一个一个地放进去。
当然在扇出的过程中,要给这些电源管脚打出过孔,预留出空间。
8.还有一些上下拉电阻,也可以先不管,根据走线时的情况再放进去。
9.布局的过程中,重要的一点还要考虑电源的规划,要计划好哪些电源通过平面划分,哪些要通过走线,各相关的电源(同一个电源通过磁珠隔离给不同模块供电)尽可能放在一起,要有明确的电流流向。
pcb设计注意事项

pcb设计注意事项PCB设计是电子产品开发的关键步骤之一,它直接影响到产品的性能和稳定性。
以下是一些PCB设计过程中需要注意的事项:1. 尽量减少线路长度:线路越短,信号传输速度越快,抗干扰能力越强。
因此,在PCB设计中要尽量减少线路长度,布局合理,避免交叉和环路。
2. 保持信号完整性:思考如何保持信号在传输过程中的完整性是PCB设计的重要任务。
通过使用差分信号,增加屏蔽层等方法来减少信号干扰。
此外,对于高频信号,还可以通过使用地孔和绝缘隔离来防止信号的串扰。
3. 尽量减少电磁干扰:选择好的电源供应、分割地面平面、合理布置电源线路等措施可以减少电磁干扰。
还可以通过增加屏蔽层和使用屏蔽罩来进一步降低电磁辐射。
4. 考虑散热问题:在设计PCB布局时,需要合理安排散热元件的位置,以确保电路的稳定性和长寿命。
将热敏元件放在最佳位置,考虑散热器的设计和安装。
5. 选择合适的PCB材料:在PCB设计时,应选择具有良好性能的材料。
根据电路的需要选择合适的介电常数及层压板适用层。
6. 确保电源稳定:电路稳定性很大程度上取决于电源的质量。
因此,在PCB设计中,应合理安排电源线路,减少电流和电压的波动。
7. 考虑EMC兼容性:考虑到PCB电路的电磁兼容性,防止电磁干扰对其他设备的影响。
这一点在设计中要引入合适的滤波器、屏蔽等元件,提高电路的EMC兼容性。
8. 合理选择元器件:在PCB设计中,需要根据电路的需要选择合适的元器件。
选择高质量的元器件,可以提高电路的性能和稳定性。
9. 可维护性设计:在PCB设计时,要考虑到后期维护和修复的需要。
尽量采用常见的元器件,合理安排元件的布局,便于诊断和更换。
10. 保护电路:在PCB设计中要考虑到电路的安全性。
在设计时使用合适的保护电路,例如过流保护、过压保护和过温保护等。
总之,PCB设计是一个综合性的工作,需要综合考虑电路的性能、稳定性、可维护性和安全性等因素。
通过专业的设计方法和良好的实践,可以提高PCB设计的质量和性能。
PCB画板心得及画板注意事项

PCB画板心得及画板注意事项1. 引言在电子设计中,PCB(Printed Circuit Board)是非常重要的一环,它承载着电路元件的安放、连线以及其他电子元件的连接。
一个好的PCB设计能够提高电路的性能、可靠性和生产效率。
在进行PCB设计过程中,画板是其中的一个关键步骤。
本文将分享一些PCB画板的经验和注意事项,帮助读者更好地完成PCB设计。
2. PCB画板心得2.1 画板尺寸选择在选择画板尺寸时,需要根据电路的大小和元件的布局来确定。
一般来说,应该尽量选择紧凑的画板尺寸,以降低成本并节省空间。
同时,要确保画板尺寸能够容纳所有必要的元素,如电路元件、连接器和电源模块等。
2.2 元件布局和连线规划在进行元件布局时,应该遵循一些常见的规则。
首先,应尽量避免元件之间的重叠,以免发生短路。
其次,对于频率较高的元件,应尽量减少元件之间的电磁干扰,可以考虑增加地线和屏蔽层。
最后,在连线规划时,应尽量使用直线连接,避免过长的连线以减小信号衰减。
2.3 基本规范和标准在进行PCB设计时,应遵循一些基本规范和标准,以确保设计的质量和可靠性。
例如,合理选择元件的封装类型和尺寸,避免过小或过大的封装对设计造成影响。
此外,应尽量遵循IPC规范,确保设计符合工业标准。
2.4 选用合适的材料选择合适的PCB材料对于电路设计至关重要。
一般来说,常见的PCB材料有FR4、CEM-3和高频玻璃纤维板等。
不同的材料具有不同的性能和特点,应根据实际需求选择合适的材料。
此外,还应注意材料的厚度、热膨胀系数和耐温性能等参数。
2.5 适当考虑散热问题对于一些功率较大的电路设计,散热是一个需要特别考虑的问题。
在画板设计中,需要留出足够的散热区域,以保证电路的稳定工作。
可以考虑增加散热片或者散热孔等散热措施,以提高散热效果。
3. PCB画板注意事项3.1 避免过于复杂的设计在进行PCB设计时,应该尽量避免过于复杂的设计。
过于复杂的设计不仅增加了制造成本,还会增加电路的故障率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PCB设计基础教程目录1.高速PCB设计指南之一2.高速PCB设计指南之二3.PCB Layout指南(上)4.PCB Layout指南(下)5.PCB设计的一般原则6.PCB设计基础知识7.PCB设计基本概念8.pcb设计注意事项9.PCB设计几点体会10.PCB LAYOUT技术大全11.PCB和电子产品设计12.PCB电路版图设计的常见问题13.PCB设计中格点的设置14.新手设计PCB注意事项15.怎样做一块好的PCB板16.射频电路PCB设计17.设计技巧整理18.用PROTEL99制作印刷电路版的基本流程19.用PROTEL99SE 布线的基本流程20.蛇形走线有什么作用21.封装小知识22.典型的焊盘直径和最大导线宽度的关系23.新手上路认识PCB24.新手上路认识PCB<二>高速PCB设计指南之一高速PCB设计指南之一第一篇 PCB布线在PCB设计中,布线是完成产品设计的重要步骤,可以说前面的准备工作都是为它而做的,在整个PCB中,以布线的设计过程限定最高,技巧最细、工作量最大。
PCB布线有单面布线、双面布线及多层布线。
布线的方式也有两种:自动布线及交互式布线,在自动布线之前,可以用交互式预先对要求比较严格的线进行布线,输入端与输出端的边线应避免相邻平行,以免产生反射干扰。
必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合。
自动布线的布通率,依赖于良好的布局,布线规则可以预先设定,包括走线的弯曲次数、导通孔的数目、步进的数目等。
一般先进行探索式布经线,快速地把短线连通,然后进行迷宫式布线,先把要布的连线进行全局的布线路径优化,它可以根据需要断开已布的线。
并试着重新再布线,以改进总体效果。
对目前高密度的PCB设计已感觉到贯通孔不太适应了,它浪费了许多宝贵的布线通道,为解决这一矛盾,出现了盲孔和埋孔技术,它不仅完成了导通孔的作用,还省出许多布线通道使布线过程完成得更加方便,更加流畅,更为完善,PCB 板的设计过程是一个复杂而又简单的过程,要想很好地掌握它,还需广大电子工程设计人员去自已体会,才能得到其中的真谛。
1 电源、地线的处理既使在整个PCB板中的布线完成得都很好,但由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,有时甚至影响到产品的成功率。
所以对电、地线的布线要认真对待,把电、地线所产生的噪音干扰降到最低限度,以保证产品的质量。
对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因,现只对降低式抑制噪音作以表述:(1)、众所周知的是在电源、地线之间加上去耦电容。
(2)、尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最经细宽度可达0.05~0.07mm,电源线为1.2~2.5 mm对数字电路的PCB可用宽的地导线组成一个回路, 即构成一个地网来使用(模拟电路的地不能这样使用) (3)、用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。
或是做成多层板,电源,地线各占用一层。
2 数字电路与模拟电路的共地处理现在有许多PCB不再是单一功能电路(数字或模拟电路),而是由数字电路和模拟电路混合构成的。
因此在布线时就需要考虑它们之间互相干扰问题,特别是地线上的噪音干扰。
数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整人PCB对外界只有一个结点,所以必须在PCB内部进行处理数、模共地的问题,而在板内部数字地和模拟地实际上是分开的它们之间互不相连,只是在PCB与外界连接的接口处(如插头等)。
数字地与模拟地有一点短接,请注意,只有一个连接点。
也有在PCB上不共地的,这由系统设计来决定。
3 信号线布在电(地)层上在多层印制板布线时,由于在信号线层没有布完的线剩下已经不多,再多加层数就会造成浪费也会给生产增加一定的工作量,成本也相应增加了,为解决这个矛盾,可以考虑在电(地)层上进行布线。
首先应考虑用电源层,其次才是地层。
因为最好是保留地层的完整性。
4 大面积导体中连接腿的处理在大面积的接地(电)中,常用元器件的腿与其连接,对连接腿的处理需要进行综合的考虑,就电气性能而言,元件腿的焊盘与铜面满接为好,但对元件的焊接装配就存在一些不良隐患如:①焊接需要大功率加热器。
②容易造成虚焊点。
所以兼顾电气性能与工艺需要,做成十字花焊盘,称之为热隔离(heat shield)俗称热焊盘(Thermal),这样,可使在焊接时因截面过分散热而产生虚焊点的可能性大大减少。
多层板的接电(地)层腿的处理相同。
5 布线中网络系统的作用在许多CAD系统中,布线是依据网络系统决定的。
网格过密,通路虽然有所增加,但步进太小,图场的数据量过大,这必然对设备的存贮空间有更高的要求,同时也对象计算机类电子产品的运算速度有极大的影响。
而有些通路是无效的,如被元件腿的焊盘占用的或被安装孔、定们孔所占用的等。
网格过疏,通路太少对布通率的影响极大。
所以要有一个疏密合理的网格系统来支持布线的进行。
标准元器件两腿之间的距离为0.1英寸(2.54mm),所以网格系统的基础一般就定为0.1英寸(2.54 mm)或小于0.1英寸的整倍数,如:0.05英寸、0.025英寸、0.02英寸等。
6 设计规则检查(DRC)布线设计完成后,需认真检查布线设计是否符合设计者所制定的规则,同时也需确认所制定的规则是否符合印制板生产工艺的需求,一般检查有如下几个方面:(1)、线与线,线与元件焊盘,线与贯通孔,元件焊盘与贯通孔,贯通孔与贯通孔之间的距离是否合理,是否满足生产要求。
(2)、电源线和地线的宽度是否合适,电源与地线之间是否紧耦合(低的波阻抗)?在PCB中是否还有能让地线加宽的地方。
(3)、对于关键的信号线是否采取了最佳措施,如长度最短,加保护线,输入线及输出线被明显地分开。
(4)、模拟电路和数字电路部分,是否有各自独立的地线。
(5)后加在PCB中的图形(如图标、注标)是否会造成信号短路。
(6)对一些不理想的线形进行修改。
(7)、在PCB上是否加有工艺线?阻焊是否符合生产工艺的要求,阻焊尺寸是否合适,字符标志是否压在器件焊盘上,以免影响电装质量。
(8)、多层板中的电源地层的外框边缘是否缩小,如电源地层的铜箔露出板外容易造成短路。
******************************************************************************************** ***第二篇 PCB布局在设计中,布局是一个重要的环节。
布局结果的好坏将直接影响布线的效果,因此可以这样认为,合理的布局是PCB设计成功的第一步。
布局的方式分两种,一种是交互式布局,另一种是自动布局,一般是在自动布局的基础上用交互式布局进行调整,在布局时还可根据走线的情况对门电路进行再分配,将两个门电路进行交换,使其成为便于布线的最佳布局。
在布局完成后,还可对设计文件及有关信息进行返回标注于原理图,使得PCB板中的有关信息与原理图相一致,以便在今后的建档、更改设计能同步起来, 同时对模拟的有关信息进行更新,使得能对电路的电气性能及功能进行板级验证。
--考虑整体美观一个产品的成功与否,一是要注重内在质量,二是兼顾整体的美观,两者都较完美才能认为该产品是成功的。
在一个PCB--布局的检查印制板尺寸是否与加工图纸尺寸相符?能否符合PCB制造工艺要求?有无定位标记?元件在二维、三维空间上有无冲突?元件布局是否疏密有序,排列整齐?是否全部布完?需经常更换的元件能否方便的更换?插件板插入设备是否方便?热敏元件与发热元件之间是否有适当的距离?调整可调元件是否方便?在需要散热的地方,装了散热器没有?空气流是否通畅?信号流程是否顺畅且互连最短?插头、插座等与机械设计是否矛盾?线路的干扰问题是否有所考虑?******************************************************************************************** ***第三篇高速PCB设计(一)、电子系统设计所面临的挑战随着系统设计复杂性和集成度的大规模提高,电子系统设计师们正在从事100MHZ以上的电路设计,总线的工作频率也已经达到或者超过50MHZ,有的甚至超过100MHZ。
目前约50% 的设计的时钟频率超过50MHz,将近20% 的设计主频超过120MHz。
当系统工作在50MHz时,将产生传输线效应和信号的完整性问题;而当系统时钟达到120MHz时,除非使用高速电路设计知识,否则基于传统方法设计的PCB将无法工作。
因此,高速电路设计技术已经成为电子系统设计师必须采取的设计手段。
只有通过使用高速电路设计师的设计技术,才能实现设计过程的可控性。
(二)、什么是高速电路通常认为如果数字逻辑电路的频率达到或者超过45MHZ~50MHZ,而且工作在这个频率之上的电路已经占到了整个电子系统一定的份量(比如说1/3),就称为高速电路。
实际上,信号边沿的谐波频率比信号本身的频率高,是信号快速变化的上升沿与下降沿(或称信号的跳变)引发了信号传输的非预期结果。
因此,通常约定如果线传播延时大于1/2数字信号驱动端的上升时间,则认为此类信号是高速信号并产生传输线效应。
信号的传递发生在信号状态改变的瞬间,如上升或下降时间。
信号从驱动端到接收端经过一段固定的时间,如果传输时间小于1/2的上升或下降时间,那么来自接收端的反射信号将在信号改变状态之前到达驱动端。
反之,反射信号将在信号改变状态之后到达驱动端。
如果反射信号很强,叠加的波形就有可能会改变逻辑状态。
(三)、高速信号的确定上面我们定义了传输线效应发生的前提条件,但是如何得知线延时是否大于1/2驱动端的信号上升时间?一般地,信号上升时间的典型值可通过器件手册给出,而信号的传播时间在PCB设计中由实际布线长度决定。
下图为信号上升时间和允许的布线长度(延时)的对应关系。
PCB 板上每单位英寸的延时为 0.167ns.。
但是,如果过孔多,器件管脚多,网线上设置的约束多,延时将增大。
通常高速逻辑器件的信号上升时间大约为0.2ns。
如果板上有GaAs芯片,则最大布线长度为7.62mm。
设Tr 为信号上升时间, Tpd 为信号线传播延时。
如果Tr≥4Tpd,信号落在安全区域。
如果2Tpd≥Tr≥4Tpd,信号落在不确定区域。
如果Tr≤2Tpd,信号落在问题区域。
对于落在不确定区域及问题区域的信号,应该使用高速布线方法。
(四)、什么是传输线PCB板上的走线可等效为下图所示的串联和并联的电容、电阻和电感结构。