第6章系统误差计算分析

合集下载

控制工程基础6章

控制工程基础6章
H(S) +
Xor(S)
+ N(S)
+
-
E(S)
G1(S)
G2(S)
X0(S)
设xor (t )是控制系统希望的输出信号,而 xo (t ) 是实际的输出信号, 一般把二者之差定义为 误差信号,记做e(t), e(t) = xor (t ) - xo (t )
m(p) 是理想算子,是认为规 定的。一般情况下, m( s) =1/H(s)。
时的系统输出端的稳态误差。
1 2 例题:求下图所示系统 在1(t), t, 和 t 分别作用下的稳态误差 。 2
五、扰动引起的误差
+
G1(s) N(s) G2(s) Xo(s)
Xi(s) +
+
Y(s) H(s)
要想求稳态偏差,可以利用叠加原理,分别求
出给定信号Xi(s) 和N(s)单独作用时的偏差,然
2 2
对于0型系统,Ka=0,ess=
对于I型系统, Ka=0, ess=
对于II型系统, Ka=K, ess= 1/K 对于III型及以上系统, Ka= , ess= 0
0和I型系统不能跟踪单位斜坡输入,I I型系统能跟踪单 位斜坡输入但有静差,需要III型以上系统才能消除静差。
10 G 例:设有一非单位反馈控制系统, ( s) = s 1 H(s)=Kh,输入为单位阶跃。试求, Kh=1和0.1
结构形式 输入形 式
1 例:设单位反馈控制系统的 G( s) = ,输 2 Ts t 入信sint , 2 试求系统的稳态误差。
为什么? 因为:E(s) = s (s 2 2 )(s 1 ) T T 1 T s T 2 3 1 =- 2 2 2 2 2 2 2 2 1 T 1 s 2 T 1 s 2 T 1 s T 求拉式反变换 T

第六章 控制系统的误差分析和计算.ppt

第六章 控制系统的误差分析和计算.ppt

6.2 输入引起的稳态误差
6.2.1 误差传递函数与稳态误差
➢单位反馈控制系统
输入引起的系统的误差传递函数为
E(s) 1 Xi(s) 1G(s)

E(s) 1 1G(s)
Xi(s)
X i sE(s)源自G(s)X o s
图6-2 单位反馈系统
根据终值定理 e ss lt ie m (t) ls i0s m (E s) ls i0s m 1 G 1 (s)X i(s)
这就是求取输入引起的单位反馈系统稳态误差的方法.需要注意的 是,终值定理只有对有终值的变量有意义.如果系统本身不稳定,用 终值定理求出的值是虚假的.故在求取系统稳态误差之前,通常应 首先判断系统的稳定性.
➢ 非单位反馈控制系统
输入引起的系统的偏差传递函数为:
sXi(s)Y(s)
1
1G(s)H(s)
控制系统的方块图如图6-1所示.实线部分与实际系统有对应关系, 而虚线部分则是为了说明概念额外画出的.
控制系统的误差信号的象函数是 E ( s )s X is X o s (6-1)

偏差信号的象函数是 (s)X is Y s
(6-2)
考虑Xi(s)与Y(s)近似相等,且Y(s)=H(s)Xo(s),得
一般情况下,H为常值,故这时:
e ss
ss
H
例6-1 某反馈控制系统如图6-4,当xi(t)=1(t)时,求稳态误差.
解:该系统为一阶惯性系统,系统稳定.误差传递函数为:
Es 1 1 s
Xi(s) 1G(s) 110 s10 s

X
i
(s)
1 s

e ss ls i0s m s s1X 0 i(s) ls i0s m s s11 s0 0

控制工程基础 第6章 控制系统的误差分析和计算

控制工程基础 第6章 控制系统的误差分析和计算

C0 (s)
N (s)
R(s) B(s)
(s)
-
G1 ( s )
+ G2 (s)
H (s)
e(s) -
C(s)
(b)
误差
C0(s) (s) N(s)
R(s)
1 H(s)
R1(s) C0(s)
E1(s(s))H(s)
E(s)
G1(s)
G2(s) C(s)
(c)
e(s) -+ (s)
H (s)
E(s)
因为偏差 (s) R(s) B(s) H (s)C0 (s) H (s)C(s) H (s)e(s)
这里 R(s) H (s)C0 (s) 是基于控制系统在理想工作情况下
(s) 0 得到的。
即当控制系统的偏差信号 (s) 0 时,该控制系统无调节控制
作用,此时的实际输出信号C(s)就是希望输出信号 C0 (s) 。
G(s)H(s)
i1 nv
sv (Tis 1)
i1
(4)稳态误差系数和稳态误差的总结 (系统在控制信号作用下)
此表概括了0型、Ⅰ型和Ⅱ型反馈控制系统在不同输入信号作用下的
稳态误差。在对角线上,稳态误差为有限值;在对角线以上部分,
稳态误差为无穷大;在对角线以下部分,稳态误差为零。由此表可
以得如下结论:
何改变系统结构?
(s)
- G1 K1
解:(1)给定作用下的误差传递函数为
RE (s)
(s)
R(s)
1
1
K1
K2 s
s s K1K2
当给定输入为单位阶跃输入时,稳态误差为
N (s)
+
G2
K2 s

工程测量课件第6章测量误差基础知识

工程测量课件第6章测量误差基础知识

DAB DAC
SinCSin61 SinBSi8n9
0.875
DAB C
DASCCinoBsC 5S0Ci8no69s 1 24.244
DAB B
DACSSiinn2C BCosB 50SSin6in218C9o8s9
0.763
利用误差传播定律公式计算
m D A B 0 .82 7 0 .0 5 2 2 2 .2 4 2 4 2 0 4 2 0 .72 6 2 0 3 2 0 .0m 1
计算结果:mA<mB,表明A组的观测精度比B组高。
二、 相对误差
中误差是一种绝对误差,当观测误差与观测值的大小有关时, 必须用相对误差这一精度指标来衡量。
相对误差:某量观测值中误差与相应观测值的比值。即
K m 1 L
L
m
注意:经纬仪测角,不能用相对误差来衡量测角精度。
三、 极限误差 由于偶然误差的分布服从于正态分布,故它们出现的概率为:
m 2 m 半 2 1 2 1 "7"
(6)上、下半测回角值之差的容许误差
取 △容=2m
2 .4 1 7 4 0"
6.4 等精度直接观测值的最可靠值及其中误差
一、观测值的最可靠值
在相同的观测条件下,对真值为X的某量进行n次观测,其观 测值分别为l1 , l2 ,… ln ,。由真误差计算公式可得:
果误差出现符号和大小均相同或按一定的规律变化,这种误 差称为系统误差。 (2)特点:具有积累性,对测量结果的影响大。
(3)处理方法:
1)计算改正;
2)采用一定的观测方法(对称观测);
3)校正仪器,将系统误差限制在允许范围内。
2.偶然误差 在相同观测条件下,对某量进行一系列观测,如果误差出现 符号和大小均不确定,但从大量的误差总体来看,又符合一定 的统计规律,这类误差称为偶然误差。

《自动控制原理》第六章:控制系统误差分析

《自动控制原理》第六章:控制系统误差分析
X i (s)
e(t)=μ(p)xi(t) εxo(t) x (t) - y(t) (t) =
i
X oi (s)
E (s )
(s)
Y (s)
N (s )
拉氏变换: E(s)=μ(s)Xi(s) -Xo(s)
G1 ( s )

G2 (s)
X o (s)
H (s )
ε(s) =Xi(s) - Y(s)
K1

K 2 xo (t ) s
解:(1)由于系统是一阶系统,故只要参数K1K2大于零,则 系统就稳定。
1 1 ]0 (2)输入引起的误差: ess1 lim[s K2 s 0 1 K1 S s
(3)干扰引起的误差:
ess 2 lim sE 2 ( s ) lim[ s
以单位反馈为例,输入引起的误差分析:
X i (s)
E (s )
G (s )
X o (s)
X o ( s) G ( s) 1 E (s) (s) [ X i ( s )] G ( s) 1 G (s) G (s) ess lim sE ( s )
s 0
1 lim[ s X i ( s )] s 0 1 G (s)
ess 1 1 Kv

1 K
( 0) ( 1)
( 2) 0 0型系统误差无穷大;1型有限2型及以上 系统,Kv为无穷,而稳态误差为零。
加速度输入下稳态精度

定义: 静态加速度误差
2 K ( r s 1) ( k s 2 2 k k s 1) r 1
令系统中xi(t)=0 。
X i (s)
(s)
Y (s)

第6章_控制系统的误差分析和计算_6.2输入引起的稳态误差

第6章_控制系统的误差分析和计算_6.2输入引起的稳态误差
根据拉普拉斯变换的终值定理,计算稳态误差: 根据拉普拉斯变换的终值定理,计算稳态误差:
ε ( s)
Φε (s) ⋅ X i ( s) ess = lim e(t ) = lim s ⋅ E ( s ) = lim s ⋅ t →∞ s →0 s →0 H (s) 1 1 = lim s ⋅ ⋅ ⋅ X i (s) s →0 H (s) 1 + G (s) H (s)
单位阶跃输入
X i (s) =
1 s
定义: 定义: 稳态位置
s →0
误差系数 1 1 1 1 ess = lim s = = s → 0 1 + G ( s ) H ( s ) s 1 + lim G ( s ) H ( s ) 1 + K p
单位斜坡输入
e ss = lim s
s →0
X i (s) =
1 , 试求当输入信号为 Ts
1 解 : Φ ε (s) = 1+G (S) =
当 r(t) = 1 t 2时 R(s) = S13 2 (1) E(s) = Φ ε (s)R(s) =
t 2 -T
1 2 S (S+1/T)
=
T S2
-
T2 S
+
T2 S+1/T
e(t) = T e + T(t - T) t → ∞时 ess = ∞ (2) 由终值定理 ess = lim sE(s) = lim s(s+11/T) = ∞
(2)稳态误差系数的概念 )
对于单位反馈系统,偏差就是误差,误差就是偏差,二者往往不加区分。 对于单位反馈系统,偏差就是误差,误差就是偏差,二者往往不加区分。 实际上,单位反馈系统与非单位反馈系统之间可以相互转换,如下所示。 实际上,单位反馈系统与非单位反馈系统之间可以相互转换,如下所示。

第6章 控制系统的误差分析和计算

第6章 控制系统的误差分析和计算
H(s) H(s)
ess = lime(t ) = lims ⋅ E(s) = lims ⋅
t →∞ s→0 s→0
H(s)
ε (s)
H(s)
控制系统的误差分析和计算
输入及干扰引起的稳态误差计算 输入作用下的偏差传递函数及稳态偏差计算
1 ΦRε (s) = = R(s) 1+ G1(s)G2 (s)H(s)
满足由0<K<6,显然调整 值也无法使稳态误差小于 。 调整K值也无法使稳态误差小于 调整 值也无法使稳态误差小于0.1。
式中:K − 开环放大系数; ν − 积分环节个数; 控制系统的误差分析和计算 G0 (s) −开环传递函数去掉积分和比例环节; 输入及干扰引起的稳态误差分析
G 0 (0) = 1 ,
s→0
KP的大小反映了系统在阶跃输入下的稳态精度。KP越大, 的大小反映了系统在阶跃输入下的稳态精度。 越大, ess越小。所以说 P 反映了系统跟踪阶跃输入的能力。 越小。所以说K 反映了系统跟踪阶跃输入的能力。 稳态误差为零的系统称为无差系统,为有限值称有差系统。 稳态误差为零的系统称为无差系统,为有限值称有差系统。 无差系统 有差系统 在单位阶跃作用下, 的系统为有差系统, 在单位阶跃作用下,υ=0 的系统为有差系统, 系统为无差系统 为无差系统。 υ>=1 的系统为无差系统。
ν = 0 → Kν = lims ⋅ Gk (s) = 0 → ess−r = ∞
s→0
ν = 1 → Kν = lims ⋅ Gk (s) = K → ess−r = 1/ K
s→0
ν ≥ 2 → Kν = lims ⋅ Gk (s) = ∞ → ess−r = 0
s→0
Kυ的大小反映了系统在斜坡输入下的稳态精度。K υ越大, 的大小反映了系统在斜坡输入下的稳态精度。 越大, 斜坡输入下的稳态精度 ess越小。所以说 Kυ 反映了系统跟踪斜坡输入的能力。 越小。 反映了系统跟踪斜坡输入的能力。 斜坡输入的能力

控制工程实验-第6章

控制工程实验-第6章
定义静态位置误差系数为
Kpls i0m G (s)G (0)
用静态位置误差系数表示的单位阶跃输入
下的稳态误差为
1
ess 1 K p
K, 0型系统 Kpls i0m G (s)G (0) , I型或 I型 高系 于
ess11Kp
11K, 0,
0型系统 I型或高 I型于 系统
• 如果单位反馈控制系统前向通道中没有包 含积分环节,那么它对阶跃输入的响应中 包含稳态误差。
及稳态误差的方法。
6.2.1 误差传递函数与稳态误差
对于下图所示的单位反馈控制系统,
输入引起的系统误差传递函数为
e(s)X E i((ss))1G 1(s)1G c(s)

E(s) 1 1G(s)
Xi(s)
如果系统稳定,根据终值定理,可计
算稳态误差
1 e ss e( ) ls i0s m (E s) ls i0s m 1 G (s)X i(s)
本节的要点:
掌握有干扰时的稳态误差计算方法。
s1G 2 G (2 s()G s)1 H ssH sN s
根据终值定理,干扰引起的稳态偏差为
则干扰引起ss的lt稳 i 态m 误(t)差为ls i0s m (s)
ess
ss
H 0
干扰引起的稳态误差也可以这样来求:
由于干扰产生的输出全是系统误差,因此, 干扰引起的稳态误差等于干扰产生的稳态 输出乘以(-1)。
静态速度误差系数
系统对单位斜坡(速度)输入的稳态误差是
essls i0m s1G 1(s)s12s1 G (s)
定义静态速度误差系数为
Kv
limsG(s) s0
用静态速度误差系数表示的单位速度输入下
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 机电控制系统误差 分析与计算
6.1 稳态误差的基本概念
概述
稳态误差是系统的稳态性能指标, 是对系统控制精度的度量。
对稳定的系统研究稳态误差才有意义, 所以计算稳态误差以系统稳定为前提。
本章只讨论系统的原理性误差, 不考虑由于非线性因素引起的误差。
通常把在阶跃输入作用下没有原理性稳态误 差的系统称为“无差系统”,而把有原理性稳 态误差的系统称为“有差系统” 。
s(Ts 1)
K
s2
K
Kn
en(s)
E(s) N (s)
1
Tns 1 K
(Tn s
Kns(Ts 1)
1)s(Ts 1)
K
s(Ts 1)
essn
lim
s0
s
en(s)
N (s)
lim
s0
s
(Tn s
Kns(Ts 1) 1) s(Ts 1)
K
1 s2
Kn K
ess
essr
理想情况下输出为xoi (t) ,且 (s) 0

X oi (s)
X i (s) H (s)
6.1 稳态误差的基本概念
+
ε(s) G1(s)
Xi(s) −
Y(s)
Xoi(s) μ(s)
N(s)
+ +
G2(s)
H(s)
+ E(s) −
Xo(s)
(s)
Xi
(s)
X
0 (s)H
(s)
E(s)
Xi (s) H (s)
lim s s0
e (s) R(s) en(s) N(s)
6.2 输入引起的稳态误差
偏差 (s) 传递函数
(s)
1
Xi (s) 1 G1(s)H (s)
Xi(s) + ε(s) −
Y(s)
G1(s) H(s)
Xo(s)
偏差
ss
lim (t)
t
lim
s0
s (s)
lim
s0
s
1
1 G1(s)H (s)
6.1 稳态误差的基本概念
误差E(s):希望输出Xoi(s)和实际输出Xo(s)之差
Xoi(s) +
E(s)
μ(s)
+
ε(s) G1(s)
Xi(s) −
Y(s)
N(s)
+ +
G2(s)

Xo(s)
H(s)
误差信号象函数:E(s) Xoi (s) Xo (s)
偏差信号象函数: (s) Xi (s) Y (s) Xi (s) H (s) Xo(s)
Xi (s)
由于 E(s) (s)
H (s)
若H 是常值
ess
ss
H
误差
ess
lim e(t)
t
lim
s0
sE ( s)
lim
s0
s
1 H(s)
1
1 G1(s)H (s)
Xi(s)
为什么引入偏差的概念?
6.2 输入引起的稳态误差
例题6-1 求当 xi (t) 1(t) 时的稳态误差。
解:系统稳定,误差传递函数
X 0 (s)
(s)
H (s)
Xi (s) H (s)
X
o
(s
)
E(s)
Xi (s) H (s)
X o (s)
E(s)= 1 (s)
H (s)
6.2 输入引起的稳态误差
计算误差 E(s)
Xi(s) + ε(s)
G(s)

Y(s) H(s)
Xo(s)
方法一:
(s) X i (s) (s)G(s)H (s)
6.2 输入引起的稳态误差
静态误差与动态误差
稳态误差
静态误差:ess
lim e(t )
t
e()
动态误差:误差中的稳态分量 es (t )
计算稳态误差的一般方法
(1)判定系统的稳定性
(2)求误差传递函数
e(s)
E(s) ,
R(s)
en (s)
E(s) N (s)
(3)用终值定理求稳态误差
ess
6.2 输入引起的稳态误差
计算误差 E(s) Xi(s) + ε(s)
Xo(s)
G(s)
方法三:

Y(s) H(s)
+ ε(s) -
G(s)H(s)
Xo(s)
(s) Xi (s) G(s)Xi (s)
R(s)
H (s) 1 G(s)H (s) H (s)(1 G(s)H (s))
E(s) (s)
(s) Xi (s)
1 G(s)H (s)
E(s) (s)
1
Xi (s)
H (s) 1 G(s)H (s) H (s)
方法二:
E(s) 希望输出-实际输出
E(s) Xi (s) - G(s)Xi (s)
Xi (s)
H (s) 1 G(s)H (s) H (s)(1 G(s)H (s))
例题6-2
系统结构图如图所示,已知 r(t) = n(t) = t,求系统的稳态误差。
解.
E(s)
1
s(Ts 1)
e (s) R(s) 1
K
s(Ts 1) K
s(Ts 1)
D(s) Ts2 s K 0
s(Ts 1) 1 1
essr
lim
s0
s
e (s)
R(s)
lim
s0
s
r(t) A1(t)
ess1
lim s s0 s(Ts 1) K
s
0
r(t) A t
s(Ts 1) A A
ess 2
lim
s0
s
s(Ts 1)
K
s2
K
r(t) A t2 2
s(Ts 1) A
e ss 3
lim
s0
s
s(Ts 1)
K
s3
影响 ess 的因素:
系统自身的结构参数 外作用的类型(控制量,扰动量及作用点) 外作用的形式(阶跃、斜坡或加速度等)
essn
1 Kn K
e 与系统自身的结构参数有关 ss 与外作用的类型有关
6.2 输入引起的稳态误差
例题6-3
系统结构图如图所示,求 r(t)分别为A·1(t), Ats) R( s )
s(Ts 1) s(Ts 1) K
s(Ts 1) A
lim
s0
G0
(
s)
1
E(s)
1
1
e(s)
R(s)
1 G1(s)H (s)
1
K sv
G0 (s)
1
ess
lim
s0
s
e (s)
R(s)
lim
s0
s
R( s)
1
K sv
G0 ( s)
6.2 输入引起的稳态误差
6.2 输入引起的稳态误差
静态误差系数法 —— r(t) 作用时 ess 的计算规律
G(s)
G1(s)H (s)
K ( 1s 1)
sv (T1s 1)
( m s 1)
(Tnv s 1)
K sv
G0 ( s)
G0 ( s)
(1s 1)
(T1s 1)
( ms 1)
(Tnv s 1)
Xi(s) + ε(s)
10
Xo(s)
(s)
1
1
s
E (s) Xi (s) 1 G(s) 1 10 s 10

s
s
又有
1 Xi(s) s
利用终值定理
ess
(s)
lim s
s0
s
s 10
Xi (s)
lim
s0
s
s
s 10
1 s
0
ess=0的物理意义?
6.2 输入引起的稳态误差
相关文档
最新文档