药物动力学常见参数及计算方法PK

合集下载

药物PK

药物PK
参差值 外推值
第三步: 对残差回归
直线回归方程 (黑色),直线 和Y轴交点即A, 直线斜率为-α, T1/2α=ln2/α. 所以获得全部消 除相参数。
100 50 30 Conc (mg/L)
A = 67.0 µg/L
10 5 3 t ½α = 0.87h 10 4 8 12 16 20 Time (h) 24
50 Conc (µg/L) 30
10 5 3 0 4 8 12 16 20 24
1
100 50 30 Conc (µg/L) B = 9.3 µg/L 10 5 3
得出直线回归方程,直 线和Y轴交点即B,直线 斜率为-β,T1/2β= ln2/β.所以获得全部消 除相参数。?
t ½β = 12.5h 10 4 8 12 16 20 Time (h) 24
第二步:求残差
分别计算β相1、 2、4h时间点的血 药浓度(外推 值),再把1、2、 4h时间点的实测 值-外推值,得 到分布相的各点 参差。
100 50 Conc (µg/L) 30
10 5 3
10
4
8
12 16 Time (h)
20
24
参差=1hα实测-1hβ外推值
Time (h) 1 2 4 6 12 18 24 Conc (µg/L) 39.0 22.0 10.3 7.29 4.86 3.50 2.52 β值 (µg/L) 9.00 8.40 7.50 6.72 4.86 3.50 2.52 α值 (µg/L) (实测 - β) 30.0 13.6 2.8
C0
Ln Conc (mg/L)
2.0
C0 Grad = -K
Conc (mg/L)
6

PK基础参数浓度AUC=曲线下面积=药物暴露的时间

PK基础参数浓度AUC=曲线下面积=药物暴露的时间
20
制定I期临床研究方案经常遇到的问题
起始剂量:来自动物实验未观察到不良反应的 剂量〔 ()〕换算成人体剂量后的一个分量 ( )。
21
I期研究起始剂量的确定
确定起始剂量的原则:安全、科学 确定起始剂量参考的文献:
(, )
对于I期临床研究提出了人体等效剂量 ( )的概念, 从动物实验数据推算可能产生等价药效的人体剂量。
消除
毒性
11
基础
代谢
肝代谢,还有肠、肺、血液… 代谢 = 酶类 抑制、诱导、互动 基因、年龄、环境的影响 区域内和区域间的个别差异性
冬夏食物不 同诱导可能 不同
CYP3A 43%
P450所涉及的药物代谢%
CYP2C9 10%
CYP1A2 CYP2
6%
E1
5%
消除
CYP2A6 2% CYP2C19 4%
5*0.162=0.811。
引自:
24
举例:抗肿瘤药物的起始剂量确定
多数抗肿瘤药物的治疗指数很窄,较高的 起始剂量可能导致出现严重毒性,甚至患者死 亡,从而使得原本具有很好潜力的有效药物不 能得以继续研发。另一方面,如果选择过低的 起始剂量,那么就有可能使得试验周期延长, 造成资源浪费,而且从伦理学角度考虑,不应 使过多患者暴露在无效剂量下。因此,起始剂 量的选择应当综合非临床药效、毒理和药代动 力学/毒代动力学的研究结果综合考虑。
抗肿瘤药物临床试验技术指导原则(第二稿) 二〇〇七年三月 尚未颁布 28
举例:抗肿瘤药的剂量递增
有些非细胞毒类药物的毒性很小,可能不 能观察到明显的。但即使药物活性的靶点已经 饱和或在没有显著毒性的时候就观察到了明显 疗效,也仍然建议研究更高的剂量,以便更好 的明确化合物的安全性。如果剂量递增到观察 到疗效后,继续增加剂量并没有看到疗效的增 加,而毒性增加明显,则应选择较低的剂量进 行下一步的研究。

PK基础参数浓度AUC=曲线下面积=药物暴露的时间

PK基础参数浓度AUC=曲线下面积=药物暴露的时间
抗肿瘤药物临床试验技术指导原则(第二稿) 二〇〇七年三月 尚未颁布 34
举例:抗高血压药的耐受性研究
应该进行单次和多次给药的人体耐受性研 究,研究中可以同时观察试验药物的降压效应、 主要不良反应的类型和程度等,试验中需要制 定明确的终止标准。
抗高血压药物临床试验技术指导原则(第二稿) 二〇〇七年三月 尚未颁布 35
Day 8 B C A B C A
Day 15 C A B A B C
仍然12位受试者。分为6组,每组2人。 试验设计更加均衡。有利于减少给药顺序和试 验周期的影响。
54
设计
组号
1
2
3
A
A
B
C
B
D
A
B
C
B
C
D
D
C
D
A
55
药代动力学参数的估算
将试验中测得的各受试动物的血药浓度-时间的数据 分别进行药代动力学参数的估算,求得新药的主要 药代动力学参数,其中口服给药包括:(吸收速率 常数)、(峰时间)、(峰浓度)、(血药浓度-时 间曲线下面积)、(表观分布容积)、(消除速率 常数)、t1/2(消除半衰期)、(清除率)等。静 脉注射包括:t1/2(a)、t1/2(b)、K12、K21、K10、、 (T)、等。
临床药代动力学研究及相关问题
北京协和医院临床药理中心 胡蓓
1
概念
药代动力学()
药效动力学
()治疗
剂量
血浆浓度 作用部位
效应
途径
2
基础 定义
药物代谢动力学 = 药物在体内发生了什么
3
基础 定义
吸收
分布
+
消除
4
基础 吸收

药物动力学常见参数及计算方法PK

药物动力学常见参数及计算方法PK

药物动力学常见参数及计算方法PK药物动力学是研究药物在体内吸收、分布、代谢和排泄过程的学科。

常见的药物动力学参数有药物在体内的最大浓度(Cmax)、时间达到最大浓度的时间(Tmax)、药物的终止半衰期(t1/2)、药物曲线下面积(AUC)等。

Cmax是药物在体内达到的最大浓度,通常用于评估药物的吸收程度。

Cmax的计算方法是在时间轴上,找到药物浓度时间曲线上的最高点即可。

Tmax是药物达到最大浓度的时间,通常用于评估药物的吸收速度。

Tmax的计算方法是在药物浓度时间曲线上,找到最高点所对应的时间点。

t1/2是药物的终止半衰期,表示药物浓度下降到初始浓度的一半所需的时间。

t1/2的计算方法是根据药物浓度时间曲线的下降速率进行计算的。

AUC是药物曲线下面积,表示药物在体内的总体暴露程度。

AUC的计算方法有多种,例如药物面积法、梯形法等。

其中,药物面积法是将药物浓度与时间的数据进行积分,得到曲线下的面积,即为AUC。

计算Cmax、Tmax、t1/2和AUC的方法是通过药物浓度测定数据和相应的数学模型进行计算的。

常见的计算方法包括非线性回归分析、模型无需的方法、工程模型等。

此外,还有其他的药物动力学参数,例如清除率(CL)、分布容积(Vd)等。

清除率表示单位时间内清除药物的能力,计算方法为CL = Dose/AUC;分布容积表示药物在体内分布的广泛程度,计算方法为Vd = Dose/(C0*0.693),其中C0为给药后初始药物浓度。

总之,药物动力学参数的计算方法多种多样,需要根据具体药物的特点和实验数据进行选择。

这些参数可用于评估药物的吸收、分布、代谢和排泄过程,从而指导药物的合理使用和剂量调整。

药物动力学常见参数及计算方法PK

药物动力学常见参数及计算方法PK
药物配伍禁忌
根据药物动力学原理,制定合理的联合用药方案,提高药物治疗效果,减少不良反应和药物浪费。
联合用药方案
药物作用机制研究
药物疗效评估
药物经济学评价
新药开发和药物评价
通过药物动力学研究,深入了解新药的作用机制和靶点,为新药的进一步研发提供科学依据。
根据药物动力学参数和模型,评估新药的疗效和安全性,为新药的上市审批提供科学依据。
预测药物在体内的药效和安全性
01
通过药物动力学研究,可以了解药物在体内的药效和毒性,为临床用药提供科学依据。
优化给药方案
02
通过药物动力学研究,可以制定更为合理的给药方案,如给药剂量、给药频率和给药途径等,以提高药物的疗效并降低不良反应。
指导新药研发
03
在新药研发过程中,药物动力学研究可以帮助评估药物的吸收、分布、代谢和排泄特性,为新药的进一步开发和优化提供依据。
房室模型概述
房室模型是一种将机体划分为一系列假设的隔室或房室的模型,用于描述药物在体内的分布、吸收、代谢和排泄过程。
一室模型
一室模型是最简单的房室模型,假设药物在体内均匀分布,并具有相同的消除速率。
多室模型
多室模型将机体划分为多个隔室,每个隔室具有不同的药物分布和消除速率,更准确地描述药物在体内的动态变化。
药物动力学的研究目的
01
通过药物动力学研究,医生可以了解药物的疗效和安全性,为患者制定更为合理的用药方案。
药物动力学是临床合理用药的基础
02
通过优化给药方案,可以确保药物在体内达到最佳浓度,从而提高治疗效果。
药物动力学有助于提高药物治疗效果
03
通过了解药物的代谢和排泄特性,可以降低因过量或不足引起的毒副作用和不良反应。

药物动力学常见参数跟计算方法PK资料文档

药物动力学常见参数跟计算方法PK资料文档

曲线 直线 多数药物
与剂量呈曲线关系 与剂量呈超比例增加
大剂量时,T1/2延长 与剂量呈超比例增加
米氏方程模型 非线性动力学 先零级,后一级 先直线后曲线 先曲线后直线 少数药物
14
药代动力学参数及其意义
吸收 AUC 反映吸收程度、Ka反映吸收速度 分布 Vd 是表观分布容积.
Vd接近0.1 L/kg说明药物主要在血中 Vd>>1 L/kg则说明该药有脏器浓集现象 消除 包括排泄及代谢, ke,β是消除速率常数 t1/2,t1/2β,CL反映药物的消除速度. 尿排率 过大者,肾功能不佳时应注意减量或延时 过小者,提示代谢为主,肝功不佳时慎用 该药易出现药物相互干扰,联用时应注意 个体差异 AUC,Vd及t1/2的变异系数大于50%者,
常见参数-生物半衰期
生物半衰期(biological half-life, t1/2):这个 参数只是由测定血浆或血清浓度(表观血浆 或血清)的衰变来求出。
t1/2=0.693/Ke
16:18:10
22
C-T 曲线
lnC-T 曲线
一室(少见) 二室(多数药物) 三室(与内源物相近者)
决定用药间隔的半衰期: 一室t1/2,二室t1/2β,三室t1/2γ
dC/dt=-kCn
• 一级消Leabharlann 动力学 • 零级消除动力学16:18:10
9
消除动力学模型
表达式 积分转化 最主要特点
一级消除动力学 零级消除动力学
dc/dt=-kC Ct=C0e-kt 恒比消除
dc/dt=-k Ct=C0-kt 恒量消除
16:18:10
10
l1n100C0000
限速消除(20mg/L)/h

药物动力学常见参数和相关计算方法

药物动力学常见参数和相关计算方法
00:33:18 2
房室模型
房室(compartment)
房室的划分是相对的
房室模型的客观性
房室模型的时间性
房室划分
单室模型
多室模型
房室模型的抽象性
开放式和封闭式模型
中央室 周边室
00:33:18
3
房室模型
ka Vd ka ke V1 k12 k21 V2
k10
一室模型
二室模型
ka---吸收速率常数 ke,k10--消除速率常数 k12--1室到2室的k k21-----2室到1室的k Vd---表观分布容积 V1----1室的分布容积
00:33:18 1
药物动力学
临床意义 保障用药的有效性和安全性 I期: 决定给药方案,用法,用量,间隔时间 证实速释,缓释,控释特征. II期: 肝功差,肾功差,老人,进食影响 III期: 种族,代谢物,对药酶的干扰
药动学模型 为了定量研究药物体内过程的速度规律 而建立的模拟数学模型。常用的有房室 模型和消除动力学模型。
非线性 lnC-T图上 曲线为主,低段趋直线
12
直线为主,低段பைடு நூலகம்曲线
00:33:18
线性或非线性动力学的比较
线性 非线性
AUC
T1/2 Cmax 模型 动力学
C-T图 lnC-T图 药物
00:33:18
与剂量呈直线关系 与剂量呈正比 基本不变 与剂量基本呈正比 房室模型 一级动力学 曲线 直线 多数药物
A= Vd· C Vd=Aiv/C0 Vd=A/(AUC· Ke)
VZ
或者
VZ/F VSS/F
VSS
00:33:18
19
Vd 表观分布容积

药代动力学 如何进行pk曲线解读

药代动力学 如何进行pk曲线解读

药代动力学的PK曲线解读是药物研究和临床应用中非常重要的一环。

PK曲线(Pharmacokinetic curve)是描述药物在体内各时间点的药物浓度随时间的变化规律,通过对PK曲线的解读,可以更好地理解药物在体内的代谢、吸收、分布和排泄等过程,从而为药物的合理使用提供依据。

在本文中,我将从详细解读PK曲线的过程、方法和意义出发,帮助读者更全面地认识药代动力学,理解PK曲线解读的重要性,并能够应用到实际的药物研究和临床实践中。

一、PK曲线解读的方法1. 描述PK曲线的基本特征在进行PK曲线解读时,首先需要了解PK曲线的基本特征,包括药物的吸收、分布、代谢和排泄等过程在体内的表现形式。

而后可以结合实际研究或临床数据,对比不同时间点的药物浓度,然后根据这些数据,进行PK曲线的解读和分析。

2. 利用面积法计算药物曲线下面积在进行PK曲线解读时,使用面积法计算药物曲线下面积是非常重要的一部分。

通过计算曲线下面积可以获得药物在体内的暴露程度,从而更好地评估药物的药效、毒性和剂量等问题,为临床应用和药物研究提供依据。

3. 使用模型分析PK曲线除了基本的描述和面积法计算之外,还可以结合数学模型和统计学方法,对PK曲线进行模型分析。

通过模型分析可以更好地理解药代动力学的特点和规律,为药物研究和临床应用提供更精确的数据和方法。

二、PK曲线解读的意义和应用1. 评估药物的吸收和分布通过PK曲线的解读,可以更好地评估药物在体内的吸收和分布情况。

了解药物在体内的吸收速度和程度,以及在不同组织或器官中的分布情况,对于药物的合理使用和疗效预测非常重要。

2. 掌握药物的代谢和排泄规律PK曲线的解读还可以帮助我们更好地掌握药物在体内的代谢和排泄规律。

了解药物的代谢途径、排泄速度和代谢产物等信息,可以为药物剂量的调整和药物的不良反应防范提供重要参考。

3. 优化药物的治疗方案和用药监测通过PK曲线的解读,可以帮助我们优化药物的治疗方案和用药监测。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Vd接近0.1 L/kg说明药物主要在血中 Vd>>1 L/kg则说明该药有脏器浓集现象 消除 包括排泄及代谢, ke,β是消除速率常数 t1/2,t1/2β,CL反映药物的消除速度. 尿排率 过大者,肾功能不佳时应注意减量或延时 过小者,提示代谢为主,肝功不佳时慎用 该药易出现药物相互干扰,联用时应注意 个体差异 AUC,Vd及t1/2的变异系数大于50%者,
房室模型 C-T 曲线
一室
二室
一室
二室
2020/8/1
精选PPT
6
非房室(统计距)模型
不受房室数的限制,客观性强
AUC (Area Under Curve) 是梯形法计算的曲线下面积,与吸收量正比
MRT (Mean Residence Time) 是平均滞留时间. 与终末半衰期类似.
VRT (Variance of Residence Time) 是滞留时间的方差
MAT (mean adsorption Time) 是平均吸收时间.与吸收半衰期类似.
2020/8/1
精选PPT
7
模型的选择和拟合度问题
最小AIC (Akaike’s information criterion) 准则; F检验法
2020/8/1
精选PPT
8
消除动力学模型
消除动力学(eliminationkinetics)研究体内 药物浓度变化速率的规律,可用下列微分方 程表示:
Cmax 与剂量基本呈正比 与剂量呈超比例增加
模型 房室模型
米氏方程模型
动力学 一级动力学
非线性动力学
先零级,后一级
C-T图 曲线
先直线后曲线
lnC-T图 直线
先曲线后直线
药物 多数药物
少数药物
2020/8/1
精选PPT
14
药代动力学参数及其意义
吸收 AUC 反映吸收程度、Ka反映吸收速度 分布 Vd 是表观分布容积.
2020/8/1
精选PPT
19
常见参数-表观分布容积
表观分布容积 (apparent volume of distribution, Vd):
A= Vd·C Vd=Aiv/C0 Vd=A/(AUC·Ke)
VZ
VZ/F
或者
VSS
VSS/F
2020/8/1
精选PPT
20
Vd 表观分布容积
C = D / Vd Vd = D / C Vd = 体内药量/血中浓度 动物体重10kg A药10mg iv,血浓 1mg/L, Vd=10L(1 L/kg) 药物全身分布 B药10mg iv,血浓10mg/L , Vd=1L(0.1 L/kg) 药物只在血中 C药10mg iv,血浓 0.1mg/L,Vd=100L(10 L/kg) 药物浓集到某 脏器 2实020际/8/1上10kg动物不可能是1L或精选1P0PT0L的容积,故称”表观分布容积21 ”
I期: 决定给药方案,用法,用量,间隔时间 证实速释,缓释,控释特征.
II期: 肝功差,肾功差,老人,进食影响 III期: 种族,代谢物,对药酶的干扰
药动学模型 为了定量研究药物体内过程的速度规律 而建立的模拟数学模型。常用的有房室 模型和消除动力学模型。
8/1
精选PPT
3
房室模型
房室(compartment)
为曲线
ln C-T曲线
线性
lnC-T图上 恒为直线
非线性 C-T图上
非线性 lnC-T图上
直线为主,低段趋曲线
曲线为主,低段趋直线
2020/8/1
精选PPT
13
线性或非线性动力学的比较
线性
非线性
AUC 与剂量呈直线关系 与剂量呈曲线关系
与剂量呈正比 与剂量呈超比例增加
T1/2
基本不变
大剂量时,T1/2延长
药物动力学常见参数及计算方法
1.药物动力学及其常见参数 2.常用软件及其使用方法
2005年5月15日
JILIN UNIVERSITY
RESEARCH CENTER FOR DRUG METABOLISM
精选PPT
1
药物动力学
药物动力学,也称药代动力学或药物代谢动 力学,英文名为:pharmacokinetics,PK
dC/dt=-kCn
• 一级消除动力学 • 零级消除动力学
2020/8/1
精选PPT
9
消除动力学模型
表达式 积分转化 最主要特点
一级消除动力学 零级消除动力学
dc/dt=-kC Ct=C0e-kt 恒比消除
dc/dt=-k Ct=C0-kt 恒量消除
2020/8/1
精选PPT
10
l1n1000C000
其模型方程是米氏方程: dC/dt = - Vm*C/(Km+C)
其药代学特征是:静注的lnC-T曲线 开始血药浓度呈曲线下降,后来逐渐转成直线
其药代参数是: Vm 最大消除速率,反映限速时的消除速率
Km 米氏常数,反映曲线转变中点的血药浓度
2020/8/1
精选PPT
12
C-T曲线
线性 C-T图上恒
房室的划分是相对的
房室模型的客观性 房室模型的时间性 房室模型的抽象性
房室划分 单室模型 多室模型
开放式和封闭式模型
中央室 周边室
2020/8/1
精选PPT
4
房室模型
ka Vd
ke
一室模型
k12 V2 V1
ka
k21
k10
二室模型
ka---吸收速率常数 ke,k10--消除速率常数 k12--1室到2室的k k21-----2室到1室的k V20d20/-8/-1 -表观分布容积 V精选1PP-T ---1室的分布容积 5
限速消除(20mg/L)/h
160
1581010000
非线 性
40
20
101100
5
2.5 线 性
1.2511
2020/8/1
00 11 22 33 44 55 6 7 8
精选PPT
9 10 11 112
11
非线性消除动力学模型
某些药物的消除有限速因素, 当浓度很高时只能限速消除 不能按浓度比例消除,称为“非线性药代”
吸收(absorption) 分布(distribution) 代谢(metabolism) 消除和排泄(elimination, excretion)
ADME
用数学表达式阐明药物的作用部位(方位)、 浓度(量)和时间三者之间的关系。
2020/8/1
精选PPT
2
药物动力学
临床意义 保障用药的有效性和安全性
临床用药时应注意剂量调控.
2020/8/1
精选PPT
15
药代动力学参数
血药浓度-时间曲线下面积: (area under concentration-time curve, AUC) 它可由积分求得,最简便的计算方法是梯形法, 也可用样条函数法求得。
AUC0→t
AUC0→∞ = AUC0→t+Ct/λZ
AUC0→∞ 它是计算药物绝对生物利用度和相对生物利用
度的基础数值。
2020/8/1
精选PPT
16
10
5
0
2020/8/1
四种AUC
AUC*
AUC*+
AUC
精选PPT
AUC+
17
四种曲线下面积 AUC
Cp,Tp AUC*
AUC*+
Cmax,Tmax AUC
AUC+
2020/8/1
精选PPT
18
AUC的计算
相关文档
最新文档