正方形的定义及性质课件

合集下载

18.2.3正方形的性质与判定课件

18.2.3正方形的性质与判定课件

对称性
轴 对 称 图 形
例1、如图,正方形ABCD中,
正 (1)一条对角线把它分成 个2 全等的三


角形。 问:这些三角形是什么三角形?
的 性 AA
(2)图中共有__8___
DB
个等腰直角三角形。
(3)对角线AC与正方

O
形的一边所成的角为


BO
C
度。 45
(4) 正方形的面积为64,
用D
C
则正方形对角线
试说明:四边形DEBF是正方形.
解:∵ DF⊥BC,DE⊥AB,
A
∴ ∠DEB= ∠DFB=90°,
又∵ ∠ABC=90°, ∴四边形DEBF是矩形
ED BF C
∵ BD平分∠ABC, DF⊥BC , DE⊥AB,
∴ DE= DF
∴四边形DEBF是正方形 第17页,共19页。
小结
性质
图形
对边平行且相等
正方形判定方法
要使一个菱形成为正方形需 增加的条件是 有一个角是直角 (填上一个条件即可)
判定方法2: 一个角为直角的菱形叫正方形
第11页,共19页。
图形之间的变化关系 矩形
平行四边形
有一组邻边相等 有一个角是直角
正方形
菱形
第12页,共19页。
正方形的判定方法 判定方法3:
一组邻边相等且有一个角是直角 的平行四边形是正方形

面积为

4.已知正方形ABCD中,对角线AC=10cm,P为 AB上任意一点,PE⊥AC,PF⊥BD,E、F为垂足, 则PE+PF= 。5cm
第6页,共19页。
4.已知正方形ABCD中,对角线AC=10cm,P为AB上任意 一点,PE⊥5cAmC,PF⊥BD,E、F为垂足,则PE+PF= 。

2024优质小班认识正方形ppt课件

2024优质小班认识正方形ppt课件

04 正方形在日常生 活中的应用
建筑设计中使用正方形元素
窗户设计
正方形窗户简洁大方,提供良好 的采光和通风效果。
建筑设计
许多现代建筑采用正方形或矩形 设计,体现简约风格。
城市规划
正方形或矩形街区有利于交通组 织和城市空间规划。
家居装修中运用正方形美学原则
1 2
家具摆放
正方形家具摆放稳定,易于搭配,节省空间。
墙面装饰
正方形装饰画、照片墙形地砖、地板等铺装材料易于施工,视觉效 果佳。
手工制作中裁剪和拼接正方形材料
剪纸艺术
利用正方形纸张进行剪纸创作,可制作出各种精 美图案。
布艺制作
正方形布块易于裁剪和缝制,适合制作抱枕、桌 布等家居用品。
拼图游戏
正方形拼图游戏锻炼儿童手眼协调能力和空间想 象力。
孩子在日常生活中也能够注意观察身边的正方形物体,对正方形的应用有了一定的 了解。
拓展延伸:探索其他几何图形奥秘
引入其他几何图形
在认识正方形的基础上,引导学生探索其他几何图形,如长方形 、三角形、圆形等。
比较不同几何图形的特点
通过对比不同几何图形的边、角、对称性等性质,加深学生对几何 图形的理解和认识。
拓展几何图形的应用
介绍几何图形在建筑设计、机械制造、艺术创作等领域的应用,激 发学生的学习兴趣和创造力。
THANKS
感谢观看
侧面视角
正方形可能呈现为菱形形 状,但仍具有四边等长且 对角线相等的特征。
倾斜视角
正方形可能呈现为斜向的 四边形,但可通过旋转调 整视角来识别其正方形特 征。
区分相似但非正方形图形
矩形
矩形与正方形相似,但矩形的对边相 等而邻边不一定相等,因此不是正方 形。

1.3 正方形的判定与性质(一)

1.3 正方形的判定与性质(一)

关系图:
矩形
平行四边形
有一个角是直角且有一组邻边相等
正方形
菱形
平行四边形
矩形
正方形
菱形
正方形的性质
(正方形既是矩形,又是菱形,它具有 矩形和菱形所 有的性质)
角:四个角都是直角; 边: 四条边都相等; 对角线: 对角线相等且互相垂直平分; 对称性: 既是中心对称也是轴对称图形;
正方形的性质: 正方形的四条边都相等,四个角都是直角, 对角线相等且互相垂直平分。
第一章 特殊平行四边形
第3节 正方形的性质与判定(一)
正方形的性质
复习提问:
一,什么叫做菱形?它有什么性质和判定? 二,什么叫做矩形?它有什么性质和判定?
三,矩形性质的推论是什么?逆定理又是什么?
四,有没有一种四边形,它将菱形和矩形的特点 兼而有之?如果有应该怎么定义它?
正方形定义:有一组邻边相等,有一个角是直 角的平行四边形叫做正方形。
(2)延长BE交DE于点M,(如图1-19). ∵△BCE≌△DCF. ∴∠CBE=∠CDF. ∵∠DCF=90°. ∴∠CDF+∠F=90°. ∴∠CBE+∠F=90°. ∴∠BMF=90°. ∴BE⊥DF.
随堂练习:
1:如图,在正方形ABCD中,对角线AC与BD相 交于点O,图中有多少个等腰三角形? 2:如图,在正方形ABCD中,点F为对角线AC 上一点,连接BF,DF。你能找出图中的全等 三角形吗?选择其中一对进行证明.
性质应用
例1:如图1-18,在正方形ABCD中,E为CD 上一点,F为BC边延长线上一点,且 CE=CF.BE与DF之间有怎样的关系?请说 明理由. 解:BE=DF,且BE⊥DF. 理由如下:
(1)∵四边形ABCD是正方形. ∴BC=DC,∠BCE=90°(正方形的四 条边都相等,四个角都是直角) ∴∠BCE=∠DCF. 又∵CE=CF. ∴△BCE≌△DCF. ∴BE=DF.

八年级数学下册教学课件《正方形的性质》

八年级数学下册教学课件《正方形的性质》
情境导入
仔细观察下列实际生活中的图片,你会发现这些都 是正方形的形象.
正方形是我们熟悉的图形,你还能列举出正方形在 生活中应用的其他例子吗?
情境导入
结合已有经验,类比菱形与矩形,正方形的概念是怎 样的呢?
正方形可以定义为有一组邻边相等并且有一个角 是直角的平行四边形.
下面我们一起来探讨一下正方形的性质吧!
解:有多种方法:只要两条小路 交于正方形对角线的交点且两条 小路互相垂直,则满足条件.
课后作业
5. 如图为某城市部分街道示意图,四边形ABCD为正方
形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,
小敏行走的路线为B A G E,小聪行走的路线为B A
D E F,若小敏行走的路程为3100m,则小聪行走的路程
∴C(b,d)
课后作业
2.(2)如图,四边形ABCD是菱形,C,D两点的
坐标分别是(c,0),(0,d).点A , B的在坐标轴上.求A ,
B两点的坐标.【选自教材P61,习题18.2第12题】
y
(2)∵四边形ABCD是菱形,
D
∴AO=CO,BO=DO.
A
O
Cx
Hale Waihona Puke ∵C(c,0),∴A(-c,0)
B
∵D(0,d),∴B(0,-d)
由勾股定理得BC= EC2 EB2 900 100 20 2 (m).
在Rt△ABC中,∠B=90°,AB=BC= 20 2 m,
A
D
由勾股定理得AC= AB2 BC 2 800 800 40(m).
2
S正方形ABCD BC 2 20 2 800
E
∴这块场地的面积为800m2,对角线长40m.

正方形的性质与判定-优质课件

正方形的性质与判定-优质课件
(2) BH⊥AF
7、如图(6),△ABC的外面作正方形ABDE 和ACFG,连结BG、CE,交点为N。 求证:∠CEA=∠ABG
证明:∵四边形ABDE和四边形ACFG是正方形。 ∴AE=AB AG=AC ∠1=∠2=90°
又∵∠EAC=∠1+∠BAC=90°+∠BAC ∠BAG=∠2+∠BAC=90°+∠BAC
D O
B
C
例题1 如图,在正方形ABCD中,点E
在对角线AC上,那么,BE和DE相等吗?
为什么?
D
C
解:BE=DE.
因为 对角线AC所在的直
线是正方形ABCD的对
E
称轴,而点E在对称轴 A
B
上,点B为点D关于AC
的对称点,
所以 BE=DE
2.在正方形ABCD中,点P是对角线 AC上一点,PE⊥AB,PF⊥BC,垂 足分别是点E、F.求证:DP=EF
矩形
正方形
一组邻边相等的矩形
叫正方形
菱 形 一个角是直角
正方形

发现:
一个角为直角的菱形叫正 方形
如何来给正方形下定义?
菱形
平行四边形
正方 形
矩形
平行四边形
一组邻边相等 一内角是直角
正方形
定义:一组邻边相等,且有一个角是直角的平行四边
形叫做正方形
平行四边形,矩形,菱形,正方形的关系
平行四边形

矩形 方 菱形
练:正方形ABCD中,M为AD中点, ME⊥BD于E,MF⊥AC于F,若
ME+MF =8cm,则AC=___1_6_c_m__.
F
B A
MC D
F
E
O
B
C

正方形的性质与判定-ppt课件

正方形的性质与判定-ppt课件
∵AF=5,∴在 Rt△ABF 中,BF= AF2-AB2=
52-42=3.∵点 F 为 BC 的中点,∴BC=2BF=6.
∴在 Rt△BCE 中,CE= BC2+BE2= 62+22=2 10.
感悟新知
(2)若AF=CE,求证:四边形ABCD 是正方形.
知3-练
证明:在 Rt△ABF 中,AF2=AB2+BF2,
∴四边形ACED 是正方形(正方形的定义).
感悟新知
知3-练
3-1. 如图, 在矩形ABCD 中,点E,F 分别是AB,BC 的
中点,连接AF,CE.
感悟新知
知3-练
(1)若AE=2,AF=5,求CE 的长;
解:∵四边形 ABCD 是矩形,∴∠B=90°.
∵点 E 为 AB 的中点,AE=2,∴AB=4,BE=2.
数学表达式
∵在ABCD 中,AB=BC(或
AB=AD 或BC=CD 或
AD=CD),且∠ A=90°(或
∠ B=90°或∠ C=90°或
∠ D=90°),∴ ABCD 是
正方形
感悟新知
知1-讲
2. 图解
感悟新知
知1-讲
3. 四边形、平行四边形、菱形、矩形、正方形间的关系
感悟新知
知1-讲
特别提醒
2
四边形A2 024B2 024C2 024D2 024 的面
3
积为______ .
22 022
课堂小结
正方形的性质与判定
性质



正方形的面积公式
一组邻边相等
特殊的矩形
对角线互相垂直
一个角是直角
判定
特殊的菱形
对角线相等
∴四边形 ABCD 是正方形.

正方形的性质与判定完整ppt课件

正方形的性质与判定完整ppt课件
A B
D C
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
A
D
B
C
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
A
D
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
拓展讨论:
正方形对角线把正方形分成多少个等腰直角三角形?
A
D
O
B
C
结论:
分成八个等腰直角三角形,分别是△ABC、 △ADC、 △ABD、 △BCD ; △AOB、 △BOC、 △COD、 △DOA.

A
B
O
D
C
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
12.正已方知形正具方有形而的菱一形条不边一长定为具2c有m的,则性这质个是正(方形C)的
周长A为.对8角c线m,对互角相线垂长直为B.对2角,面线2积c互m为相平分. 4cm2
性质 图形 平行四
分类
边形
矩形 (所特有)
菱形 (所特有)
正方形
边 对边平行
且相等
四条边相等
对边平行且 四条边相等

对角相等
四个角都 是直角
四个角都 是直角
对角线互
对角线 相平分
对角线 相等
对角线互相 垂直,每条 对角线平分 一组对角
对角线相等且互 相垂直平分,每 条对角线平分一 组对角

正方形的性质与判定ppt课件

正方形的性质与判定ppt课件
北师大版九年级数学
第一章 特殊平行四边形
第3节 正方形的性质与判定
情境引入
情景引入
将一张长方形纸对折两次,然后剪下一个 角,打开,怎样剪才能剪出一个正方形?
情景引入
正方形的判定定理: 1.对角线相等的菱形是正方形。 2.对角线垂直的矩形是正方形。 3.有一个角是直角的菱形是正方形。
情景引入
运用巩固
位置关系 垂直
对称性 有
合作学习
第二类图形就是正方形,我们给出定义: 有一组邻边相等的矩形叫做正方形.
议一议: (1)正方形是菱形吗? (2)你认为正方形有哪些性质?
从我们得到数据分析:正方形既是矩形 又是菱形,它具有矩形和菱形的所有性质.
请同学们参照下表或独立整理矩形菱形
的性质. 矩形 性质
菱形 性质
么特征?
H
F
C G D
第三环节 猜想结论,分组验证
如果四边形ABCD变为特殊的四边形,中点四边 形EFGH会有怎样的变化呢?
原四边形可以是:
平行四边形
矩形
菱形
正方形
等腰梯形
直角梯形
梯形
第三环节 猜想结论,分组验证
特殊四边形的中点四边形:

平行四边形的中点四边形是平行四边形
矩形的中点四边形是菱形
菱形的中点四边形是矩形
想一想: 正方形有几条对称轴
解析: 正方形有4条对称轴. 经验层面:可通过折叠. 分析层面:正方形具有矩形、菱形的 所有性质,所以必然具有矩形过每组 对边中点的对称轴和菱形过对角线的 对称轴.
性质应用
例1:如图1-18,在正方形ABCD中,E为CD 上一点,F为BC边延长线上一点,且 CE=CF.BE与DF之间有怎样的关系?请说 明理由.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴对称图形、
.
1. 正方形具有而矩形不一定具有的性质是 ( B )
A、四个角相等
B、对角线互相垂直平分 .
C、对角互补 .
D 、对角线相等 .
2.正方形具有而菱形不一定具有的性质( D )
A、四条边相等 .
B 、对角线互相垂直平分 .
C、对角线平分一组对角 . D、对角线相等 .
.
练习3.正方形的一边和对角线的夹角为4_5_°_________.
练习4.已知正方形的面积为9cm2,它的周长1为2c_m______________. 4.正方形的边长为a,当边长增加1时,其面积增加了___2_a__+_1___.
A
D
O
B
C
.
例1求证:正方形的两条对角线把正方形分
成四个全等的等腰直角三角形。
文字命题的证明步骤: 第一步 : 画图 第二步 : 写已知 第三步:写求证 第四步 : 证明
3 2 1
答案
.
证明:(1)∵ ABCD 是正方形 ∴AD=AB,∠ADE= ∠ABF=90 ° 在△ ABF 与△ ADC 中
AD=AB ∠ADE= ∠ABF=90 °
DE=BF ∴ △ABF ≌△ADE (SAS) ∴ FA=EA ,∠1=∠3
3 2 1
(2)∵∠2+∠3=90 ° ∴∠1+∠2=90 ° ∴ EA⊥FA
18.2 .3特殊的平行四边形 ----正方形(第1课时)
完美的正方形
回顾:平行四边形 ,矩形与菱形有哪些性质 ?
边: 对边平行且相等
平行四边形 角: 对角相等,邻角互补
对角线: 对角线互相平分
具有平行四边形所有性质
矩形
边: 对边平行且相等 角: 四个角是直角 对角线: 对角线相等且互相平分
.
菱形的性质
(2)
.
平行四边形
矩形

方 形
菱 形
平行四边形、矩形、菱形、正方形之间关系
四边形 平行四边形 矩形 菱形 正方形
四边形 平行四边形
矩形
正 方 菱形

.
学案2
它是轴对称图形 ,有4条对称轴 (C) A
D (B)
也是中心对称图形 ,对称中心为点 O O
(1)它具有平行四边形的一切性质 (D) B
C(A)
是正方形.
(√ )
.
小结
性质
图形
对边平行且相等
四条边都相等 对角相等 四个角都是直角
对角线互相平分
对角线互相垂直
对角线相等
每条对角线平分 一组对角

√√

.
菱形 正方形
√√ √√ √√
√ √√ √√

√√
想一想:
1.若O点移动至E点时,连接AE、CE, 你有那些结论?
A
对边平行 且相等
对角相等, 邻角互补
对角线互相平分
不是轴对称图形
对边平行 四个角 且相等 都是直角
对角线相等 且互相平分
轴对称图形、
对四等边边平都行相,对邻角角相互等补,
对角线互相垂直 平分,每条对角 线平分一组对角
轴对称图形、
对四都边条相平边等行,都四是个直角角
对角线互相垂直平 分且相等,每条对 角线平分一组对角
D
O
E
B
C
该怎样证明这些结论?
.
小结
1、正方形定义
有一组邻边相等并且有一个角是直角的平行四边形是正方形
2、正方形的性质
A
D
边: 对边平行,四条边都相等
O
角:四个角都是直角
B
对角线:对角线互相垂直平分且相等,
C
每条对角线平分一组对角
对称性: 正方形是轴对称图形,也是中心对称图形;
.
平行四边形
矩形

方 形
菱 形
.
例3.已知:如图在正方形 ABCD 中,F为CD延长线 一
点,CE ⊥AF于E,交AD于M,
求证:∠MFD =45°
.
达标检测6:判断下列命题是否正确
? 1、四个角都相等的四边形是正方形; (×)
? 2、四条边都相等的四边形是正方形; (×)
? 3、对角线相等的菱形是正方形;
( √)
? 4、对角线互相垂直的矩形是正方形; (√ )
? 5、对角线垂直且相等的四边形是正方形; (×)
? 6、四边相等,有一个角是直角的四边形
菱形的性质
具有平行四边形一切性质
边: 四条边相等
角:对角相等,邻角互补
互相垂直平分 对角线:
分别平分两组对角
.
探究小结
邻边相等
发现:
矩形
正方形
一组邻边相等的矩形
叫正方形
菱 形
一个角是直角
发现:
正方形
一个角为直角的菱形叫正
∟ 方形
如何来给正方形下定义?
.
1. 正方形的定义
有一组邻边相等且有一个角是直角的 平行四边形叫做正方形。
.
例1求证:正方形的两条对角线把正方形分
成四个全等的等腰直角三角形。 已知:如图正方形ABCD对 角线AC、BD相交于点O。
求证: △ABO ≌ △BCO ≌ △CDO ≌△ADO
思考:正方形对角线把正方形分成多少个等腰直角三角形?8个
例2:
已知:如图,点E是正方形ABCD的边CD上一点, 点F是CB的延长线上一点,且DE=BF.求证: (1)AE=AF;(2)EA⊥AF.
由正方形的定义 可知,
学案1、正方形既是(1)有一组邻边相等的矩形, 又是 (2)有一个角为直角的菱形。 (3)有一组邻边相等,并且一个角为直角的平行四边形。
学案2 ?
2. 如图正方形 1)图中有多少个等腰直角三角形 2)说出图中相等的线段、相等的角。 3)求∠ABD、∠DAC、∠DOC 的度数。
.
达标检测1.
3、已知:正方形 ABCD 对角线AC、BD相 交于点 O ,且 AB=4cm ,如图。
求:AC的长及正方形的面积 S。
4.已知:在正方形 ABCD中,对角线 AC、 BD相交于点 O,且AC=6 2 cm ,如图
求:正方形的面积S。
达标检测 5: 如图,已知 E点在正方形 ABCD的BC边的延长线上, 且CE=AC ,AE与CD相交于点 F,则∠AFC=________
答案:1、八个 △ABC、△BCD、 △CDA、
△DAB 、△AOB 、△AOD、
△BOC 、△COD
A
D
O 2 AB=BC=CD=DA AC=BD
OA=OB=OC=OD
3、45°;45°,90°
B
C
.
正方形、矩形、菱形以及平行四边形四者之间的关系:
(3)
有一组邻边相等且有一个角是直角
(1) (4)
两组对边分别平行且相等,两组对角相等,对角线互相平分
(2)具有矩形的一切性质
四个角都是直角,对角线相等
(3)具有菱形的一切性质
四条边相等;对角线互相垂直,. 每条对角线平分一组对角
正方形是特殊的平行四边形,也 是特殊的矩形,也是特殊的菱形。
正方形的性质=
.
知识拓展:与同学讨论后填写下表:
几种特殊四边形的性质
相关文档
最新文档