数据结构 哈夫曼编码 实验报告

合集下载

哈夫曼编码的实验报告

哈夫曼编码的实验报告

哈夫曼编码的实验报告哈夫曼编码的实验报告一、引言信息的传输和存储是现代社会中不可或缺的一部分。

然而,随着信息量的不断增加,如何高效地表示和压缩信息成为了一个重要的问题。

在这个实验报告中,我们将探讨哈夫曼编码这一种高效的信息压缩算法。

二、哈夫曼编码的原理哈夫曼编码是一种变长编码方式,通过将出现频率较高的字符用较短的编码表示,而将出现频率较低的字符用较长的编码表示,从而实现信息的压缩。

它的核心思想是利用统计特性,将出现频率较高的字符用较短的编码表示,从而减少整体编码长度。

三、实验过程1. 统计字符频率在实验中,我们首先需要统计待压缩的文本中各个字符的出现频率。

通过遍历文本,我们可以得到每个字符出现的次数。

2. 构建哈夫曼树根据字符频率,我们可以构建哈夫曼树。

哈夫曼树是一种特殊的二叉树,其中每个叶子节点代表一个字符,并且叶子节点的权值与字符的频率相关。

构建哈夫曼树的过程中,我们需要使用最小堆来选择权值最小的两个节点,并将它们合并为一个新的节点,直到最终构建出一棵完整的哈夫曼树。

3. 生成编码表通过遍历哈夫曼树,我们可以得到每个字符对应的编码。

在遍历过程中,我们记录下每个字符的路径,左边走为0,右边走为1,从而生成编码表。

4. 进行编码和解码在得到编码表后,我们可以将原始文本进行编码,将每个字符替换为对应的编码。

编码后的文本长度将会大大减少。

为了验证编码的正确性,我们还需要进行解码,将编码后的文本还原为原始文本。

四、实验结果我们选取了一段英文文本作为实验数据,并进行了哈夫曼编码。

经过编码后,原始文本长度从1000个字符减少到了500个字符。

解码后的文本与原始文本完全一致,验证了哈夫曼编码的正确性。

五、讨论与总结哈夫曼编码作为一种高效的信息压缩算法,具有广泛的应用前景。

通过将出现频率较高的字符用较短的编码表示,哈夫曼编码可以在一定程度上减小信息的存储和传输成本。

然而,哈夫曼编码也存在一些局限性,例如对于出现频率相近的字符,编码长度可能会相差较大。

数据结构哈夫曼编码实验报告

数据结构哈夫曼编码实验报告

数据结构哈夫曼编码实验报告一、实验目的:通过哈夫曼编、译码算法的实现,巩固二叉树及哈夫曼树相关知识的理解掌握,训练学生运用所学知识,解决实际问题的能力。

二、实验内容:已知每一个字符出现的频率,构造哈夫曼树,并设计哈夫曼编码。

1、从终端读入字符集大小n,以及n个字符和n个权值,建立哈夫曼树。

2、打印每一个字符对应的哈夫曼编码。

3、对从终端读入的字符串进行编码,并显示编码结果。

4、对从终端读入的编码串进行译码,并显示译码结果。

三、实验方案设计:(对基本数据类型定义要有注释说明,解决问题的算法思想描述要完整,算法结构和程序功能模块之间的逻辑调用关系要清晰,关键算法要有相应的流程图,对算法的时间复杂度要进行分析)1、算法思想:(1)构造两个结构体分别存储结点的字符及权值、哈夫曼编码值:(2)读取前n个结点的字符及权值,建立哈夫曼树:(3)根据哈夫曼树求出哈夫曼编码:2、算法时间复杂度:(1)建立哈夫曼树时进行n到1次合并,产生n到1个新结点,并选出两个权值最小的根结点:O(n²);(2)根据哈夫曼树求出哈夫曼编码:O(n²)。

(3)读入电文,根据哈夫曼树译码:O(n)。

四、该程序的功能和运行结果:(至少有三种不同的测试数据和相应的运行结果,充分体现该程序的鲁棒性)1、输入字符A,B,C,D,E,F及其相应权值16、12、9、30、6、3。

2、输入字符F,E,N,G,H,U,I及其相应权值30、12、23、22、12、7、9。

3、输入字符A,B,C,D,E,F,G,H,I,G及其相应权值19、23、25、18、12、67、23、9、32、33。

数据结构哈夫曼编码实验报告

数据结构哈夫曼编码实验报告

数据结构哈夫曼编码实验报告数据结构哈夫曼编码实验报告1·实验目的1·1 理解哈夫曼编码的基本原理1·2 掌握哈夫曼编码的算法实现方式1·3 熟悉哈夫曼编码在数据压缩中的应用2·实验背景2·1 哈夫曼编码的概念和作用2·2 哈夫曼编码的原理和算法2·3 哈夫曼编码在数据压缩中的应用3·实验环境3·1 硬件环境:计算机、CPU、内存等3·2 软件环境:编程语言、编译器等4·实验过程4·1 构建哈夫曼树4·1·1 哈夫曼树的构建原理4·1·2 哈夫曼树的构建算法4·2 哈夫曼编码4·2·1 哈夫曼编码的原理4·2·2 哈夫曼编码的算法4·3 实现数据压缩4·3·1 数据压缩的概念和作用4·3·2 哈夫曼编码在数据压缩中的应用方法5·实验结果5·1 构建的哈夫曼树示例图5·2 哈夫曼编码表5·3 数据压缩前后的文件大小对比5·4 数据解压缩的正确性验证6·实验分析6·1 哈夫曼编码的优点和应用场景分析6·2 数据压缩效果的评估和对比分析6·3 实验中遇到的问题和解决方法7·实验总结7·1 实验所获得的成果和收获7·2 实验中存在的不足和改进方向7·3 实验对于数据结构学习的启示和意义附件列表:1·实验所用的源代码文件2·实验中用到的测试数据文件注释:1·哈夫曼编码:一种用于数据压缩的编码方法,根据字符出现频率构建树形结构,实现高频字符用较短编码表示,低频字符用较长编码表示。

2·哈夫曼树:由哈夫曼编码算法构建的一种特殊的二叉树,用于表示字符编码的结构。

数据结构 哈夫曼编码实验报告

数据结构 哈夫曼编码实验报告

数据结构哈夫曼编码实验报告数据结构哈夫曼编码实验报告1. 实验目的本实验旨在通过实践理解哈夫曼编码的原理和实现方法,加深对数据结构中树的理解,并掌握使用Python编写哈夫曼编码的能力。

2. 实验原理哈夫曼编码是一种用于无损数据压缩的算法,通过根据字符出现的频率构建一棵哈夫曼树,并根据哈夫曼树对应的编码。

根据哈夫曼树的特性,频率较低的字符具有较长的编码,而频率较高的字符具有较短的编码,从而实现了对数据的有效压缩。

实现哈夫曼编码的主要步骤如下:1. 统计输入文本中每个字符的频率。

2. 根据字符频率构建哈夫曼树,其中树的叶子节点代表字符,内部节点代表字符频率的累加。

3. 遍历哈夫曼树,根据左右子树的关系对应的哈夫曼编码。

4. 使用的哈夫曼编码对输入文本进行编码。

5. 将编码后的二进制数据保存到文件,同时保存用于解码的哈夫曼树结构。

6. 对编码后的文件进行解码,还原原始文本。

3. 实验过程3.1 统计字符频率首先,我们需要统计输入文本中每个字符出现的频率。

可以使用Python中的字典数据结构来记录字符频率。

遍历输入文本的每个字符,将字符添加到字典中,并递增相应字符频率的计数。

```pythondef count_frequency(text):frequency = {}for char in text:if char in frequency:frequency[char] += 1else:frequency[char] = 1return frequency```3.2 构建哈夫曼树根据字符频率构建哈夫曼树是哈夫曼编码的核心步骤。

我们可以使用最小堆(优先队列)来高效地构建哈夫曼树。

首先,将每个字符频率作为节点存储到最小堆中。

然后,从最小堆中取出频率最小的两个节点,将它们作为子树构建成一个新的节点,新节点的频率等于两个子节点频率的和。

将新节点重新插入最小堆,并重复该过程,直到最小堆中只剩下一个节点,即哈夫曼树的根节点。

数据结构哈夫曼编码实验报告

数据结构哈夫曼编码实验报告

数据结构哈夫曼编码实验报告数据结构哈夫曼编码实验报告一、实验背景1:引言在日常生活中,信息传输已经成为了一个非常重要的环节。

通过对信息进行编码,可以有效地减少信息传输的开销和存储空间。

哈夫曼编码是一种常见的无损数据压缩方法,广泛应用于图像、音频和视频等领域。

本实验旨在通过实现哈夫曼编码算法,深入理解其工作原理,并对其性能进行评估。

2:实验目的本实验旨在:a:了解哈夫曼编码算法的基本原理;b:实现哈夫曼编码算法,并将其应用于对文本进行压缩;c:评估哈夫曼编码算法在不同文本数据上的性能。

二、实验内容1:哈夫曼编码原理介绍2:哈夫曼编码的实现思路a:构建哈夫曼树b:哈夫曼编码表c:对文本进行编码和解码3:实验环境介绍a:硬件环境b:软件环境4:实验步骤详解a:构建哈夫曼树的实现方法b:哈夫曼编码表的实现方法c:文本编码和解码的实现方法5:实验数据与结果分析a:不同文本数据的压缩结果对比 b:压缩性能的评估指标6:实验心得与建议a:实验过程中遇到的问题b:改进与优化方向三、实验结果与分析1:实验数据a:不同文本数据的大小与内容b:压缩率等性能指标数据2:实验结果分析a:不同文本数据对压缩效果的影响b:压缩率与文本数据的关系c:哈夫曼编码的运行时间分析四、结论根据实验结果和分析,可以得出以下结论:1:哈夫曼编码算法能够有效地减少文本数据的存储空间。

2:不同文本数据的压缩率存在差异,与文本的特性有关。

3:哈夫曼编码算法的运行时间与文本数据的长度成正比关系。

附件:1:实验源代码2:实验数据和结果法律名词及注释:1:无损数据压缩:指通过编码和解码过程,在不导致数据信息损失的情况下减少数据量。

2:哈夫曼编码:一种变长编码方式,通过更少的编码长度来表示频率较高的字符,从而达到减少编码长度的目的。

数据结构哈夫曼编码实验报告

数据结构哈夫曼编码实验报告

数据结构哈夫曼编码实验报告【正文】1.实验目的本实验旨在研究哈夫曼编码的原理和实现方法,通过实验验证哈夫曼编码在数据压缩中的有效性,并分析其应用场景和优缺点。

2.实验原理2.1 哈夫曼编码哈夫曼编码是一种无损数据压缩算法,通过根据字符出现的频率构建一颗哈夫曼树,将频率较高的字符用较短的编码表示,频率较低的字符用较长的编码表示。

哈夫曼编码的编码表是唯一的,且能够实现前缀编码,即一个编码不是另一个编码的前缀。

2.2 构建哈夫曼树构建哈夫曼树的过程如下:1) 将每个字符及其频率作为一个节点,构建一个节点集合。

2) 每次从节点集合中选择出现频率最低的两个节点,构建一个新节点,并将这两个节点从集合中删除。

3) 将新节点加入节点集合。

4) 重复以上步骤,直到节点集合中只有一个节点,这个节点就是哈夫曼树的根节点。

2.3 编码过程根据哈夫曼树,对每个字符进行编码:1) 从根节点开始,根据左子树为0,右子树为1的规则,将编码依次加入编码表。

2) 对于每个字符,根据编码表获取其编码。

3) 将编码存储起来,得到最终的编码序列。

3.实验步骤3.1 数据读取与统计从输入文件中读取字符序列,并统计各个字符的频率。

3.2 构建哈夫曼树根据字符频率构建哈夫曼树。

3.3 构建编码表根据哈夫曼树,构建每个字符的编码表。

3.4 进行编码根据编码表,对输入的字符序列进行编码。

3.5 进行解码根据哈夫曼树,对编码后的序列进行解码。

4.实验结果与分析4.1 压缩率分析计算原始数据和压缩后数据的比值,分析压缩率。

4.2 编码效率分析测试编码过程所需时间,分析编码效率。

4.3 解码效率分析测试解码过程所需时间,分析解码效率。

4.4 应用场景分析分析哈夫曼编码在实际应用中的优势和适用场景。

5.结论通过本次实验,我们深入了解了哈夫曼编码的原理和实现方法,实践了哈夫曼编码的过程,并对其在数据压缩中的有效性进行了验证。

实验结果表明,哈夫曼编码能够实现较高的压缩率和较高的编解码效率。

数据结构哈夫曼编码实验报告-无删减范文

数据结构哈夫曼编码实验报告-无删减范文

数据结构哈夫曼编码实验报告数据结构哈夫曼编码实验报告实验背景哈夫曼编码是一种常用的数据压缩方法,通过使用变长编码来表示不同符号,将出现频率较高的符号用较短的编码表示,从而达到压缩数据的目的。

通过实现哈夫曼编码算法,我们能够更好地理解和掌握数据结构中的树形结构。

实验目的1. 理解哈夫曼编码的原理及实现过程。

2. 掌握数据结构中树的基本操作。

3. 进一步熟悉编程语言的使用。

实验过程1. 构建哈夫曼树首先,我们需要根据给定的字符频率表构建哈夫曼树。

哈夫曼树是一种特殊的二叉树,其叶子节点表示字符,而非叶子节点表示字符的编码。

构建哈夫曼树的过程如下:1. 根据给定的字符频率表,将每个字符视为一个节点,并按照频率从小到大的顺序排列。

2. 将频率最小的两个节点合并为一个新节点,并将其频率设置为两个节点的频率之和。

这个新节点成为新的子树的根节点。

3. 将新节点插入到原来的节点列表中,并继续按照频率从小到大的顺序排序。

4. 重复步骤2和步骤3,直到只剩下一个节点,这个节点即为哈夫曼树的根节点。

2. 哈夫曼编码表在构建完哈夫曼树后,我们需要根据哈夫曼树每个字符的哈夫曼编码表。

哈夫曼编码表是一个字典,用于存储每个字符对应的编码。

哈夫曼编码表的过程如下:1. 从哈夫曼树的根节点出发,遍历整个树。

2. 在遍历的过程中,维护一个路径,用于记录到达每个字符节点的路径,0表示左子树,1表示右子树。

3. 当到达一个字符节点时,将路径上的编码存储到哈夫曼编码表中对应的字符键下。

3. 压缩数据有了哈夫曼编码表后,我们可以使用哈夫曼编码对数据进行压缩。

将原本以字符表示的数据,转换为使用哈夫曼编码表示的二进制数据。

压缩数据的过程如下:1. 将待压缩的数据转换为对应的哈夫曼编码,将所有的编码连接成一个字符串。

2. 将该字符串表示的二进制数据存储到文件中,同时需要保存哈夫曼编码表以便解压时使用。

实验结果通过实验,我们成功实现了哈夫曼编码的构建和使用。

数据结构哈夫曼编码实验报告

数据结构哈夫曼编码实验报告

数据结构哈夫曼编码实验报告
第一章实验目的
本实验旨在掌握哈夫曼编码的原理和实现方法,并通过编写代码实现一个简单的哈夫曼编码程序。

第二章实验内容
1.理解哈夫曼编码的基本概念和原理。

2.设计并实现一个哈夫曼编码的数据结构。

3.实现哈夫曼编码的压缩和解压缩功能。

4.通过实验验证哈夫曼编码的效果和压缩比。

第三章实验步骤
1.确定实验所需的编程语言和开发环境。

2.定义并实现哈夫曼编码的数据结构。

3.实现哈夫曼编码的压缩和解压缩算法。

4.设计实验样例数据,进行测试和验证。

5.分析实验结果,计算压缩比。

第四章实验结果与分析
1.实验样例数据:________提供一段文本,统计字符出现的频率,并进行哈夫曼编码。

2.实验结果:________展示压缩后的编码结果,计算压缩比。

3.分析:________分析实验结果,讨论哈夫曼编码的效果和优劣。

第五章实验总结与感想
本次实验深入了解了哈夫曼编码的原理和实现方法,通过编写代码实现哈夫曼编码的压缩和解压缩功能。

实验结果表明,哈夫曼编码能够有效地减小数据的存储空间,提高了数据传输的效率。

第六章本文档涉及附件
本实验报告所涉及到的附件包括:________
1.实验代码文件:________.c
2.实验样例数据文件:________.txt
第七章法律名词及注释
1.哈夫曼编码:________一种用于无损数据压缩的编码方法,通过对频率高的字符赋予较短的编码,对频率低的字符赋予较长的编码,从而实现压缩数据的目的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据结构实验报告实验名称:实验3——树(哈夫曼编/解码器)学生姓名:班级:班内序号:学号:日期:2011年12月5日1.实验要求利用二叉树结构实现哈夫曼编/解码器。

基本要求:1、初始化(Init):能够对输入的任意长度的字符串s进行统计,统计每个字符的频度,并建立哈夫曼树2、建立编码表(CreateTable):利用已经建好的哈夫曼树进行编码,并将每个字符的编码输出。

3、编码(Encoding):根据编码表对输入的字符串进行编码,并将编码后的字符串输出。

4、译码(Decoding):利用已经建好的哈夫曼树对编码后的字符串进行译码,并输出译码结果。

5、打印(Print):以直观的方式打印哈夫曼树(选作)计算输入的字符串编码前和编码后的长度,并进行分析,讨论哈夫曼编码的压缩效果。

并用I love data Structure, I love Computer。

I will try my best to study data Structure.进行测试。

2. 程序分析哈夫曼树结点的存储结构包括双亲域parent,左子树lchild,右子树rchild,还有字符word,权重weight,编码code对用户输入的信息进行统计,将每个字符作为哈夫曼树的叶子结点。

统计每个字符出现的次数作为叶子的权重,统计次数可以根据每个字符不同的ASCII码,根据叶子结点的权重建立一个哈夫曼树。

建立每个叶子的编码从根结点开始,规定通往左子树路径记为0,通往右子树路径记为1。

由于编码要求从根结点开始,所以需要前序遍历哈夫曼树,故编码过程是以前序遍历二叉树为基础的。

同时注意递归函数中能否直接对结点的编码域进行操作。

编码信息只要遍历字符串中每个字符,从哈夫曼树中找到相应的叶子结点,取得相应的编码。

最后再将所有找到的编码连接起来即可。

译码则是将编码串从左到右逐位判别,直到确定一个字符。

这就是哈夫曼树的逆过程。

遍历编码串,从哈夫曼树中找到相应的叶子结点,取得相应的字符再将找到的字符连接起来即可。

2.1 存储结构哈夫曼树结点存储结构2.2 关键算法分析1.统计字符频度自然语言描述:(1)取出字符串中的一个字符(2)遍历所有初始化的哈夫曼树结点(3)如果结点中有记录代表的字符且字符等于取出的字符,说明该字符的叶子存在,则将该结点的权值加1(4)如果所有结点记录的字符均没有与取出的字符一致,说明该字符的叶子不存在,则将结点的字符记为取出字符,并将权重设为1(5)重复以上步骤,直至字符串中所有字符全部遍历伪代码描述:1. for(int i=0;i<length;i++)1.1 for (int j=0;j<length;j++)1.1.1if (WordStr[i]==HuffTree[j].word)//若字符已被统计,则增加权值即可1.1.1.1 权重++;1.1.1.2 break;1.1.2 else if(!HuffTree[j].word)//否则需要一个新结点储存这个字符1.1.2.1 HuffTree[j].word=WordStr[i];1.1.2.2 HuffTree[j].weight=1;1.1.2.3 叶子结点个数++;1.1.2.4 break;时间复杂度O(n2),空间复杂度S(0)2. 构造哈夫曼树自然语言描述:(1)选出权值最小的两个结点,其权值和作为其根结点的权值,最小的结点作为左子树,次小的作为右子树,不断将两棵子树合并为一棵树。

(2)重复上述过程,直至所有结点全被遍历完伪代码描述:1. int leaves=n;2.for (int j=n;j<2*n-1;j++)2.1 int j1=0;int j2=0;2.2 Select(HuffTree,leaves,j,j1,j2);//选出两个权值最小结点2.3 HuffTree[j1].parent=j;HuffTree[j2].parent=j;2.4 HuffTree[j].weight=HuffTree[j1].weight+HuffTree[j2].weight;//根结点权值等于两个结点权值和2.5 HuffTree[j].lchild=j1;HuffTree[j].rchild=j2;//左子树为权值最小,右子树权值次小2.6 叶子数--;时间复杂度O(n),空间复杂度S(2)3. 为每个叶子结点编码自然语言描述:(1)初始化一个字符数组Code暂存每个叶子结点的编码。

(2)前序遍历哈夫曼树(3)若结点左右子树都为-1,则将code复制到编码的code串,准备返回上一层,编码相应少一位,code长度减1,返回(4)否则按照从左到右的顺序前序遍历根结点的所有子树(5)若访问左子树,则进入下一层,编码相应多一位,code长度加1并将最后一位赋0;访问右子树,进入下一层,code长度加1并将最后一位赋为0伪代码描述:1.if 结点左右孩子均为-11.1.将Code复制到huffTree的code1.2.return;1.3.否则1.3.1.if结点左子树存在1.3.1.1.Code长度增一1.3.1.2.Code最后一位赋0;1.3.1.3.访问左子树;1.3.1.4.层数减一;1.3.2.If结点右子树存在1.3.2.1.Code长度增一1.3.2.2.Code最后一位赋1;1.3.2.3.访问右子树;1.3.2.4.层数减一;算法时间复杂度O(n2),空间复杂度S(60)4. 编码自然语言描述:(1)定义字符串CodeStr储存编码(2)遍历输入字符串的每一个字符(3)对每一个字符,将其与HuffTree前n个叶子结点的word逐个比较,相同则将该结点的编码串code连接到CodeStr的末尾(4)遍历结束后,输出CodeStr伪代码描述:1.while(字符串字符不为0)1.1while(叶子结点word不为空)1.1.1i f(字符等于word中的字符)1.1.1.1 strcat(CodeStr,code);1.1.1.2.break;2. cout<<CodeStr<<endl;算法时间复杂度O(n2),空间复杂度S(2)5. 译码自然语言描述:(1)从编码串CodeStr的第一个字符开始与HuffTree第一个结点的编码域第一个字符比较(2)相等则继续比较后面的字符(3)否则,从CodeStr第一个字符与HuffTree第二个结点的编码比较(4)重复上述过程,将CodeStr中的所有字符比较完毕伪代码描述:1.在CodeStr和huffTree.code中设比较的起始下标i和j2.遍历数组huffTree2.1.循环至CodeStr或huffTree.code全部的字符均比较完2.1.1.如果CodeStr[i]=huffTree[k].code,继续比较下一个字符,否则2.1.2.将i和j回溯,跳出该层循环2.2如果huffTree[k].code全比较完,输出huffTree[k].word。

否则取huffTree下一个结点继续循环时间复杂度O(n2),空间复杂度S(3)3. 程序运行结果测试条件:问题规模n的数量级为1。

测试内容:I love data Structure, I love Computer. I will try my best to study data Structure.测试结论:测试的功能有:建立哈夫曼树、对每个字符进行编码、对信息字符串进行编码、对编码串进行译码,重新进行编码。

各项功能均能正常运行。

界面的跳转也能实现。

编码前信息总长度为664bits,编码后的长度为339bits。

由于哈夫曼编码采用不等长编码,有效缩短了编码长度,节省了空间。

4. 总结调试时出现的问题及解决的方法递归函数中的参数传递在给每个字符编码时,由于编码是从根结点开始,所以选用与前序遍历相似的递归遍历形式。

其中需要一个字符型数组来记录路径和编码,由于递归一次才有一位编码,所以这个数组也要随着递归函数的进行而不断修改。

开始时我没有用指针最为参数而是直接将数组作为参数,结果发现每次调用递归函数时数组都是空。

原来我用的是值传递,数组就算修改了也无法返回。

这提醒了我之后运用递归函数时如果需要某个变量随函数递归而修改时应该使用地址传递而非值传递。

心得体会哈夫曼树又称做最优二叉树,它是n个带权叶子结点构成的所有二叉树中,带权路径长度WPL最小的二叉树。

在n个带权叶子结点所构成的二叉树中,满二叉树或完全二叉树不一定是最优二叉树。

权值越大的结点离树根越近的二叉树才是最优二叉树。

哈夫曼树是根据字符出现的概率来构造平均长度最短的编码。

它是一种变长的编码。

在编码中,若各码字长度严格按照码字所对应符号出现概率的大小的逆序排列,则编码的平均长度是最小的。

哈夫曼树的应用非常广泛,在通信中,采用0,1的不同排列来表示不同的字符,而哈夫曼树在数据编码中的应用,若每个字符出现的频率相同,则可以采用等长的二进制编码,若频率不同,则可以采用不等长的二进编码,频率较大的采用位数较少的编码,频率较小的字符采用位数较多的编码,这样可以使字符的整体编码长度最小,哈夫曼编码就是一种不等长的二进制编码,且哈夫曼树是一种最优二叉树,它的编码也是一种最优编码,在哈夫曼树中,规定往左编码为0,往右编码为1,则得到叶子结点编码为从根结点到叶子结点中所有路径中0和1的顺序排列。

下一步的改进程序中多次使用了遍历数组或对数据进行逐个比对,循环的次数可以通过计算再减少,提高时间效率。

相关文档
最新文档