微小电容测量电路

合集下载

一种高精度测量微小电容的电路

一种高精度测量微小电容的电路

为实现低功耗 的系统 , 电路 不工作 时 , 即接通 电源 态和 待读数态 , 系统处于值更状态 、 超低 功耗态 L M ; P 4 工作 时都
处于全功耗态。
因 是采用单 片机 A D转换 的标 准 电压 15 V, ≤ . 观 15V, n值、 与 凡 的 比值 , . 故 碰 直接影 响恒 流源 电流的输 出, 只要保证 小于 15V时 , 电路输 出 电流为恒 定值 , . 该 与负载 电阻 碰 没有关 系。
图 3 恒 流 源 原理 图
基 金 项 目: 防科 技 重 点 实验 室基 - 00 10 ) 国  ̄( 4 107 , 作者简介 : 邵学涛( 94 , 山 东济宁人 , 士研 究生, 究方 向: 态测试与 智能仪 器。 18 一) 男, 硕 研 动

由 虚短 虚 断 可 得
= UL + .
+r ) e 的周期完成 A D变换 和数据存储 。其 中 , 的最 大值 n
小于充 电时间 ,2的最小值大于放 电时间 。 7
2 硬 件 设计
2 1 恒 流 源 的 设 计 .
1 原理 分析
恒流源是整个 测量系统模拟部分的重要组成 部分 , 其稳 定性直接决定 了系统测 量的精度 。本 设计 中的两个 恒流 源 要求 输出电流相等 , 具体设计如 图 3 。
在整个过程 中 , 单片机要产生一个频率为 10k z 占空 0 H , 比为 9 %的 P 0 WM波 , 以控 制 K 、< 用 1I 2的通 断 , 要 以 ( 还 n
容的高精度 , 高频率测量 。由于采用 了差 动式测 量 , 设计 本
可 以有效地 减小 非线性误差 , 提高传感器灵敏度 , 减少 干扰 , 减少寄生 电容 的影 响。若 选用高性 能模拟 开关 能大大 减小 电荷 注入效应的影响 。在检测 0~ F的实验 中 , 5p 采样 频率 可以达到 10k z有效精度位最高可达 1 。 0 H , 2位

一种测量微小差分电容的检测电路[发明专利]

一种测量微小差分电容的检测电路[发明专利]

专利名称:一种测量微小差分电容的检测电路专利类型:发明专利
发明人:房建成,宋星,盛蔚,马艳武,乙冉冉,万双爱申请号:CN200810112292.2
申请日:20080522
公开号:CN101285859A
公开日:
20081015
专利内容由知识产权出版社提供
摘要:一种测量微小差分电容的检测电路,包括选频电路、锁相环跟踪电路、逻辑门电路和低通滤波电路;其中,选频电路和锁相环跟踪电路组成谐振单元,该谐振单元的谐振频率由待测差分电容的大小决定。

由差分电容构成的两组谐振单元在后端逻辑门电路和低通滤波电路的作用下可以实现正比于差分电容大小的频率输出。

本发明检测精度和输出线性度高,温漂小,抗干扰能力强;电路结构简单,便于工程化和集成电路制作。

本发明适用于医疗器械、安防探测、惯性器件、流体特性测量领域中基于微小差分电容敏感机理的测量。

申请人:北京航空航天大学
地址:100083 北京市海淀区学院路37号
国籍:CN
代理机构:北京科迪生专利代理有限责任公司
更多信息请下载全文后查看。

微小差分电容检测电路设计-任务书

微小差分电容检测电路设计-任务书

中北大学
毕业设计(论文)任务书
学院、系:信息与通信工程学院
专业:通信工程
学生姓名:学号:
设计(论文)题目:微小差分电容检测电路设计
电路设计
起迄日期: 2006年3月1日~2006年6月15日
设计(论文)地点:电子工程系
指导教师:
系主任:
发任务书日期: 2006年3月1日
任务书填写要求
1.毕业设计(论文)任务书由指导教师根据各课题的具体情况填写,经学生所在系的负责人审查、系领导签字后生效。

此任务书应在毕业设计(论文)开始前一周内填好并发给学生;
2.任务书内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,不得随便涂改或潦草书写,禁止打印在其它纸上后剪贴;
3.任务书内填写的内容,必须和学生毕业设计(论文)完成的情况相一致,若有变更,应当经过所在专业及系主管领导审批后方可重新填写;
4.任务书内有关“学院、系”、“专业”等名称的填写,应写中文全称,不能写数字代码。

学生的“学号”要写全号(如020*******,为10位数),不能只写最后2位或1位数字;
5.有关年月日等日期的填写,应当按照国标GB/T 7408—94《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。

如“2004年3月15日”或“2004-03-15”。

毕业设计(论文)任务书
毕业设计(论文)任务书。

基于开关电容放大器原理的微小电容检测电路

基于开关电容放大器原理的微小电容检测电路

基于开关电容放大器原理的微小电容检测电路下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!基于开关电容放大器原理的微小电容检测电路在现代电子技术中,微小电容的检测和测量一直是一个重要的课题。

测电容的方法

测电容的方法

测电容的方法测量电容是电子技术中非常重要的一个环节,它可以帮助我们了解电路中的电容值,从而确保电路的正常运行。

下面将介绍几种测量电容的方法,希望对大家有所帮助。

首先,最简单的方法是使用万用表。

将万用表调至电容档位,然后将待测电容的两端与万用表的两个测试笔相连接。

在测量之前,需要确保待测电容已经放电,以免影响测量结果。

接着,读取万用表显示的数值,即可得到待测电容的电容值。

需要注意的是,测量电容时要选择适当的测量范围,以免损坏万用表。

其次,还可以利用示波器来测量电容。

将待测电容与一个已知电容串联连接,然后将串联电容接入示波器。

通过观察示波器显示的波形,可以得到待测电容和已知电容的等效电容值。

这种方法适用于需要测量较大电容值的情况,同时也可以利用示波器显示的波形来判断电容的质量。

另外,还可以通过频率测量法来测量电容。

将待测电容与一个已知电感串联连接,然后将串联电容接入一个频率可调的交流电源。

通过调节频率,当串联电容和电感的共振频率达到时,可以得到待测电容的电容值。

这种方法适用于需要测量较小电容值的情况,同时也可以通过测量共振频率来得到电容值。

最后,还可以利用LCR测量仪来测量电容。

LCR测量仪是一种专门用于测量电感、电容和电阻的仪器,它可以直接读取待测电容的电容值,并且可以自动判断电容的正负极性。

这种方法操作简单,测量精度高,适用于各种电容值的测量。

总之,测量电容的方法有很多种,我们可以根据实际情况选择合适的方法来进行测量。

无论是使用万用表、示波器、频率测量法还是LCR测量仪,都需要注意操作规范,以确保测量结果的准确性。

希望以上介绍的方法能够对大家有所帮助,谢谢阅读!。

基于PS021微小电容低功耗测量电路的设计

基于PS021微小电容低功耗测量电路的设计
这就 需要 测量电路必须满 足动 态范 围大 、 量灵 敏度高 、 测 低
噪声 、 抗杂散性等要求 ] 。 目前 , 内外在测量 1 F以下的 电容都 存在很 大的 困 国 0p
转换器 ) 技术而产生 , 使之成 为一 种完全集 成的超低 功耗 、 超
高精度测 量芯片。这种数字 测量原 理提供 非常高 的测量 灵
很好 的稳定性 , 1 z 在 OH 刷新频率时能够达到 6a F的有效精 度, 最高刷新频率 可达 5 H 【 , 0k z3 高精度高刷 新率 可缓 和测 J
量速度和分辨力的矛盾。
参考 电容 充放 电测得 r =R r , 。 ce 传感器 电容充 放 电测 f
得 7 =R sno , - C esr根据芯片 内部算法 计算 出 r/ l sno 2 2r :Ces ̄ c , 陀f其中 ce 为 已知 电容 , rf 最后 得到 l 6位 的数据 , 而实 从 现了对传感器 电容 的测量 。P 0 1控制 模拟 开关 使得 充放 S2
和强 烈振动等恶劣条件下工作等优点 。
由于电容式传感 器输 出的电容信号很小 ( F~1 F , 1f 0 p )
P0 1 片基 于 T C Tm - — itl ovn r 间 数 字 S2 芯 D ( iet D百 a C ne e 时 o
同时存在传感器及其 连接导线杂散电容和寄生 电容 的影 响 ,
难, 测量电路多是采用 电荷转移 法或交 流法 , 即将 电容 量转
换 为 电压 或 电流 , 电路 往 往 受 到 电 子 开 关 的 电荷 注 入 效 应 的
影响 , 并且其 提高测量速度和提高分辨力 的矛盾难 以解决 。
本文拟 采 用 德 国 A A 公 司 的 通 用 电容 检 测 芯 片 CM P 0 1芯片进行微小 电容 测量 电路 的设 计。该 芯 片把 电容 S2 测量转化为精确的时间测量 , 内部算法可 以很好地抑制 寄生

试述微小电容的测量方法及测量电路系统设计


的精确测量 。这种方法 是把被测电容 ( 可有漏导) 放在一个桥臂 ,可 调的参考 阻抗放 在相邻 的另一个桥臂 ,二桥臂分别 接到频率相同 、电 压相同的两个信 号源 上。调节参考阻抗使桥路平衡 ,则被测桥臂中的 阻抗 与参 考阻抗共轭 相等。该方法 的主要优点 为 :选用 器件少 ,电路 简单 ,易于小型化。其缺点主要为 :由于远离平衡位置时非线性较大 , 输 出阻 抗 很 高 ,输 出 电压 很 小 。 2 测 量 电路 系统 设 计 21 微 电容测量电路设计要求 . 在 E T电容测量 中,电容传感器内充以两相 介质时 ,两电极间互 C 电容的变化量是 流体相 含率及其空间分布 的函数 ,而相 含率变化所引 起 的互 电容变化量一般为 01 1 皮法 (f . . ~0 p)左右 ,且不 同的电极对之 间的电容量相差很大 ,相邻 电极对问 的电容 比相对 电极对 问的电容要 大数百倍 ,同时杂散 电容远远大于待测电容 ,因此应用于 E T的电容 C 检测 电路应当具有 以下特点 :1 )低漂移 、能抑制杂散 电容 、消除损耗 电导 的影 响;2 )高分辨率 ,最小可分辨信号 0 f ;3 " F )线性度好 ,非 . 1 线性误差 ≤l )高信噪比 ,信噪 比≥l0 B )测量范围足够宽, O ;4 0 d ;5
能 测 量微 小 电容 的 变 化 。 关键 词 : 电容 层 析 成像 ; 小 电容 ; 量 电路 微 测
电容式传感器是将 被测量 的变 化转换成 电容量变 化的一种装 置。 电容式传感器具有结构简单 、分辨力 高、工作 可靠 、动态响应快 、可 非接触测量 ,并 能在 高温 、辐射和强烈振动等恶劣 条件 下工作等优点 已在工农业生产 的各个 领域得到广泛应用 。其 中微小 电容测量是关键 技 术 之 一 。这 里 介 绍 了 最 常 用 的 四 种 微 小 电容 检 测 方 法 ,设计 了 基 于 交 流激励的电容测量 电路 ,分析了电路 的工作原理 ,给出 了实验结果 ; 该 电路 的特点是 动态测 量范围宽 ,灵敏度高 ,可灵 活应用 于不同的应 用场合 。

指针式万用表MF47的原理与测量方法和测量电路

万用表的使用(MF47)●万用表的原理图与工作原理●万用表的电阻档测量原理图及实际电阻色环图片表●三极管引脚判断及常用三极管直流放大倍数表●万用表的电容测量及微小电容测量方法与电路分析●For personal use only in study and research; not for commercial use ●●万用表测量驻极体话筒、喇叭、稳压管稳压电压、光敏电阻等●在线电路电容、电阻测量●万用表使用技巧与注意事项第一节:万用表的原理图与工作原理南京 MF 47型指针式万用表原理电路图(1)从图(1)中我们可以分析出,其测量电阻,直流电压,交流电压和直流电流的原理可等效为图(2)所示。

测量原理,图(2)从图(2)中可以得出以下结论:测量外接直流或交流电压与直流电流时,万用表电池可有可无。

实践一:将万用表的电池1.5v和9V全取出,然后用其直流电压档测电压,结果显示为1.5v和9v。

万用表不用时不要打到电阻档,其他档可以,最好OFF因为打到Ω档,如果两表笔(黑红)放置时不小心短路或接了一个具有一定电阻的东西会用使万用表电池耗电而减少万用表使用周期;然而非Ω档未用到电池,故不会耗电。

第二节:万用表电阻档工作原理图电阻色环对应表第三节:三极管引脚判断:1.判断三极管的基极及三极管类型用MF47指针式万用表的电阻1k档测量三极管任意两脚电阻(其中一表笔不动,另一个表笔分别接三极管另外两脚),发现两次测量指针都偏置了,那么一表笔不动的即为基极b,如果该表笔是黑,则只是NPN型,如果是红表笔,则为PNP型。

2.三极管c、e两极判断仍然用万用表的1K档。

以NPN为例分析,用左手的大拇指和食指捏住基极b 与另外一极(主要是利用人的电阻,大概在几百K到1M左右),用黑表笔连用手捏着的非基极,另一表笔接非手捏着的一极,若指针偏转大,则与基极捏着的一极为集电极,非手捏着的为射极。

此时电路构成放大电路,所以指针偏转很大,等效电路如图(2.0):若指针不偏转,则与基极捏着一起的那极为射极e,非手捏着的为集电极。

电容层析成像系统微小电容测量电路的设计


pe ou .O u x rm e t e u t h rh r r e pe i n r s ls s ow h ic t i s r f n t e c r ui s a i yi g. s
Ke wo d : e e t ial apa ianc t y rs l c r c c ct e om ogr aphy; me ur m e c r ui f l as e nt i c t or ow c apac t ianc ; t e wo— — pha e l s fow
数 进 行 测 量 的要 求 也 更 加 迫 切 [ 目前 , 容 层 析 成 1 1 . 电 像 E T技 术 被 公 认 为 是 解 决 该 问 题 的 最 为 有 效 的 C 途 径 . C 系统 由多极 板 阵列组 合 电容 传 感 器、 ET 数 据 采集 系 统 和 成 像 计 算 机 组 在 , 中 微 小 电容 测 量 其


成 为其 关 键 和难 点 之一 . 因此 本 文 研 制 了一 种 用 于 E T系 统 的 微 小 电容 测 量 电 路 . C
随 着 工 业 技 术 水 平 的 不 断 提 高 , 封 闭 管 道 内 对
流 体 的计 量 和 控 制 提 出 了 更 高 的 要 求 , 两 相 流 参 对
Ab ta t s r c :The t c o og l c rc l c pa i n e t m o r ph i t e ma n t e d,a d i hi s s e hn l y of e e t i a a ct c o a ga y s h i rn n n t s y ・ t m h e s r m e t of l e t e m a u e n ow a u a c t n e i ne o h e s a h f c l ob e .I i w v l e c pa ia c s o f t e k y nd t e di u t pr l ms n v e i o l c rc l c pa ia e om o r ph y t m ,a me s r m e t c r u t f r e e t ia p c t n om o r — f e e t i a a c t nc t g a y s se a u e n ic i o l c r c l c a ia c t a e g a

振荡式微小电容测量电路

振荡式微小电容测量电路邵学涛;李新娥【摘要】微小电容的测量成了电容传感器能否广泛应用的关键技术.针对目前微小电容测量系统刷新率低,体积大的现状,本文提出了一种电容-频率转化电路,该电路将电容传感器接入方波振荡回路中,振荡波形频率随电容的改变而改变,通过对振荡波形的处理,积分电路可以将微小的电容信号转换成电压的变化.该测量系统具有功耗低、体积小、分辨率高、刷新率高的特点,可以高精度高频率测量电容传感器的变化.文中详细阐述了测量电路的基本原理和具体实现.【期刊名称】《电子测试》【年(卷),期】2011(000)001【总页数】4页(P50-53)【关键词】微小电容;积分电路;电容传感器【作者】邵学涛;李新娥【作者单位】中北大学仪器科学与动态测试教育部重点实验室,山西,太原,030051;中北大学仪器科学与动态测试教育部重点实验室,山西,太原,030051【正文语种】中文【中图分类】TP212.90 引言电容式传感器是将被测量的变化转换成电容量变化的一种装置。

电容式传感器具有结构简单、分辨力高、工作可靠、动态响应快、可非接触测量,并能在高温、辐射和强烈振动等恶劣条件下工作等优点已在工农业生产的各个领域得到广泛应用[1]。

本文采用振荡法测量微小电容,电容式传感器和外部元件组成振荡电路,频率变化的振荡信号经过处理,转换为电压幅值的变化,经单片机AD采集后,反算出电容的变化量。

电容的改变转化为输出频率的变化,可以是正弦波输出,也可以方波输出。

正弦波的输出比起方波来,波形更容易受到干扰和衰减,而且方波的频率也更容易用单片机来测量。

1 原理分析测量电路原理方框图如图1所示:将电容传感器接入振荡回路中,作为回路的一部分。

当被测的电容传感器改变时,振荡器的振荡频率随之改变,也即振荡器频率受传感器电容所限制。

图1 设计原理图振荡器的振荡频率为f,振荡范围是振荡周期为t= ,则n个振荡周期的时间为t=nτt。

存在一个恒定的时间T,满足T<tmin ,令Δt=t− T = n τt − T ,0.5μu s <Δt <1.22μus 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电容式传感器是将被测量的变化转换成电容量变化的一种装置。

电容式传感器具有结构简单、分辨力高、工作可靠、动态响应快、可非接触测量,并能在高温、辐射和强烈振动等恶劣条件下工作等优点已在工农业生产的各个领域得到广泛应用。

例如在气力输送系统中,可以用电容传感器来获得浓度信号和流动噪声信号,从而测量物料的质量流量;在电力系统中,采用电容传感器在线监测电缆沟的温度,确保使用的安全;由英国曼彻斯特科学与技术大学(UMIST)率先开发的电容层析成像(ECT)技术是解决火电厂煤粉输送风-粉在线监测等气固两相流成分和流量检测的有效途径,其中微小电容测量是关键技术之一。

电容传感器的电容变化量往往很小。

结果电容传感器电缆杂散电容的影响非常明显。

特别在电容层析成像系统中被测电容变化量可达0.01pF,属于微弱电容测量,系统中总的杂散电容(一般大于100 pF)远远大于系统的电容变化值,且杂散电容会随温度、结构、位置、内外电场分布及器件的选取等诸多因素的影响而变化,同时被测电容变化范围大。

因此微小电容测量电路必须满足动态范围大、测量灵敏度高、低噪声、抗杂散性等要求。

1 充/放电电容测量电路
充/放电电容测量电路基本原理如图1所示。

由CMOS开关S1,将未知电容Cx充电至Ve,再由第二个CMOS开关S2放电至电荷检测器。

在一个信号充/放电周期内从Cx传输到检波器的电荷量Q=Ve·Cx,在时钟脉冲控制下,充/放电过程以频率f=1/T 重复进行,因而平均电流Im=Ve·Cx·f,该电流被转换成电压并被平滑,最后给出一个直流输出电压
Vo=Rf·Im=Rf·Ve·Cx·f(Rf为检波器的反馈电阻) 。

充/放电电容测量电路典型的例子为差动式直流充放电C/V转换电路,如图2所示。

Cs1和Cs2分别为源极板和检测极板与地间的等效杂散电容(通过分析可知,它们不影响电容Cx的测量)。

S1-S4是CMOS开关,S1和S3同步,S2和S3同步,它们的通断受频率f的时钟信号控制,每个工作周期由充/放电组成。

分析可得电路输出为
Vo=2KR f V e C x f (1)
式中,K为差分放大器D3的放大倍数。

该电路的主要优点是能有效地抑制杂散电容,而且电路结构简单,成本很低,经过软件补偿后电路稳定性较高,获取数据速度快。

缺点是电路采用的是直流放大,存在较大的漂移;另外,充/放电是由CMOS
开关控制,所以存在电荷注入问题。

目前该电路已成功应用于6、8、12电极的ECT系统中。

其典型分辩率可达3*10-15F。

2 AC电桥电容测量电路
AC电桥电容测量电路如图3所示,其原理是将被测电容在一个桥臂,可调的参考阻抗放在相邻的一个桥臂,二桥臂分别接到频率相同/幅值相同的信号源上,调节参考阻抗使桥路平衡,则被测桥臂中的阻抗与参与阻抗共轭相等。

这种电路的主要优点是:精度高,适合作精密电容测量,可以做到高信噪比。

图3电路的缺点是无自动平衡措施,为此可采用图4所示的自动平衡AC电桥电容测量电路。

该系统输出Vd为一直流信号,ΔC为传感器的电容变化量。

式中,2/π为相敏因子。

结合平衡条件,在理论上输出Vd可写成
获得该电桥的自动平衡过程的步骤为:保证电桥未加载时ΔC=0,测量电桥非平衡值并利用公式(3)计算出电桥输出为零时所需的反馈信号Ve的值。

重新测量桥路的输出,若输出为零,则桥路平衡;若输出不为零,重复上述测量步骤,直至桥路输出为零,即桥路平衡为止。

该电桥电容测量电路原理上没有考虑消除杂散电容影响的问题,为此采取屏蔽电缆等复杂措施,而且其效果也不一定理想。

通过实验测得其线性误差能达到±1*10-13F。

3 交流锁相放大电容测量电路
交流型的C/V转换电路基本原理如图5所示。

正弦信号Ui(t)对被测电容进行激励,激励电流流经由反馈电阻Rf、反馈电容Cf,和运放组成的检测器D转换成交流电压Uo(t):
若jωRfCf>>1,则(4)式为
式(5)表明,输出电压值正比于被测电容值。

为了能直接反映被测电容的变化量,目前常用的是带负反馈回路的C/V转换电路。

这种电路的特点是抗杂散性、分辨率可高达0.4*10-15F。

由于采用交流放大器,所以低漂移、高信噪比,但电路较复杂,成本高,频率受限。

4 基于V/T变换的电容测量电路
测量电路基本原理如图6所示。

电流源Io为4DH型精密恒流管,它与电容C通过电子开关K串联构成闭合回路,电容C的两端连接到电压比较器P的输入端,测量过程如下:当K1闭合时,基准电压给电容充电至Uc=Us,然后K1断开,
K2闭合,电容在电流源的作用下放电,单片机的内部计数器同时开始工作。

当电流源对电容放电至Uc=0时,比较器翻转,计数器结束计数,计数值与电容放电时间成正比,计数脉冲与放电时间关系如图7所示。

电容电压Uc与放电电流Io的关系为:
令Uc=0,则有:
式中,N为计数器的读数;Tc为计数脉冲的周期;它是一个常数;在Us和Io为定值时,C与N成正比。

基于V/T变换的电容测量电路,对被测电容只进行一次充放电即可完成对被测电容的测量。

采用了电子技术中准确度较高的时间测量原理,克服了传统测量微弱信号电路中放大器的稳定性不好、零点漂移大等缺点,且电路结构简单、测量精度和分辨率高。

5 基于混沌理论的恒流式混沌测量电路
恒流式混沌电路如图8所示。

其工作原理如下:当K1、K2断开时,K3闭合。

电容C充电使Uc=Ux,然后K3断开,待周期为t的
脉冲序列δ中的一个脉冲到达G(逻辑电路)时,G的输人信号使K2闭合,K1保持断开(此时相当于图9中的X1点),电容开始以-0.5Io的恒定电流放电。

当Uc=0时,相当于电路中的A点,比较器翻转,输出电压Up由高电平变为底电平,Up的变化促使G变化,使G控制K1闭合、K2断开,此时电容C由恒定电流Io充电,使Uc按A-X2方向上升。

当又一个脉冲到来时(相当于图8中X2点),G又开始变化,使K1断开、K2闭合,又一个放电充电过程开始。

这样周而复始的放电充电使Uc的变化如图9所示,只要适当调整,Io和t就可以使电路处于混沌状态。

这种方法突出的优点是测量的分辨率高,测量的绝对误差不随被测电容值的变化而改变,对作为传感器的元件只要求稳定即可。

当被测电容很大时,相对误差还会减小。

此方法除了可以直接测量电容外,也可以作为电容式传感器测量其它电量和非电量。

6 基于电荷放大原理的电容测量电路
基于电荷放大原理的电容测量电路如图10所示,该电路是通过测量极板上的激励信号所感应出的电荷量而得到所测电容值的。

图中Cx为被测电容,它的左侧极板为激励电极,右侧极板为测量电极。

Cas和Cbs表示每个电极所有杂散电容的等效电容,Cas由激励信号源驱动,它的存在对流过被测电容的电流无影响。

电容Cbs在
测量过程中始终处于虚地状态,两端无电压差,因而它也对电容测量无影响,因此整个电路对杂散电容的存在不敏感。

基于电荷放大原理的电容测量电路,一方面该电路对被测电容只进行一次充放电,就可完成对电容的测量,由于测量结果是直流稳定信号,不存在脉动成分,故电路中无需滤波器。

因此大大提高了基于该电路的数据采集系统的数据采集速度。

同时该电路具有很强的抗杂散电容的性能。

另一方面该电路可以对各开关的控制时序进行合理的设计,用以较好地解决了电子开关的电荷注入效应对测量精度的影响问题,使电路达到了较高的分辨率。

现在此电路成功应用于12电极ECT系统中,在不实时成像的情况下,数据采集速度可达600幅/s,对杂散电容具有较强的抑制能力,系统灵敏度4.8 V/pF,可达最高分辨率为5*10-15F。

7 结论
电容传感器性能很大程度上取决于其测量电路的性能,目前的微小电容测量技术正处于不断的完善中,还不能满足实际应用发展的需要。

从工业角度而言,一个完善的微小电容测量电路应该具备低成本、低漂移、响应速度快、抗杂散性好、高分辨率、高信噪比和适用范围广等优点。

在上述讨论的测量电路各有优缺点,相比较而言,交流锁相放大测量电路是目前实验室应用最好的检测电路,在现有研究成果基础上进一步改善其电路复杂、频率受限的缺点,将在工业实际测量中具有广泛的应用前景。

把微小电容测量技术研究工作推上一个新台阶。

相关文档
最新文档