2018~2019学年上海市宝山区九年级二模数学试卷及参考答案
上海市各区2018届中考二模数学分类汇编:几何证明专题(含答案)

上海市各区2018届九年级中考二模数学试卷精选汇编几何证明专题宝山区、嘉定区23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图6,在正方形ABCD 中,点M 是边BC 上的一点(不与B 、C 重合),点N 在CD 边的延长线上,且满足︒=∠90MAN ,联结MN 、AC ,MN 与边AD 交于点E . (1)求证;AN AM =;(2)如果NAD CAD ∠=∠2,求证:AE AC AM ⋅=2.23.证明:(1)∵四边形ABCD 是正方形∴AD AB =,︒=∠=∠=∠=∠90BCD ADC B BAD ……1分 ∴︒=∠+∠90MAD MAB ∵︒=∠90MAN∴︒=∠+∠90MAD NAD ∴NAD MAB ∠=∠………1分 ∵︒=∠+∠180ADC ADN ∴︒=∠90ADN ……1分 ∴ADN B ∠=∠……………………1分 ∴△ABM ≌△ADN ………………………1分 ∴AN AM = ……………………………1分(2)∵四边形ABCD 是正方形 ∴AC 平分BCD ∠和BAD ∠ ∴︒=∠=∠4521BCD BCA ,︒=∠=∠=∠4521BAD CAD BAC ……1分 ∵NAD CAD ∠=∠2 ∴︒=∠5.22NAD∵NAD MAB ∠=∠ ∴︒=∠5.22MAB ………1分 ∴︒=∠5.22MAC ∴︒=∠=∠5.22NAE MAC ∵AN AM =,︒=∠90MAN ∴︒=∠45ANE图6图6∴ANE ACM ∠=∠…………………1分 ∴△ACM ∽△ANE …………1分 ∴ANACAE AM =……1分 ∵AN AM =∴AE AC AM ⋅=2…………1分长宁区23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在四边形ABCD 中,AD //BC ,E 在BC 的延长线,联结AE 分别交BD 、CD 于点 G 、F ,且AG GF BE AD =. (1)求证:AB //CD ;(2)若BD GD BC ⋅=2,BG =GE ,求证:四边形ABCD 是菱形.23.(本题满分12分,第(1)小题5分,第(2)小题7分)证明:(1)∵BC AD // ∴BG DG BE AD = (2分)∵AG GFBE AD =∴AGGF BG DG = (1分) ∴ CD AB // (2分) (2)∵BC AD //,CD AB //∴四边形ABCD 是平行四边形 ∴BC=AD (1分) ∵ BD GD BC ⋅=2∴ BD GD AD ⋅=2即ADGDBD AD =又 ∵BDA ADG ∠=∠ ∴ADG ∆∽BDA ∆ (1分) ∴ABD DAG ∠=∠∵CD AB // ∴BDC ABD ∠=∠ ∵BC AD // ∴E DAG ∠=∠∵BG =GE ∴E DBC ∠=∠ ∴DBC BDC ∠=∠ (3分)ACDEF GB第23题图∴BC=CD (1分) ∵四边形ABCD 是平行四边形 ∴平行四边形ABCD 是菱形. (1分)崇明区23.(本题满分12分,第(1)、(2)小题满分各6分)如图,AM 是ABC △的中线,点D 是线段AM 上一点(不与点A 重合).DE AB ∥交BC 于点K ,CE AM ∥,联结AE .(1)求证:AB CMEK CK=; (2)求证:BD AE =.23.(本题满分12分,每小题6分) (1)证明:∵DE AB ∥∴ ABC EKC =∠∠ ……………………………………………………1分∵CE AM ∥∴ AMB ECK =∠∠ ……………………………………………………1分∴ABM EKC △∽△ ……………………………………………………1分 ∴AB BMEK CK=………………………………………………………1分 ∵ AM 是△ABC 的中线∴BM CM = ………………………………………………………1分∴AB CMEK CK=………………………………………………………1分 (2)证明:∵CE AM ∥ ∴DE CMEK CK=………………………………………………………2分 (第23题图)ABK MCDE又∵AB CMEK CK=∴DE AB = ………………………………………………………2分 又∵DE AB ∥∴四边形ABDE 是平行四边形 …………………………………………1分 ∴BD AE = ………………………………………………………1分奉贤区23.(本题满分12分,每小题满分各6分)已知:如图7,梯形ABCD ,DC ∥AB ,对角线AC 平分∠BCD , 点E 在边CB 的延长线上,EA ⊥AC ,垂足为点A . (1)求证:B 是EC 的中点;(2)分别延长CD 、EA 相交于点F ,若EC DC AC ⋅=2,求证:FC AC AF AD ::=.黄浦区23.(本题满分12分)如图,点E 、F 分别为菱形ABCD 边AD 、CD 的中点. (1)求证:BE =BF ;(2)当△BEF 为等边三角形时,求证:∠D =2∠A .ACD E图7B23. 证:(1)∵四边形ABCD为菱形,∴AB=BC=AD=CD,∠A=∠C,——————————————————(2分)又E、F是边的中点,∴AE=CF,——————————————————————————(1分)∴△ABE≌△CBF———————————————————————(2分)∴BE=BF. ——————————————————————————(1分)(2)联结AC、BD,AC交BE、BD于点G、O. ——————————(1分)∵△BEF是等边三角形,∴EB=EF,又∵E、F是两边中点,∴AO=12AC=EF=BE.——————————————————————(1分)又△ABD中,BE、AO均为中线,则G为△ABD的重心,∴1133OG AO BE GE===,∴AG=BG,——————————————————————————(1分)又∠AGE=∠BGO,∴△AGE≌△BGO,——————————————————————(1分)∴AE=BO,则AD=BD,∴△ABD是等边三角形,———————————————————(1分)所以∠BAD=60°,则∠ADC=120°,即∠ADC=2∠BAD. —————————————————————(1分)金山区23.(本题满分12分,每小题6分)如图7,已知AD 是△ABC 的中线, M 是AD 的中点, 过A 点作AE ∥BC ,CM 的延 长线与AE 相交于点E ,与AB 相交于点F . (1)求证:四边形AEBD 是平行四边形; (2)如果AC =3AF ,求证四边形AEBD 是矩形.23.证明:(1)∵AE //BC ,∴∠AEM =∠DCM ,∠EAM =∠CDM ,……………………(1分)又∵AM=DM ,∴△AME ≌△DMC ,∴AE =CD ,…………………………(1分) ∵BD=CD ,∴AE =BD .……………………………………………………(1分) ∵AE ∥BD ,∴四边形AEBD 是平行四边形.……………………………(2分)(2)∵AE //BC ,∴AF AEFB BC=.…………………………………………………(1分) ∵AE=BD=CD ,∴12AF AE FB BC ==,∴AB=3AF .……………………………(1分) ∵AC=3AF ,∴AB=AC ,…………………………………………………………(1分) 又∵AD 是△ABC 的中线,∴AD ⊥BC ,即∠ADB =90°.……………………(1分) ∴四边形AEBD 是矩形.……………………………………………………(1分)静安区23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分) 已知:如图,在平行四边形ABCD 中, AC 、DB 交于点E , 点F 在BC 的延长线上,联结EF 、DF ,且∠DEF =∠ADC .EAFMD图7CC第23题图ABDE F(1)求证:DBABBF EF =; (2)如果DF AD BD ⋅=22,求证:平行四边形ABCD 是矩形.23.(本题满分12分,第(1)小题6分,第(2)小题6分) 证明:(1)∵平行四边形ABCD ,∴AD //BC ,AB //DC∴∠BAD +∠ADC =180°,……………………………………(1分) 又∵∠BEF +∠DEF =180°, ∴∠BAD +∠ADC =∠BEF +∠DEF ……(1分) ∵∠DEF =∠ADC ∴∠BAD =∠BEF , …………………………(1分) ∵AB //DC , ∴∠EBF =∠ADB …………………………(1分)∴△ADB ∽△EBF ∴DB ABBF EF = ………………………(2分) (2) ∵△ADB ∽△EBF ,∴BFBEBD AD =, ………………………(1分) 在平行四边形ABCD 中,BE =ED =BD 21∴221BD BE BD BF AD =⋅=⋅∴BF AD BD ⋅=22, ………………………………………(1分) 又∵DF AD BD ⋅=22∴DF BF =,△DBF 是等腰三角形 …………………………(1分) ∵DE BE =∴FE ⊥BD , 即∠DEF =90° …………………………(1分) ∴∠ADC =∠DEF =90° …………………………(1分) ∴平行四边形ABCD 是矩形 …………………………(1分)闵行区23.(本题满分12分,其中第(1)小题5分,第(2)小题7分)如图,已知在△ABC 中,∠BAC =2∠C ,∠BAC 的平分线AE 与∠ABC 的平分线BD 相交于点F ,FG ∥AC ,联结DG .(1)求证:BF BC AB BD ⋅=⋅; (2)求证:四边形ADGF 是菱形.AB第23题图DE FABEGCFD(第23题图)23.证明:(1)∵AE 平分∠BAC ,∴∠BAC =2∠BAF =2∠EAC .∵∠BAC =2∠C ,∴∠BAF =∠C =∠EAC .…………………………(1分) 又∵BD 平分∠ABC ,∴∠ABD =∠DBC .……………………………(1分) ∵∠ABF =∠C ,∠ABD =∠DBC ,∴ABF CBD ∆∆∽.…………………………………………………(1分) ∴AB BFBC BD=.………………………………………………………(1分) ∴BF BC AB BD ⋅=⋅.………………………………………………(1分) (2)∵FG ∥AC ,∴∠C =∠FGB ,∴∠FGB =∠FAB .………………(1分)∵∠BAF =∠BGF ,∠ABD =∠GBD ,BF =BF ,∴ABF GBF ∆∆≌.∴AF =FG ,BA =BG .…………………………(1分) ∵BA =BG ,∠ABD =∠GBD ,BD =BD ,∴ABD GBD ∆∆≌.∴∠BAD =∠BGD .……………………………(1分) ∵∠BAD =2∠C ,∴∠BGD =2∠C ,∴∠GDC =∠C ,∴∠GDC =∠EAC ,∴AF ∥DG .……………………………………(1分) 又∵FG ∥AC ,∴四边形ADGF 是平行四边形.……………………(1分) ∴AF =FG .……………………………………………………………(1分) ∴四边形ADGF 是菱形.……………………………………………(1分)普陀区23.(本题满分12分)已知:如图9,梯形ABCD 中,AD ∥BC ,DE ∥AB ,DE 与对角线AC 交于点F ,FG ∥AD ,且FG EF =.(1)求证:四边形ABED 是菱形; (2)联结AE ,又知AC ⊥ED ,求证:212AE EF ED = .ABC DE FG图923.证明:(1)∵ AD ∥BC ,DE ∥AB ,∴四边形ABED 是平行四边形. ··························· (2分)∵FG ∥AD ,∴FG CFAD CA=. ·················································································· (1分) 同理EF CFAB CA = . ··································································································· (1分) 得FG AD =EF AB∵FG EF =,∴AD AB =. ··················································································· (1分) ∴四边形ABED 是菱形. ························································································· (1分) (2)联结BD ,与AE 交于点H .∵四边形ABED 是菱形,∴12EH AE =,BD ⊥AE . ····································· (2分) 得90DHE ∠= .同理90AFE ∠= .∴DHE AFE ∠∠=. ······························································································· (1分) 又∵AED ∠是公共角,∴△DHE ∽△AFE . ··················································· (1分)∴EH DEEF AE =. ········································································································ (1分) ∴212AE EF ED = . ······························································································ (1分) 青浦区23.(本题满分12分,第(1)、(2)小题,每小题6分)如图7,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点M ,点E 在边 BC 上,且DAE DCB ∠=∠,联结AE ,AE 与BD 交于点F . (1)求证:2DM MF MB =⋅; (2)联结DE ,如果3BF FM =,求证:四边形ABED 是平行四边形.23.证明:(1)∵AD //BC ,∴∠=∠DAE AEB , ····························································· (1分)∵∠=∠DCB DAE ,∴∠=∠DCB AEB , ··········································· (1分)MFE DBA图7∴AE //DC , ···································································································· (1分)∴=FM AMMD MC. ························································································· (1分) ∵AD //BC ,∴=AM DMMC MB, ····································································· (1分) ∴=FM DMMD MB, ························································································· (1分) 即2=⋅MD MF MB .(2)设=FM a ,则=3BF a ,=4BM a . ························································· (1分)由2=⋅MD MF MB ,得24=⋅MD a a ,∴2=MD a , ································································································ (1分) ∴3==DF BF a . ························································································ (1分) ∵AD //BC ,∴1==AF DFEF BF, ····································································· (1分) ∴=AF EF , ································································································· (1分) ∴四边形ABED 是平行四边形. ······································································ (1分)松江区23.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分)如图,已知梯形ABCD 中,AB ∥CD ,∠D =90°,BE 平分∠ABC ,交CD 于点E , F 是AB 的中点,联结AE 、EF ,且AE ⊥BE .求证:(1)四边形BCEF 是菱形;(2)2BE AE AD BC ⋅=⋅.23.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分) 证明:(1) ∵BE 平分∠ABC ,∴∠ABE =∠CBE …………………………………………………1分 ∵AE ⊥BE(第23题图)FACD EB∴∠AEB =90°∵F 是AB 的中点 ∴12EF BF AB ==………………………………………………1分 ∴∠FEB =∠FBE …………………………………………………1分∴∠FEB =∠CBE …………………………………………………1分∴EF ∥BC …………………………………………………1分∵AB ∥CD∴四边形BCEF 是平行四边形…………………………1分∵EF BF =∴四边形BCEF 是菱形……………………………………1分(2) ∵四边形BCEF 是菱形,∴BC =BF ∵12BF AB = ∴AB =2BC ………………………………………………1分∵ AB ∥CD∴ ∠DEA =∠EAB∵ ∠D =∠AEB∴ △EDA ∽△AEB ………………………………………2分∴AD AE BE AB = …………………………………………1分 ∴ BE ·AE =AD ·AB∴ 2BE AE AD BC ⋅=⋅…………………………………1分徐汇区23. 在梯形ABCD 中,AD ∥BC ,AB CD =,BD BC =,点E 在对角线BD 上,且DCE DBC ∠=∠.(1)求证:AD BE =;(2)延长CE 交AB 于点F ,如果CF AB ⊥,(第23题图)F A C D E⋅=⋅.求证:4EF FC DE BD杨浦区23、(本题满分12分,第(1)小题6分,第(2)小题6分)已知:如图7,在□ABCD中,点G为对角线AC的中点,过点G的直线EF分别交边AB、CD 于点E、F,过点G的直线MN分别交边AD、BC于点M、N,且∠AGE=∠CGN。
宝山二模数学初三试卷

一、选择题(每题4分,共40分)1. 若a > b,则下列不等式中正确的是()A. a + 1 > b + 1B. a - 1 < b - 1C. a / 2 > b / 2D. a 2 < b 22. 下列各组数中,能构成等差数列的是()A. 2, 4, 8, 16B. 1, 3, 5, 7C. 3, 6, 9, 12D. 5, 10, 15, 203. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数是()A. 45°B. 60°C. 75°D. 90°4. 若二次函数y = ax^2 + bx + c的图象开口向上,且顶点坐标为(-1,2),则a的取值范围是()A. a > 0B. a < 0C. a ≥ 0D. a ≤ 05. 下列函数中,在定义域内单调递增的是()A. y = x^2B. y = 2x - 1C. y = -x + 3D. y = x^36. 已知一元二次方程x^2 - 5x + 6 = 0的两个根为α和β,则α + β的值为()A. 5B. 6C. 7D. 87. 下列各式中,正确的是()A. 3^2 = 9B. (-3)^2 = 9C. 3^2 = (-3)^2D. 3^2 = 3 38. 若x + y = 5,x - y = 1,则x的值为()A. 2B. 3C. 4D. 59. 下列图形中,属于正多边形的是()A. 正方形B. 等腰三角形C. 长方形D. 等腰梯形10. 在平面直角坐标系中,点P(2,3)关于y轴的对称点是()A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)二、填空题(每题5分,共50分)11. 已知等差数列的首项为2,公差为3,则第10项为______。
12. 若二次函数y = ax^2 + bx + c的图象开口向下,且顶点坐标为(1,-4),则a的值为______。
精品上海市各区2018届精品中考二模数学分类汇编:几何证明专题(含答案)

上海市各区2018届九年级中考二模数学试卷精选汇编几何证明专题宝山区、嘉定区23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图6,在正方形ABCD 中,点M 是边BC 上的一点(不与B 、C 重合),点N 在CD 边的延长线上,且满足︒=∠90MAN ,联结MN 、AC ,MN 与边AD 交于点E . (1)求证;AN AM =;(2)如果NAD CAD ∠=∠2,求证:AE AC AM ⋅=2.23.证明:(1)∵四边形ABCD 是正方形∴AD AB =,︒=∠=∠=∠=∠90BCD ADC B BAD ……1分 ∴︒=∠+∠90MAD MAB ∵︒=∠90MAN∴︒=∠+∠90MAD NAD ∴NAD MAB ∠=∠………1分 ∵︒=∠+∠180ADC ADN ∴︒=∠90ADN ……1分 ∴ADN B ∠=∠……………………1分 ∴△ABM ≌△ADN ………………………1分 ∴AN AM = ……………………………1分(2)∵四边形ABCD 是正方形 ∴AC 平分BCD ∠和BAD ∠∴︒=∠=∠4521BCD BCA ,︒=∠=∠=∠4521BAD CAD BAC ……1分 ∵NAD CAD ∠=∠2 ∴︒=∠5.22NAD∵NAD MAB ∠=∠ ∴︒=∠5.22MAB ………1分 ∴︒=∠5.22MAC ∴︒=∠=∠5.22NAE MAC ∵AN AM =,︒=∠90MAN ∴︒=∠45ANE∴ANE ACM ∠=∠…………………1分图6图6∴△ACM ∽△ANE …………1分 ∴ANACAE AM =……1分 ∵AN AM =∴AE AC AM ⋅=2…………1分长宁区23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在四边形ABCD 中,AD //BC ,E 在BC 的延长线,联结AE 分别交BD 、CD 于点 G 、F ,且AG GF BE AD =. (1)求证:AB //CD ;(2)若BD GD BC ⋅=2,BG =GE ,求证:四边形ABCD 是菱形.23.(本题满分12分,第(1)小题5分,第(2)小题7分)证明:(1)∵BC AD // ∴BG DG BE AD = (2分)∵AG GFBE AD =∴AGGF BG DG = (1分) ∴ CD AB // (2分) (2)∵BC AD //,CD AB //∴四边形ABCD 是平行四边形 ∴BC=AD (1分) ∵ BD GD BC ⋅=2∴ BD GD AD ⋅=2即ADGDBD AD =又 ∵BDA ADG ∠=∠ ∴ADG ∆∽BDA ∆ (1分) ∴ABD DAG ∠=∠∵CD AB // ∴BDC ABD ∠=∠ ∵BC AD // ∴E DAG ∠=∠∵BG =GE ∴E DBC ∠=∠ ∴DBC BDC ∠=∠ (3分) ∴BC=CD (1分) ∵四边形ABCD 是平行四边形 ∴平行四边形ABCD 是菱形. (1分)ACDEF GB第23题图崇明区23.(本题满分12分,第(1)、(2)小题满分各6分)如图,AM 是ABC △的中线,点D 是线段AM 上一点(不与点A 重合).DE AB ∥交BC 于点K ,CE AM ∥,联结AE . (1)求证:AB CMEK CK=; (2)求证:BD AE =.23.(本题满分12分,每小题6分) (1)证明:∵DE AB ∥∴ ABC EKC =∠∠ ……………………………………………………1分∵CE AM ∥∴ AMB ECK =∠∠ ……………………………………………………1分∴ABM EKC △∽△ ……………………………………………………1分 ∴AB BMEK CK=………………………………………………………1分 ∵ AM 是△ABC 的中线∴BM CM = ………………………………………………………1分∴AB CMEK CK=………………………………………………………1分 (2)证明:∵CE AM ∥∴DE CMEK CK =………………………………………………………2分 又∵AB CMEK CK=∴DE AB = ………………………………………………………2分 又∵DE AB ∥(第23题图)ABK MCDE∴四边形ABDE 是平行四边形 …………………………………………1分 ∴BD AE = ………………………………………………………1分奉贤区23.(本题满分12分,每小题满分各6分)已知:如图7,梯形ABCD ,DC ∥AB ,对角线AC 平分∠BCD , 点E 在边CB 的延长线上,EA ⊥AC ,垂足为点A . (1)求证:B 是EC 的中点;(2)分别延长CD 、EA 相交于点F ,若EC DC AC ⋅=2,求证:FC AC AF AD ::=.黄浦区23.(本题满分12分)如图,点E 、F 分别为菱形ABCD 边AD 、CD 的中点. (1)求证:BE =BF ;(2)当△BEF 为等边三角形时,求证:∠D =2∠A .23. 证:(1)∵四边形ABCD 为菱形,∴AB =BC =AD =CD ,∠A =∠C ,——————————————————(2分)ACD E图7B又E、F是边的中点,∴AE=CF,——————————————————————————(1分)∴△ABE≌△CBF———————————————————————(2分)∴BE=BF. ——————————————————————————(1分)(2)联结AC、BD,AC交BE、BD于点G、O. ——————————(1分)∵△BEF是等边三角形,∴EB=EF,又∵E、F是两边中点,∴AO=12AC=EF=BE.——————————————————————(1分)又△ABD中,BE、AO均为中线,则G为△ABD的重心,∴1133OG AO BE GE===,∴AG=BG,——————————————————————————(1分)又∠AGE=∠BGO,∴△AGE≌△BGO,——————————————————————(1分)∴AE=BO,则AD=BD,∴△ABD是等边三角形,———————————————————(1分)所以∠BAD=60°,则∠ADC=120°,即∠ADC=2∠BAD. —————————————————————(1分)金山区23.(本题满分12分,每小题6分)如图7,已知AD是△ABC的中线,M是AD的中点,过A点作AE∥BC,CM的延长线与AE相交于点E,与AB相交于点F.(1)求证:四边形AEBD是平行四边形;(2)如果AC=3AF,求证四边形AEBD是矩形.E AFM23.证明:(1)∵AE //BC ,∴∠AEM =∠DCM ,∠EAM =∠CDM ,……………………(1分)又∵AM=DM ,∴△AME ≌△DMC ,∴AE =CD ,…………………………(1分) ∵BD=CD ,∴AE =BD .……………………………………………………(1分) ∵AE ∥BD ,∴四边形AEBD 是平行四边形.……………………………(2分)(2)∵AE //BC ,∴AF AEFB BC=.…………………………………………………(1分) ∵AE=BD=CD ,∴12AF AE FB BC ==,∴AB=3AF .……………………………(1分) ∵AC=3AF ,∴AB=AC ,…………………………………………………………(1分) 又∵AD 是△ABC 的中线,∴AD ⊥BC ,即∠ADB =90°.……………………(1分) ∴四边形AEBD 是矩形.……………………………………………………(1分)静安区23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分) 已知:如图,在平行四边形ABCD 中, AC 、DB 交于点E , 点F 在BC 的延长线上,联结EF 、DF ,且∠DEF =∠ADC .(1)求证:DBABBF EF =; (2)如果DF AD BD ⋅=22,求证:平行四边形ABCD 是矩形.23.(本题满分12分,第(1)小题6分,第(2)小题6分) 证明:(1)∵平行四边形ABCD ,∴AD //BC ,AB //DC∴∠BAD +∠ADC =180°,……………………………………(1分) 又∵∠BEF +∠DEF =180°, ∴∠BAD +∠ADC =∠BEF +∠DEF ……(1分)C第23题图AB DEFA DE∵∠DEF =∠ADC ∴∠BAD =∠BEF , …………………………(1分) ∵AB //DC , ∴∠EBF =∠ADB …………………………(1分)∴△ADB ∽△EBF ∴DB ABBF EF = ………………………(2分) (2) ∵△ADB ∽△EBF ,∴BFBEBD AD =, ………………………(1分) 在平行四边形ABCD 中,BE =ED =BD 21∴221BD BE BD BF AD =⋅=⋅∴BF AD BD ⋅=22, ………………………………………(1分) 又∵DF AD BD ⋅=22∴DF BF =,△DBF 是等腰三角形 …………………………(1分) ∵DE BE =∴FE ⊥BD , 即∠DEF =90° …………………………(1分) ∴∠ADC =∠DEF =90° …………………………(1分) ∴平行四边形ABCD 是矩形 …………………………(1分)闵行区23.(本题满分12分,其中第(1)小题5分,第(2)小题7分)如图,已知在△ABC 中,∠BAC =2∠C ,∠BAC 的平分线AE 与∠ABC 的平分线BD 相交于点F ,FG ∥AC ,联结DG .(1)求证:BF BC AB BD ⋅=⋅; (2)求证:四边形ADGF 是菱形.23.证明:(1)∵AE 平分∠BAC ,∴∠BAC =2∠BAF =2∠EAC .∵∠BAC =2∠C ,∴∠BAF =∠C =∠EAC .…………………………(1分) 又∵BD 平分∠ABC ,∴∠ABD =∠DBC .……………………………(1分) ∵∠ABF =∠C ,∠ABD =∠DBC ,∴ABF CBD ∆∆∽.…………………………………………………(1分) ∴AB BFBC BD=.………………………………………………………(1分) ∴BF BC AB BD ⋅=⋅.………………………………………………(1分) (2)∵FG ∥AC ,∴∠C =∠FGB ,∴∠FGB =∠FAB .………………(1分)ABEGCFD(第23题图)∵∠BAF =∠BGF ,∠ABD =∠GBD ,BF =BF ,∴ABF GBF ∆∆≌.∴AF =FG ,BA =BG .…………………………(1分) ∵BA =BG ,∠ABD =∠GBD ,BD =BD ,∴ABD GBD ∆∆≌.∴∠BAD =∠BGD .……………………………(1分) ∵∠BAD =2∠C ,∴∠BGD =2∠C ,∴∠GDC =∠C ,∴∠GDC =∠EAC ,∴AF ∥DG .……………………………………(1分) 又∵FG ∥AC ,∴四边形ADGF 是平行四边形.……………………(1分) ∴AF =FG .……………………………………………………………(1分) ∴四边形ADGF 是菱形.……………………………………………(1分)普陀区23.(本题满分12分)已知:如图9,梯形ABCD 中,AD ∥BC ,DE ∥AB ,DE 与对角线AC 交于点F ,FG ∥AD ,且FG EF =. (1)求证:四边形ABED 是菱形; (2)联结AE ,又知AC ⊥ED ,求证:212AE EF ED =.23.证明:(1)∵ AD ∥BC ,DE ∥AB ,∴四边形ABED 是平行四边形. ··························· (2分)∵FG ∥AD ,∴FG CFAD CA=. ·················································································· (1分) 同理EF CFAB CA = . ··································································································· (1分) 得FG AD =EF AB∵FG EF =,∴AD AB =. ···················································································· (1分) ∴四边形ABED 是菱形. ························································································· (1分) (2)联结BD ,与AE 交于点H .ABC DE FG图9∵四边形ABED 是菱形,∴12EH AE =,BD ⊥AE . ····································· (2分) 得90DHE ∠= .同理90AFE ∠=.∴DHE AFE ∠∠=.································································································ (1分) 又∵AED ∠是公共角,∴△DHE ∽△AFE . ··················································· (1分)∴EH DEEF AE =. ········································································································· (1分) ∴212AE EF ED =. ······························································································ (1分) 青浦区23.(本题满分12分,第(1)、(2)小题,每小题6分)如图7,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点M ,点E 在边 BC 上,且 DAE DCB ∠=∠,联结AE ,AE 与BD 交于点F .(1)求证:2DM MF MB =⋅; (2)联结DE ,如果3BF FM =,求证:四边形ABED 是平行四边形.23.证明:(1)∵AD //BC ,∴∠=∠DAE AEB , ····························································· (1分)∵∠=∠DCB DAE ,∴∠=∠DCB AEB , ··········································· (1分) ∴AE //DC , ···································································································· (1分)∴=FM AMMD MC.·························································································· (1分) ∵AD //BC ,∴=AM DMMC MB, ····································································· (1分) ∴=FM DMMD MB, ························································································· (1分) 即2=⋅MD MF MB .(2)设=FM a ,则=3BF a ,=4BM a . ························································· (1分)由2=⋅MD MF MB ,得24=⋅MD a a ,∴2=MD a , ································································································ (1分) ∴3==DF BF a . ························································································ (1分) ∵AD //BC ,∴1==AF DFEF BF, ····································································· (1分) MFE DCBA图7∴=AF EF , ································································································· (1分) ∴四边形ABED 是平行四边形. ······································································ (1分)松江区23.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分)如图,已知梯形ABCD 中,AB ∥CD ,∠D =90°,BE 平分∠ABC ,交CD 于点E , F 是AB 的中点,联结AE 、EF ,且AE ⊥BE .求证:(1)四边形BCEF 是菱形;(2)2BE AE AD BC ⋅=⋅.23.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分) 证明:(1) ∵BE 平分∠ABC ,∴∠ABE =∠CBE …………………………………………………1分 ∵AE ⊥BE ∴∠AEB =90° ∵F 是AB 的中点 ∴12EF BF AB ==………………………………………………1分 ∴∠FEB =∠FBE …………………………………………………1分 ∴∠FEB =∠CBE …………………………………………………1分 ∴EF ∥BC …………………………………………………1分 ∵AB ∥CD∴四边形BCEF 是平行四边形…………………………1分 ∵EF BF =∴四边形BCEF 是菱形……………………………………1分(2) ∵四边形BCEF 是菱形, ∴BC =BF∵12BF AB =(第23题图)FACD E(第23题图)FACD EB∴AB =2BC ………………………………………………1分∵ AB ∥CD∴ ∠DEA =∠EAB∵ ∠D =∠AEB∴ △EDA ∽△AEB ………………………………………2分∴AD AE BE AB = …………………………………………1分 ∴ BE ·AE =AD ·AB∴ 2BE AE AD BC ⋅=⋅…………………………………1分徐汇区23. 在梯形ABCD 中,AD ∥BC ,AB CD =,BD BC =,点E 在对角线BD 上,且DCE DBC ∠=∠.(1)求证:AD BE =;(2)延长CE 交AB 于点F ,如果CF AB ⊥,求证:4EF FC DE BD ⋅=⋅.杨浦区23、(本题满分12分,第(1)小题6分,第(2)小题6分)已知:如图7,在□ABCD中,点G为对角线AC的中点,过点G的直线EF分别交边AB、CD于点E、F,过点G 的直线MN分别交边AD、BC于点M、N,且∠AGE=∠CGN。
2019年上海市宝山区、嘉定区中考二模数学试题及答案

2019学年嘉定九年级第二次质量调研数学试卷(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】一、选择题:(本大题共6题,每题4分,满分24分) 1.下列说法中,正确的是(▲)(A )23是分数; (B )0是正整数; (C )722是有理数;(D )16是无理数. 2.抛物线2(1)4y x =-+与y 轴的交点坐标是(▲)(A )(0,4); (B )(1,4); (C )(0,5); (D )(4,0). 3.下列说法正确的是(▲)(A )一组数据的平均数和中位数一定相等; (B )一组数据的平均数和众数一定相等; (C )一组数据的方差一定是正数;(D )一组数据的众数一定等于该组数据中的某个数据.4.今年春节期间,小明把2000元压岁钱存入中国邮政储蓄银行,存期三年,年利率是%.254,小明在存款到期后可以拿到的本利和为(▲)(A )20003%)25.41(+元; (B )20002+0003254⨯⨯%.元; (C )20003254⨯⨯%.元; (D )20003%)25.41(⨯+元. 5.如图1,已知向量a 、b 、c ,那么下列结论正确的是(▲)(A )b c a =+; (B )b c a =-; (C )c b a -=+; (D )c b a =+.6.已知⊙1O 的半径长为cm 2,⊙2O 的半径长为cm 4.将⊙1O 、⊙2O 放置在直线l 上(如图2),如果⊙1O 在直线l 上任意滚动,那么圆心距21O O 的长不可能是(▲) (A )cm 1; (B )cm 2; (C )cm 6; (D )cm 8.l图21O2Oa bc图1二、填空题(本大题共12题,每题4分,满分48分) 7.化简:21-= ▲ .8. 计算:=23)(a ▲ .9. 计算:=÷3166 ▲ (结果表示为幂的形式). 10.不等式组⎩⎨⎧>+≤-04201x ,x 的解集是 ▲ .11.在一个不透明的布袋中装有2个白球和8个红球,它们除了颜色不同之外,其余均相同.如果从中随机摸出一个球,摸到红球的概率是 ▲ .(将计算结果化成最简分数) 12.如果关于x 的方程1)1(2+=-a x a 无解,那么实数a = ▲ .13.近视眼镜的度数y (度)与镜片焦距x (米)呈反比例,其函数关系式为xy 100=.如果近似眼镜镜片的焦距250.x =米,那么近视眼镜的度数y 为 ▲ . 14.方程x x -=+6的根是 ▲ .15.手机已经普及,家庭座机还有多少?为此,某校中学生从某街道5000户家庭中随机抽取50户家庭进行统计,列表如下: 拥有座机数(部) 0 1 2 3 4 相应户数10141871该街道拥有多部电话(指1部以上,不含1部)的家庭大约有 ▲ 户.16.如果梯形两底的长分别为3和7,那么联结该梯形两条对角线的中点所得的线段长为 ▲ .17.在平面直角坐标系中,对于平面内任意一点(x ,y ),若规定以下两种变换:①),(y x f =(2+x ,y ).如)1,1(f =)1,3(;②),(y x g =),(y x --,如)2,2(g =)2,2(--. 按照以上变换有:))1,1((f g =)1,3(g =)1,3(--,那么))4,3((-g f 等于 ▲ . 18.如图3,在梯形ABCD 中,已知AB ∥CD ,︒=∠90A ,cm AB 5=,cm BC 13=.以点B 为旋转中心,将BC 逆时针旋转︒90至BE ,BE 交CD 于F 点.如果点E 恰好落在射线AD 上,那么DF 的长为 ▲ cm .三、简答题(本大题共7题,满分78分) 19.(本题满分10分)ACB D E图3FABC DE FMN图6计算:︒+︒︒-︒+-60sin 45tan 30sin 30cos 42730)(.20.(本题满分10分)解方程:12221=++-x x .21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图4,在ABC ΔRt 中,90ACB ∠=︒,点D 在AC 边上,且CA CD BC ⋅=2. (1)求证:CBD A ∠=∠;(2)当α=∠A ,2=BC 时,求AD 的长(用含α的锐角三角比表示).22.(本题满分10分,每个小题各5分)某游泳池内现存水)(m 18903,已知该游泳池的排水速度是灌水速度的2倍.假设在换水时需要经历“排水——清洗——灌水”的过程,其中游泳池 内剩余的水量y (3m )与换水时间....t (h )之间的 函数关系如图5所示.根据图像解答下列问题:(1)根据图中提供的信息,求排水的速度及清洗该游泳池所用的时间;(2)求灌水过程中的y (3m )与换水时间....t (h )之间的函数关系式,写出函数的定义域.23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图6,点E 是正方形ABCD 边BC 上的一点(不与B 、C 重合),点F 在CD 边的延长线上,且满足BE DF =.联结EF ,点M 、N 分别是EF 与AC 、AD 的交点.(1)求AFE ∠的度数;ACBD图4(h)tO1890521 图5)(m 3y(2)求证:FCACCM CE =.24.(本题满分12分,每小题满分4分) 已知平面直角坐标系xOy (如图7),抛物线c bx x y ++=221经过点)0,3(-A 、)23,0(-C . (1)求该抛物线顶点P 的坐标; (2)求CAP ∠tan 的值;(3)设Q 是(1)中所求出的抛物线的一个动点,点Q 的横坐标为t ,当点Q 在第四象限时,用含t 的代数式表示△QAC 的面积.25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)已知AP 是半圆O 的直径,点C 是半圆O 上的一个动点(不与点A 、P 重合),联结AC ,以直线AC 为对称轴翻折AO ,将点O 的对称点记为1O ,射线1AO 交半圆O 于点B ,联结OC .(1)如图8,求证:AB ∥OC ;(2)如图9,当点B 与点1O 重合时,求证:CB AB =;(3)过点C 作射线1AO 的垂线,垂足为E ,联结OE 交AC 于F .当5=AO ,11=B O 时,求AFCF的值.AC(O 1)BOP AOPAB CO 1OP 图7 O xy1- 1-11参考答案一、选择题:(本大题共6题,每题4分,满分24分) 1.C ;2.C ;3.D ;4.B ;5.C ;6.A.二、填空题(本大题共12题,每题4分,满分48分) 7.12-;8.6a ;9.326;10.12≤<-x ;11.54;12.1=a ;13.400=y ;14.2-=x ;15.2600;16.2;17.(5,4-);18.1235(或写成12112). 三、简答题(本大题共7题,满分78分)19.解:原式=23121234331+-⨯+- ……………………6分=32132331+-+- …………1分=13231-=+--. …………2+1分20.解:方程两边同时乘以)x )x 2(2+-(,得 4)2(222-=-++x x x …1+1+1+1分整理,得 0232=--x x . ……2分解这个整式方程,得 21731+=x ,21732-=x . ……2+1分 (若记错了求根公式,但出现了17,即根的判别式计算正确,可得1分)经检验知,21731+=x ,21732-=x 都是原方程的根. ……1分 所以,原方程的根是 21731+=x ,21732-=x . 21.解:(1)∵CA CD BC ⋅=2,∴BCCACD BC =. ……1分 ∵90ACB ∠=︒,点D 在AC 边上,∴BCD ACB ∠=∠. ……1分 ∴△ACB ∽△BCD . ∴CBD A ∠=∠. ……1+1分 说明:若没有写出“∵90ACB ∠=︒,点D 在AC 边上,∴BCD ACB ∠=∠”,但只要写出了BCD ACB ∠=∠,可得1分.(2)∵CBD A ∠=∠,α=∠A ,∴α=∠CBD .……………………………1分 在Rt △ACB 中,90ACB ∠=︒,2=BC ,α=∠A . ∵BCACA =∠cot , ∴ααcot 2cot =⋅=BC AC . …………………………………………2分 在Rt △BCD 中,︒=∠90BCD ,α=∠CBD ,2=BC , ∵BCCDCBD =∠tan , ∴ααtan 2tan =⋅=BC CD . …………………………………………2分 ∴ ααtan 2cot 2-=-=CD AC AD . ……………………………1分 本题解题方法较多,请参照评分.如写成 ααtan 2tan 2-=AD ;4cos 4tan 22--=ααAD ; 4cos 44sin 422---=ααAD ;ααtan 24sin 42--=AD 等等,均正确.22.解(1)由图像可知,该游泳池5个小时排水)(m 18903, ……1分所以该游泳池排水的速度是37851890=÷(/h m 3). ……1分由题意得该游泳池灌水的速度是18921378=⨯(/h m 3),……1分由此得灌水)(m 18903需要的时间是101891890=÷(h ) ……1分 所以清洗该游泳池所用的时间是610521=--(h ) ……1分(2)设灌水过程中的y (3m )与换水时间t (h )之间的函数关系式是b kt y +=(0≠k ). 将(11,0),(21,1890)代入b kt y ++=,得⎩⎨⎧=+=+.b k ,b k 189021011 解得⎩⎨⎧-==.b ,k 2079189 ……1+2分所以灌水过程中的y (3m )与时间t (h )之间的函数关系式是2079189-=t y (2111≤<t ). ……1+1分备注:学生若将定义域写成2111≤≤t ,亦视为正确,此处不是问题的本质. 23.解:(1)在正方形ABCD 中, ︒=∠=∠=∠90BAD ADC B ,AD AB =.……1分 ∵BE DF =,︒=∠=∠90ADF B ,AD AB =,∴△ABE ≌△ADF .……1分 ∴AF AE =,DAF BAE ∠=∠. ……………1+1分 ∴︒=∠=∠+∠=∠+∠=∠90BAD BAE EAD DAF EAD EAF . ……1分 ∵AF AE =,∴AEF AFE ∠=∠. ∴︒=︒⨯=∠=∠459021AEF AFE . ……………1分 (2) 方法1:∵四边形ABCD 是正方形,∴︒=∠45ACD . ……………1分∵︒=∠45AEF ,∴ACF AEF ∠=∠. ……………1分 又∵FMC AME ∠=∠, ……………1分 ∴△ABE ∽△ADF , ……………2分 ∴FCACCM CE =. ……………1分 方法2:∵四边形ABCD 是正方形,∴︒=∠=∠45ACD ACB . …………1分 ∵△ABE ≌△ADF ,∴AFD AEB ∠=∠. ……………1分∵CAE CAE ACB AEB ∠+︒=∠+∠=∠45, C F MC F M A F E A FD ∠+︒=∠+∠=∠45, ∴CFM CAE ∠=∠. ……………2分又∵ACD ACB ∠=∠,△ACE ∽△FCM . ……………1分∴FCACCM CE =. ……………1分 其他方法,请参照评分.24.解:(1)将)0,3(-A 、)23,0(-C 代入c bx x y ++=221,得 ⎪⎪⎩⎪⎪⎨⎧-==+--.23,032)3(2c c b 解得⎪⎩⎪⎨⎧-==.c ,b 231 ………………2分 所以抛物线的表达式为23212-+=x x y . ………………1分 其顶点P 的坐标为(1-,2-). ………………1分 (2)方法1:延长AP 交y 轴于G ,过 C 作AG CH ⊥,垂足是H . 设直线AP 的表达式为b kx y +=, 将),(A 03-、),(P 21--代入,得⎩⎨⎧-=+-=+-23b k b k ,解得⎩⎨⎧-=-=31b k . ∴3--=x y . 进而可得G (30-,). ………1分 ∴OA OG =,︒=∠=∠45OAG G . 在Rt △CHG 中,42345sin =︒⋅==CG CH HG . ………1分 在Rt △AOG 中,2345cos =︒=OGAG ,∴429=-=HG AG AH . ∴31tan ==∠AH CH CAP .……1+1分 方法2:设a CH =,易得a CG 2=,a OG 22=,a AG 4=,a AH 3=, 31tan ==∠AH CH CAP . 方法3:联结OP ,利用两种不同的方式分别表示四边形APCO 的面积:49+=+=∆∆∆APC AOC APC APCO S S S S 四边形;415433=+=+=∆∆POC APO APCO S S S 四边形; ∴23=∆APC S ,然后求523=AC 、22=AP , 利用面积求AC 边上的高552=h ,求1010sin =∠CAP ,进而求31tan =∠CAP .(3)设)2321,(2-+t t t Q , …………1分由Q 在第四象限,得t t =,2321232122+--=-+t t t t . 联结OQ ,易得 AOQ QOC AOC QAC S S S S ∆∆∆∆-+=. ∵4923321=-⨯-⨯=∆AOC S ,t t S QOC 432321=⨯-⨯=∆, ………1分 492343232132122+--=-+⨯-⨯=∆t t t t S QOA …………1分 ∴t t t t t S QAC 4943)492343(434922+=+---+=∆. …………1分 25.解:(1)∵点1O 与点O 关于直线AC 对称,∴AC O OAC 1∠=∠. ………1分 在⊙O 中,∵OC OA =,∴C OAC ∠=∠. …………1分 ∴C AC O ∠=∠1. ∴1AO ∥OC ,即AB ∥OC . …………1+1分 (2)方法1:联结OB . ………1分 ∵点1O 与点O 关于直线AC 对称,AC 1OO ⊥, ………1分 由点1O 与点B 重合,易得AC OB ⊥. ………1分 ∵点O 是圆心,AC OB ⊥,∴CB AB = ………2分方法2:∵点1O 与点O 关于直线AC 对称,∴1AO AO =,1CO CO = ………1+1分由点1O 与点B 重合,易得 AB AO =,CO CB = …………1分 ∵OC OA =,∴CB AB =. ∴ CB AB = ………1+1分 方法3:证平行四边形1AOCO 是菱形. (3) 过点O 作AB OH ⊥,垂足为H .∵AB OH ⊥,AB CE ⊥,∴OH ∥CE ,又∵AB ∥OC ,∴5==OC HE .……1分当点1O 在线段AB 上(如图),6111=+=+=B O AO B O AO AB ,又∵ AB OH ⊥,∴321==AB AH . ∴835=+=+=AH EH AE ……1分∵AB ∥OC , ∴85==AE OC AF CF ……1分当点1O 在线段AB 的延长线上,类似可求75==AE OC AF CF . …2分。
上海市宝山区中考数学二模试卷-(解析版)

第1页/共13页2019年上海市宝山区中考数学二模试卷一、选择题1. 下列说法中,正确的是( )A. 0是正整数B. 1是素数C. √22是分数 D. 227是有理数2. 关于x 的方程x 2−xx −2=0根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定3. 将直线x =2x 向下平移2个单位,平移后的新直线一定不经过的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4. 下列说法正确的是( )A. 一组数据的中位数一定等于该组数据中的某个数据B. 一组数据的平均数和中位数一定不相等C. 一组数据的众数可以有几个D. 一组数据的方差一定大于这组数据的标准差 5. 对角线互相平分且相等的四边形一定是( )A. 等腰梯形B. 矩形C. 菱形D. 正方形6. 已知圆x 1的半径长为6cm ,圆x 2的半径长为4cm ,圆心距x 1x 2=3xx ,那么圆x 1与圆x 2的位置关系是( ) A. 外离 B. 外切 C. 相交 D. 内切 二、填空题7. √4=______.8. 一种细菌的半径是0.00000419米,用科学记数法把它表示为______米. 9. 因式分解:x 2−4x =______.10. 不等式组{3x +6>0x−1≤0的解集为______.11. 在一个不透明的布袋中装有2个白球、8个红球和5个黄球,这些球除了颜色不同之外,其余均相同.如果从中随机摸出一个球,摸到黄球的概率是______. 12. 方程√x +3=2的解是x =______.13. 近视眼镜的度数x (度)与镜片焦距x (米)呈反比例,其函数关系式为x =120x.如果近似眼镜镜片的焦距14. x =0.3米,那么近视眼镜的度数y 为______. 15. 数据1、2、3、3、6的方差是______.16. 在△xxx 中,点D 是边BC 的中点,xx ⃗⃗⃗⃗⃗⃗⃗ =x ⃗⃗⃗ ,xx ⃗⃗⃗⃗⃗⃗⃗ =x ⃗⃗⃗ ,那么xx ⃗⃗⃗⃗⃗⃗⃗ =______(用x ⃗⃗⃗ 、x⃗⃗⃗ 表示). 17. 如图,在矩形ABCD 中,点E 在边CD 上,点F 在对角线BD 上,DF :xx =2:√5,xx ⊥xx ,那么tan xxxx =______. 18.19. 20.21.如图,点A 、B 、C 在圆O 上,弦AC 与半径OB 互相平分,那么xxxx 度数为______度.22. 23.24.25.如图,在△xxx中,xx=xx=5,xx=6,点D在边AB上,且xxxx=90∘.如果△xxx绕点A顺时针旋转,使点C与点B重合,点D旋转至点x1,那么线段xx1的长为______.26.27.三、解答题28.先化简,再求值:2xx2−4+x+1x+2−32−x,其中x=2+√3.29.30.31.32.33.34.35.36.解方程组:{4x2−4xx+x2=1x+2x=337.38.39.40.41.42.43.44.如图,在梯形ABCD中,xx//xx,xxxx=90∘,xx=xx.45.(1)如果xxxx−xxxx=10∘,求xx的度数;46.(2)若xx=10,cot xx=13,求梯形ABCD的面积.47.48.49.50.51.52.53.54.有一座抛物线拱型桥,在正常水位时,水面BC的宽为10米,拱桥的最高点D到水面BC的距离DO为4米,点O是BC的中点,如图,以点O为原点,直线BC 为x,建立直角坐标xOy.55.(1)求该抛物线的表达式;56.(2)如果水面BC上升3米(即xx=3)至水面EF,点E在点F的左侧,求水面宽度EF的长.57.如图,在正方形ABCD中,点M是边BC上的一点(不与B、C重合),点N在CD边的延长线上,且满足xxxx=90∘,联结MN、AC,N与边AD交于点E.58.(1)求证;xx=xx;59.(2)如果xxxx=2xxxx,求证:xx2=xx⋅xx.60.61.62.63.64.65.66.67.已知平面直角坐标系xxx(如图),直线x=x+x的经过点x(−4,0)和点x(x,3).68.(1)求m、n的值;69.(2)如果抛物线x=x2+xx+x经过点A、B,该抛物线的顶点为点P,求sin xxxx的值;70.(3)设点Q在直线x=x+x上,且在第一象限内,直线x=x+x与y轴的交点为点D,如果xxxx=xxxx,求点Q的坐标.⌢上,xx=10,xx=71.在圆O中,AO、BO是圆O的半径,点C在劣弧xx12,xx//xx,联结AB.72.(1)如图1,求证:AB平分xxxx;73.(2)点M在弦AC的延长线上,联结BM,如果△xxx是直角三角形,请你在如图2中画出点M的位置并求CM的长;74.(3)如图3,点D在弦AC上,与点A不重合,联结OD与弦AB交于点E,设点D与点C的距离为x,△xxx的面积为y,求y与x的函数关系式,并写出自变量x 的取值范围.75.答案和解析【答案】1. D2. A3. B4. C5. B6. C7. 28. 4.19×10−69. x(x−4)10. −2<x≤111. 1312. 113. 40014. 2.815. 1(x⃗⃗⃗ +x⃗⃗⃗ )216. 2第3页/共13页17. 120 18. 422519. 解:原式=2x(x +2)(x −2)+(x +1)(x −2)(x +2)(x −2)+3(x +2)(x +2)(x −2)=2x +x 2−x −2+3x +6(x +2)(x −2)=x 2+4x +4(x +2)(x −2) =(x +2)2(x +2)(x −2)=x +2x −2,当x =2+√3时, 原式=√3+2+√3−2=√3√3=4√3+33.20. 解:{4x 2−4xx +x 2=1 x x +2x =3 x由x 得(2x −x )2=1,所以2x −x =1x ,2x −x =−1x 由xx 、xx 联立,得方程组:{2x −x =1x +2x =3,{2x −x =−1x +2x =3解方程组{2x −x =1x +2x =3得,{x =1x =1解方程组{2x −x =−1x +2x =3得,{x =15x =75. 所以原方程组的解为:{x 1=1x 1=1,{x 2=15x 2=7521. 解:(1)在△xxx 中,xx =90∘,则xxxx +xxxx =90∘, 又xxxx −xxxx =10∘, ∴xxxx =40∘, ∵xx //xx ,∴xxxx =xxxx =40∘, 又∵xx =xx ,∴xx =xxxx =12×(180∘−40∘)=70∘; (2)作xx ⊥xx ,垂足为H ,在xx △xxx 中,cot xx =13,令xx =x ,xx =3x ,则在xx△xxx中,xx2=xx2+xx2,即102=(10−x)2+(3x)2,解得:x=2则xx=3x=6,xx=xx=10−x=8,∴梯形ABCD的面积=12(xx+xx)×xx=12×(10+8)×6=54,22. 解:(1)设抛物线解析式为:x=xx2+x,由题意可得图象经过(5,0),(0,4),则{25x+4=0x=4,解得:x=−425,故抛物线解析为:x=−425x2+4;(2)由题意可得:x=3时,3=−425x2+4解得:x=±52,故EF=5,答:水面宽度EF的长为5m.23. 证明:(1)∵四边形ABCD是正方形,∴xx=xx,xxxx=90∘,又xxxx=90∘,∴xxxx=xxxx,在△xxx和△xxx中,{xx=xxxx=90∘xx=xxxxxx=xxxx,∴△xxx≌△xxx,∴xx=xx;(2)四边形ABCD是正方形,∴xxxx=45∘,∵xxxx=2xxxx,xxxx=xxxx,∴xxxx=45∘,∴xxxx=xxxx,又xxxx=xxxx=45∘,∴△xxx∽△xxx,∴xxxx =xxxx,∴xx⋅xx=xx⋅xx,∴xx2=xx⋅xx.第5页/共13页24. 解:(1)把x (−4,0)代入直线x =x +x中得:−4+x =0, x =4,∴x =x +4,把x (x ,3)代入x =x +4中得:x +4=3,x =−1,(2)把x (−4,0)和点x (−1,3)代入x =x 2+xx +x 中得:{1−x +x =316−4x +x =0,解得:{x =8x =6,∴x =x 2+6x +8=(x +3)2−1, ∴x (−3,−1),易得直线PB 的解析式为:x =2x +5, 当x =0时,x =−52,∴x (−52,0),过B 作xx ⊥x 轴于M ,过G 作xx ⊥xx 于H ,由勾股定理得:xx =√xx 2+xx 2=√32+(52−1)2=3√52,x △xxx =12xx ⋅xx =12xx ⋅xx ,12×(4−52)×3=12×3√2xx , ∴xx =3√24,xx △xxx 中,sin xxxx =xx xx=3√243√52=√1010; (3)设x (x ,x +4),∵xxxx =xxxx ,xxxx =xxxx , ∴△xxx ∽△xxx , ∴xxxx =xxxx , ∴xx 2=xx ⋅xx ,∴12+32=√12+12⋅√(x +1)2+(x +4−3)2, 10=√2⋅√2(x +1), x =4, ∴x (4,8).25. 解:(1)∵xx、OB是⊙x的半径,∴xx=xx,∴xxxx=xx,∵xx//xx,∴xx=xxxx,∴xxxx=xxxx,∴xx平分xxxx;(2)由题意知,xxxx不是直角,所以△xxx是直角三角形只有以下两种情况:xxxx=90∘和xxxx=90∘,x当xxxx=90∘,点M的位置如图1,过点O作xx⊥xx,垂足为点H,∵xx经过圆心,xx=12,∴xx=xx=1xx=6,2在xx△xxx中,∵xx=10,∴xx=√xx2−xx2=8,∵xx//xx,xxxx=90∘,∴xxxx=180∘−xxxx=90∘,∴xxxx=xxxx=xxxx=90∘,∴四边形OBMH是矩形,∴xx=xx=8、xx=xx=10,∴xx=xx−xx=4;x当xxxx=90∘,点M的位置如图2,第7页/共13页由x可知,xx=√xx2+xx2=8√5、cos xxxx=xxxx =8√5=2√55,在xx△xxx中,cos xxxx=xxxx =2√55,∴xx=20,则xx=xx−xx=8,综上所述,CM的长为4或8;(3)如图3,过点O作xx⊥xx于点G,由(1)知sin xxxx=sin xxxx,由(2)可得sin xxxx=√55,∵xx=10,∴xx=2√5,∵xx//xx,∴xxxx =xxxx,又xx=8√5−xx、xx=12−x、xx=10,∴85−xx =1012−x,∴xx=80√522−x,∴x=12×xx×xx=12×80√522−x×2√5=40022−x(0≤x<12).【解析】1. 解:x.0不是正整数,故本选项错误;B.1是正整数,故本选项错误;C.√22是无理数,故本选项错误;D.227是有理数,正确;故选:D.根据实数的分类,即可解答.本题考查了实数,解决本题的关键是掌握实数的分类.2. 解:△=(−x)2−4×1×(−2)=x2+8,∵x2≥0,∴x2+8>0,即△>0,∴方程有两个不相等的实数根.故选:A.先计算△=(−x)2−4×1×(−2)=x2+8,由于x2为非负数,则x2+8>0,即△>0,根据一元二次方程xx2+xx+x=0(x≠0)的根的判别式△=x2−4xx的意义即可判断方程根的情况.此题考查了根的判别式,一元二次方程xx2+xx+x=0(x≠0)的根与△=x2−4xx 有如下关系:x当△>0时,方程有两个不相等的实数根;x当△=0时,方程有两个相等的实数根;x当△<0时,方程无实数根.上面的结论反过来也成立.3. 解:x>0,x=0函数图象过第一,三象限,将直线x=2x向下平移2个单位,所得直线的x=2>0,x<0,函数图象过第一,三、四象限;故选:B.上下平移时只需让b的值加减即可.本题是关于一次函数的图象与它平移后图象的转变的题目,在解题时,紧紧抓住直线平移后k不变这一性质.x值的变化为上加下减.4. 解:A、一组数据的中位数不一定等于该组数据中的某个数据,故本选项错误;B、一组数据的平均数和众数不一定相等,故本选项错误;C、一组数据的众数可以有几个,这种说法是正确的,故本选项正确.D、一组数据的方差不一定大于这组数据的标准差,故本选项错误;故选:C.根据中位数、众数、平均数和方差的概念对各选项进行判断,选出正确答案即可.本题考查了中位数、众数、平均数和方差等知识点,属于基础题,解答本题的关键是熟练掌握各知识点的概念.5. 解:对角线互相平分切相等的四边形一定是矩形,故选:B.根据矩形的判定解答即可.此题考查矩形的判定,关键是根据对角线互相平分切相等的四边形一定是矩形解答.6. 解:因为6−4=2,6+4=10,圆心距为3cm,所以,2<x<8,根据两圆相交,圆心距的长度在两圆的半径的差与和之间,所以两圆相交.故选:C.求出两圆半径的和与差,再与圆心距比较大小,确定两圆位置关系.根据两圆的位置关系得到其数量关系.设两圆的半径分别为R和r,且x≥x,圆心距为d:外离,则x>x+x;外切,则x=x+x;相交,则x−x<x<x+x;内切,则x=x−x;内含,则x<x−x.考查了圆与圆的位置关系,本题利用了两圆相交,圆心距的长度在两圆的半径的差与和之间求解.7. 解:∵22=4,∴√4=2.故答案为:2如果一个数x的平方等于a,那么x是a的算术平方根,由此即可求解.此题主要考查了学生开平方的运算能力,比较简单.8. 解:0.00000419=4.19×10−6,第9页/共13页故答案为:4.19×10−6.绝对值小于1的正数也可以利用科学记数法表示,一般形式为x×10−x,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为x×10−x,其中1≤|x|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9. 解:x2−4x=x(x−4).故答案为:x(x−4).直接提取公因式x,进而分解因式得出即可.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.10. 解:解不等式x−1≤0,得:x≤1,解不等式3x+6>0,得:x>−2,∴不等式组的解集为:−2<x≤1,故答案为:−2<x≤1.分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11. 解:∵布袋中共有15个球,其中黄球有5个,∴从中随机摸出一个球,摸到黄球的概率是515=13,故答案为:13.根据概率的求法,找准两点:x全部情况的总数;x符合条件的情况数目;二者的比值就是其发生的概率.本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率x(x)=xx.12. 解:两边平方得,x+3=4,移项得:x=1.当x=1时,x+3>0.故本题答案为:x=1.把方程两边平方去根号后求解.在解无理方程是最常用的方法是两边平方法及换元法,本题用了平方法.13. 解:把x=0.3代入120x,x=400,故答案为:400.把x=0.3代入x=120x,即可算出y的值.此题主要考查了反比例函数的定义,本题实际上是已知自变量的值求函数值的问题,比较简单.14. 解:这组数据的平均数是:(1+2+3+3+6)÷5=3,则方差x2=15[(1−3)2+(2−3)2+(3−3)2+(3−3)2+(6−3)2]=2.8;故答案为:2.8.根据平均数的计算公式先求出这组数据的平均数,再根据方差公式进行计算即可.第11页/共13页本题考查方差的定义:一般地设n 个数据,x 1,x 2,…x x 的平均数为x ,则方差x 2=1x[(x 1−x )2+(x 2−x )2+⋯+(x x −x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15. 解:延长AD 到E ,使得xx =xx ,连接BE .∵xx =xx ,xxxx =xxxx ,xx =xx , ∴△xxx ≌△xxx ,∴xx =xx ,xx =xxxx , ∴xx //xx , ∴xx⃗⃗⃗⃗⃗⃗⃗ =xx ⃗⃗⃗⃗⃗⃗⃗ =x ⃗⃗⃗ , ∴xx⃗⃗⃗⃗⃗⃗⃗ =xx ⃗⃗⃗⃗⃗⃗⃗ +xx ⃗⃗⃗⃗⃗⃗⃗ =x ⃗⃗⃗ +x ⃗⃗⃗ , ∴xx ⃗⃗⃗⃗⃗⃗⃗ =12(x ⃗⃗⃗ +x⃗⃗⃗ ), 故答案为xx⃗⃗⃗⃗⃗⃗⃗ =12(x ⃗⃗⃗ +x ⃗⃗⃗ ). 延长AD 到E ,使得xx =xx ,连接xx .首先证明xx =xx ,xx //xx ,利用三角形法则求出xx⃗⃗⃗⃗⃗⃗⃗ 即可解决问题; 本题考查平面向量、全等三角形的判定和性质、平行线的判定、三角形法则等知识,解题的关键是学会倍长中线,构造全等三角形解决问题,属于中考常考题型. 16. 解:∵xx ⊥xx , ∴xxxx =90∘,设xx =2x ,xx =√5x ,由勾股定理得:xx =x , ∵四边形ABCD 是矩形, ∴xxxx =90∘,∴xxxx +xxxx =90∘,xxxx +xxxx =90∘, ∴xxxx =xxxx ,∴tan xxxx =tan xxxx =xxxx =2x x=2,故答案为:2.根据矩形的性质求出xxxx =90∘,根据垂直得出xxxx =90∘,设xx =2x ,xx =√5x ,由勾股定理得出xx =x ,求出xxxx =xxxx ,解直角三角形求出即可. 本题考查了解直角三角形、矩形的性质和勾股定理,能求出xxxx =xxxx 是解此题的关键.17. 解:∵弦AC 与半径OB 互相平分, ∴xx =xx ,∵xx=xx,∴△xxx是等边三角形,∴xxxx=60∘,∴xxxx=120∘,故答案为120.首先根据垂径定理得到xx=xx,结合等边三角形的性质即可求出xxxx的度数.本题主要考查了垂径定理的知识,解题的关键是证明△xxx是等边三角形,此题难度不大.18. 解:如图,作xx⊥xx于E.∵xx=xx=5,xx=6,∴xx=xx=12xx=3,∴xx=√xx2−xx2=4.∵x△xxx=12xx⋅xx=12xx⋅xx,∴xx=xx⋅xxxx =6×45=245,∴xx=√xx2−xx2=75.∵△xxx绕点A顺时针旋转,使点C与点B重合,点D旋转至点x1,∴xx=xx1,xxxx=xxxx1,∵xx=xx,∴△xxx∽△xxx1,∴xxxx1=xxxx,∴6xx1=575,∴xx1=4225.故答案为4225.作xx⊥xx于x.根据等腰三角形三线合一的性质得出xx=xx=12xx=3,利用勾股定理求出xx=4.根据三角形的面积得出xx=xx⋅xxxx =245,那么xx=√xx2−xx2=75.再根据旋转的性质可知xx=xx1,xxxx=xxxx1,那么△xxx∽△xxx1,利用相似三角形的性质可求出xx1.本题考查了旋转的性质、等腰三角形的性质、相似三角形的判定和性质,解题的关键是证明△xxx∽△xxx1.19. 先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得.本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.20. 把方程组中的第二个方程变形为两个一元一次方程,与组中的第一个方程构成新方程组,求解即可.本题考查了二元二次方程组的解法,解决本题亦可变形方程组中的x式,代入x式得一元二次方程求解.21. (1)在△xxx中,xx=90∘,xxxx−xxxx=10∘,可求xxxx,由xx//xx得xxxx=xxxx,由xx=xx可求xx;(2)作xx⊥xx,垂足为H,在xx△xxx中,cot xx=13,令xx=x,xx=3x,xx= 10,xx=10−x,利用勾股定理求x,可得xx=3x=6,xx=xx=10−x=8,用梯形面积公式计算.本题考查了梯形中角的计算、面积的计算问题,体现了梯形问题转化为三角形问题解决的思想.22. (1)直接假设出二次函数解析式进而得出答案;(2)根据题意得出x=3进而求出x的值,即可得出答案.此题主要考查了二次函数的应用,正确得出函数解析式是解题关键.23. (1)根据正方形的性质、全等三角形的判定定理证明△xxx≌△xxx,根据全等三角形的性质证明;(2)证明△xxx∽△xxx,根据相似三角形的性质证明.本题考查的是正方形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.24. (1)分别将A、B两点的坐标代入直线x=x+x中可得:m、n的值;(2)先利用待定系数法求二次函数的解析式,并配方成顶点式,求点P的坐标,作辅助线构建直角△xxx,根据三角函数的定义可得结论;(3)设x(x,x+4),证明△xxx∽△xxx,列比例式xxxx =xxxx,可得方程,解方程可得结论.本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,勾股定理的应用,三角函数的应用,三角形相似的判定和性质,数形结合思想和方程思想的运用是解题的关键.25. (1)由xx=xx知xxxx=xx,根据xx//xx知xx=xxxx,据此可得xxxx=xxxx,即可得证;(2)xxxxx=90∘时,作xx⊥xx可得xx=xx=12xx=6,由勾股定理求得xx= xx=8,根据矩形OBMH知xx=xx=10,由xx=xx−xx可得答案;xxxxx=90∘时,由x可知xx=8√5、cos xxxx=xxxx =2√55,在xx△xxx中根据cos xxxx=xx xx =2√55可得xx=20,继而得出答案;(3)作xx⊥xx,由(1)知sin xxxx=sin xxxx,从而sin xxxx=√55,结合xx=10求得xx=2√5,根据xx//xx知xxxx =xxxx,即85−xx=1012−x,据此求得xx=80√522−x,利用x=12×xx×xx可得答案.本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、平行线的性质、矩形的判定与性质及解直角三角形的能力.第13页/共13页。
精品上海市各区2018届精品中考二模数学分类汇编:计算题专题(含答案)

上海市各区2018届九年级中考二模数学试卷精选汇编计算题专题宝山区、嘉定区19.(本题满分10分) 先化简,再求值:x x x x x --+++-2321422,其中32+=x .19.解:原式2321)2)(2(2-+++++-=x x x x x x …………2分 )2)(2()2(3)2)(1(2+-++-++=x x x x x x ………………………1分 )2)(2(442+-++=x x x x …………………………………………2分 )2)(2()2(2+-+=x x x ………………………2分 22-+=x x …………………………………………1分 把32+=x 代入22-+x x 得: 原式232232-+++=………………1分 1334+=………………………………1分 长宁区19.(本题满分10分) 先化简,再求值:12341311222+-++÷-+-+x x x x x x x ,其中121+=x19. (本题满分10分)解:原式= )1)(3()1()1)(1(3112++-⨯-++-+x x x x x x x (3分) =2)1(111+--+x x x (2分) =2)1(11++-+x x x (1分) =2)1(2+x (1分) 当12121-=+=x 时,原式=2)1(2+x =2)112(2+- =2)2(2=1 (3分) 崇明区19.(本题满分10分)12022)9( 3.14)π-+--19.(本题满分10分)解:原式731=+-+-……………………………………………………8分9= …………………………………………………………………2分 奉贤区19.(本题满分10分) 计算:1212)33(8231)12(--+++-.19、3-黄浦区19.(本题满分10分)计算:())102322220183++--.19.解:原式()13-—————————————————————(6分)=13-————————————————————————(2分)=4—————————————————————————————(2分) 金山区 计算:21o o 21tan 452sin 60122-⎛⎫-+- ⎪⎝⎭.19.解:原式=124-+……………………………………………(8分)14+……………………………………………(1分)=5.………………………………………………………(1分)静安区19.(本题满分10分)计算:102018)30(sin )3(32)45cot (18---+-+-+ π. 19.(本题满分10分) 计算:102018)30(sin )3(32)45cot (18---+-+-+ π. 解:原式=12018)21(1)23()1(23--+-+-+ …………………(5分) =2123123-+-++ …………………………(3分)=322+ …………………………………(2分)闵行区19.(本题满分10分) 120183(1)2cos 45+8---o.19.解:原式112+……………………………………(2分+2分+2分+2分)2=.……………………………………………………………………(2分)普陀区19.(本题满分10分)先化简,再求值:42442222---++÷+x x x x x x x ,其中2x =-. 19.解:原式()()22+22(2)22x x x x x x x -=-+-+ ················································· (3分) 122x x x =-++ ····································································· (2分) 12x x -=+. ··············································································· (1分)当2x =-时,原式=······················································· (1分)= ···························································· (1分)青浦区19.(本题满分10分)计算:1012152(3)2-+--+().20.(本题满分10分)先化简,再求值:25+3222x x x x ⎛⎫--÷ ⎪++⎝⎭(),其中x =19.解:原式212-+. ································································ (8分)=1.20.解:原式=()2245223--+⨯++x x x x , ····························································· (5分) =()()()233223+-+⨯++x x x x x , ························································ (1分) =33-+x x . ·················································································· (1分)当=x 2. 松江区19.(本题满分10分)计算:031-+ 19.(本题满分10分)计算:031-解:原式=11)-2分)=2+2分徐汇区19. 101()( 3.14)|4|2π---+.杨浦区19、(本题满分10分) 先化简,再求值:。
2019年上海宝山区中考数学二模试卷-(解析版)

2019年上海宝山区中考数学二模试卷-(解析版)一、选择题1. 下列说法中,正确的是( )A. 0是正整数B. 1是素数C. √22是分数 D. 227是有理数2. 关于x 的方程x 2−mx −2=0根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定3. 将直线y =2x 向下平移2个单位,平移后的新直线一定不经过的象限是( )4. 下列说法正确的是( )A. 一组数据的中位数一定等于该组数据中的某个数据B. 一组数据的平均数和中位数一定不相等C. 一组数据的众数可以有几个D. 一组数据的方差一定大于这组数据的标准差 5. 对角线互相平分且相等的四边形一定是( )A. 等腰梯形B. 矩形C. 菱形D. 正方形6. 已知圆O 1的半径长为6cm ,圆O 2的半径长为4cm ,圆心距O 1O 2=3cm ,那么圆O 1与圆O 2的位置关系是( )A. 外离B. 外切C. 相交D. 内切二、填空题7. √4=______.8. 一种细菌的半径是0.00000419米,用科学记数法把它表示为______米. 9. 因式分解:x 2−4x =______. 10. 不等式组{3x +6>0x−1≤0的解集为______.11. 在一个不透明的布袋中装有2个白球、8个红球和5个黄球,这些球除了颜色不同之外,其余均相同.如果从中随机摸出一个球,摸到黄球的概率是______. 12. 方程√x +3=2的解是x =______.13. 近视眼镜的度数y(度)与镜片焦距x(米)呈反比例,其函数关系式为y =120x.如果近似眼镜镜片的焦距x =0.3米,那么近视眼镜的度数y 为______. 14. 数据1、2、3、3、6的方差是______.15. 在△ABC 中,点D 是边BC 的中点,AB ⃗⃗⃗⃗⃗ =a ⃗ ,AC ⃗⃗⃗⃗⃗ =b ⃗ ,那么AD ⃗⃗⃗⃗⃗⃗ =______(用a ⃗ 、b ⃗ 表示).16. 如图,在矩形ABCD 中,点E 在边CD 上,点F 在对角线BD 上,DF :DE =2:√5,EF ⊥BD ,那么tan∠ADB =______.17.如图,点A、B、C在圆O上,弦AC与半径OB互相平分,那么∠AOC度数为______度.18.如图,在△ABC中,AB=AC=5,BC=6,点D在边AB上,且∠BDC=90∘.如果△ACD绕点A顺时针旋转,使点C与点B重合,点D旋转至点D1,那么线段DD1的长为______.三、解答题19.先化简,再求值:2xx2−4+x+1x+2−32−x,其中x=2+√3.20.解方程组:{4x2−4xy+y2=1x+2y=321.如图,在梯形ABCD中,AD//BC,∠BAD=90∘,AC=AD.(1)如果∠BAC−∠BCA=10∘,求∠D的度数;(2)若AC=10,cot∠D=13,求梯形ABCD的面积.22.有一座抛物线拱型桥,在正常水位时,水面BC的宽为10米,拱桥的最高点D到水面BC的距离DO为4米,点O是BC的中点,如图,以点O为原点,直线BC为x,建立直角坐标xOy.(1)求该抛物线的表达式;(2)如果水面BC上升3米(即OA=3)至水面EF,点E在点F的左侧,求水面宽度EF的长.23.如图,在正方形ABCD中,点M是边BC上的一点(不与B、C重合),点N在CD边的延长线上,且满足∠MAN=90∘,联结MN、AC,N与边AD交于点E.(1)求证;AM=AN;(2)如果∠CAD=2∠NAD,求证:AM2=AC⋅AE.24.在圆O中,AO、BO是圆O的半径,点C在劣弧AB⌢上,OA=10,AC=12,AC//OB,联结AB.(1)如图1,求证:AB平分∠OAC;(2)点M在弦AC的延长线上,联结BM,如果△AMB是直角三角形,请你在如图2中画出点M的位置并求CM的长;(3)如图3,点D在弦AC上,与点A不重合,联结OD与弦AB交于点E,设点D与点C的距离为x,△OEB的面积为y,求y与x的函数关系式,并写出自变量x 的取值范围.1. D2. A3. B4. C5. B6. C7. 28. 4.19×10−69. x(x−4)10. −2<x≤111. 1312. 113. 40014. 2.815. 12(a⃗+b⃗ )16. 217. 12018. 422519. 解:原式=2x(x+2)(x−2)+(x+1)(x−2)(x+2)(x−2)+3(x+2)(x+2)(x−2)=2x+x2−x−2+3x+6(x+2)(x−2)=x2+4x+4(x+2)(x−2)=(x +2)2(x +2)(x −2)=x+2x−2,当x =2+√3时, 原式=2+√3+22+√3−2=4+√3√3=4√3+33. 20. 解:{4x 2−4xy +y 2=1 ②x+2y=3 ①由②得(2x −y)2=1,所以2x −y =1③,2x −y =−1④ 由①③、①④联立,得方程组: {2x −y =1x+2y=3,{2x −y =−1x+2y=3解方程组{2x −y =1x+2y=3得,{y =1x=1解方程组{2x −y =−1x+2y=3得,{x =15y =75.所以原方程组的解为:{y 1=1x 1=1,{x 2=15y 2=7521. 解:(1)在△ABC 中,∠B =90∘,则∠BAC +∠BCA =90∘, 又∠BAC −∠BCA =10∘, ∴∠BCA =40∘, ∵AD//BC ,∴∠CAD =∠BCA =40∘, 又∵AC =AD ,∴∠D =∠ACD =12×(180∘−40∘)=70∘; (2)作CH ⊥AD ,垂足为H ,在Rt △CDH 中,cot∠D =13,令DH =x ,CH =3x , 则在Rt △ACH 中,AC 2=AH 2+CH 2, 即102=(10−x)2+(3x)2, 解得:x =2则CH =3x =6,BC =AH =10−x =8,∴梯形ABCD 的面积=12(BC +AD)×CH =12×(10+8)×6=54,22. 解:(1)设抛物线解析式为:y =ax 2+c ,由题意可得图象经过(5,0),(0,4), 则{25a +4=0c=4,解得:a =−425,故抛物线解析为:y =−425x 2+4;(2)由题意可得:y =3时,3=−425x 2+4 解得:x =±52, 故EF =5,答:水面宽度EF 的长为5m .23. 证明:(1)∵四边形ABCD 是正方形, ∴AB =AD ,∠BAD =90∘,又∠MAN =90∘, ∴∠BAM =∠DAN , 在△BAM 和△DAN 中, {∠B =∠ADN =90∘AB =AD ∠BAM =∠DAN, ∴△BAM≌△DAN , ∴AM =AN ;(2)四边形ABCD 是正方形, ∴∠CAD =45∘,∵∠CAD =2∠NAD ,∠BAM =∠DAN , ∴∠MAC =45∘,∴∠MAC =∠EAN ,又∠ACM =∠ANE =45∘, ∴△AMC∽△AEN , ∴AM AE=AC AN,∴AN ⋅AM =AC ⋅AE ,∴AM 2=AC ⋅AE .24. 解:(1)把A(−4,0)代入直线y =x +m 中得:−4+m =0, m =4,∴y =x +4,把B(n,3)代入y =x +4中得:n +4=3,n =−1,(2)把A(−4,0)和点B(−1,3)代入y =x 2+bx +c 中得:{1−b +c =316−4b+c=0,解得:{c =8b=6, ∴y =x 2+6x +8=(x +3)2−1, ∴P(−3,−1),易得直线PB 的解析式为:y =2x +5, 当y =0时,x =−52, ∴G(−52,0),过B作BM⊥x轴于M,过G作GH⊥AB于H,由勾股定理得:BG=√BQ2+GQ2=√32+(52−1)2=3√52,S△ABG=12AG⋅BM=12AB⋅GH,1 2×(4−52)×3=12×3√2GH,∴GH=3√24,Rt△GHB中,sin∠ABP=GHBG =3√243√52=√1010;(3)设Q(x,x+4),∵∠BOD=∠AQO,∠OBD=∠QBO,∴△BDO∽△BOQ,∴BDBO =BOBQ,∴BO2=BD⋅BQ,∴12+32=√12+12⋅√(x+1)2+(x+4−3)2,10=√2⋅√2(x+1),x=4,∴Q(4,8).25. 解:(1)∵OA、OB是⊙O的半径,∴AO=BO,∴∠OAB=∠B,∵OB//AC,∴∠B=∠CAB,∴∠OAB=∠CAB,∴AB平分∠OAC;(2)由题意知,∠BAM不是直角,所以△AMB是直角三角形只有以下两种情况:∠AMB=90∘和∠ABM=90∘,①当∠AMB=90∘,点M的位置如图1,过点O作OH⊥AC,垂足为点H,∵OH经过圆心,AC=12,∴AH=HC=12AC=6,在Rt△AHO中,∵OA=10,∴OH=√OA2−AH2=8,∵AC//OB,∠AMB=90∘,∴∠OBM=180∘−∠AMB=90∘,∴∠OHC=∠AMB=∠OBM=90∘,∴四边形OBMH是矩形,∴BM=OH=8、OB=HM=10,∴CM=HM−HC=4;②当∠ABM=90∘,点M的位置如图2,由①可知,AB=√AM2+BM2=8√5、cos∠CAB=AMAB =8√5=2√55,在Rt△ABM中,cos∠CAB=ABAM =2√55,∴AM=20,则CM=AM−AC=8,综上所述,CM的长为4或8;(3)如图3,过点O作OG⊥AB于点G,由(1)知sin∠OAG=sin∠CAB,由(2)可得sin∠CAB=√55,∵OA=10,∴OG=2√5,∵AC//OB,∴BEAE =OBAD,又AE=8√5−BE、AD=12−x、OB=10,∴8√5−BE =1012−x,∴BE=80√522−x,∴y=12×BE×OG=12×80√522−x×2√5=40022−x(0≤x<12).【解析】1. 解:A.0不是正整数,故本选项错误;B.1是正整数,故本选项错误;C.√22是无理数,故本选项错误;D.227是有理数,正确;故选:D.根据实数的分类,即可解答.本题考查了实数,解决本题的关键是掌握实数的分类.2. 解:△=(−m)2−4×1×(−2)=m2+8,∵m2≥0,∴m2+8>0,即△>0,∴方程有两个不相等的实数根.故选:A.先计算△=(−m)2−4×1×(−2)=m2+8,由于m2为非负数,则m2+8>0,即△>0,根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac的意义即可判断方程根的情况.此题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.5. 解:对角线互相平分切相等的四边形一定是矩形,故选:B.根据矩形的判定解答即可.此题考查矩形的判定,关键是根据对角线互相平分切相等的四边形一定是矩形解答.6. 解:因为6−4=2,6+4=10,圆心距为3cm,所以,2<d<8,根据两圆相交,圆心距的长度在两圆的半径的差与和之间,所以两圆相交.故选:C.求出两圆半径的和与差,再与圆心距比较大小,确定两圆位置关系.根据两圆的位置关系得到其数量关系.设两圆的半径分别为R和r,且R≥r,圆心距为d:外离,则d>R+r;外切,则d=R+r;相交,则R−r<d<R+r;内切,则d=R−r;内含,则d<R−r.考查了圆与圆的位置关系,本题利用了两圆相交,圆心距的长度在两圆的半径的差与和之间求解.19. 先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得.本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.21. (1)在△ABC中,∠B=90∘,∠BAC−∠BCA=10∘,可求∠BCA,由AD//BC得∠CAD=∠BCA,由AC=AD可求∠D;(2)作CH⊥AD,垂足为H,在Rt△CDH中,cot∠D=13,令DH=x,CH=3x,AC=10,AH=10−x,利用勾股定理求x,可得CH=3x=6,BC=AH=10−x=8,用梯形面积公式计算.本题考查了梯形中角的计算、面积的计算问题,体现了梯形问题转化为三角形问题解决的思想.23. (1)根据正方形的性质、全等三角形的判定定理证明△BAM≌△DAN,根据全等三角形的性质证明;(2)证明△AMC∽△AEN,根据相似三角形的性质证明.本题考查的是正方形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.24. (1)分别将A、B两点的坐标代入直线y=x+m中可得:m、n的值;(2)先利用待定系数法求二次函数的解析式,并配方成顶点式,求点P的坐标,作辅助线构建直角△GHB,根据三角函数的定义可得结论;(3)设Q(x,x+4),证明△BDO∽△BOQ,列比例式BDBO =BOBQ,可得方程,解方程可得结论.本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,勾股定理的应用,三角函数的应用,三角形相似的判定和性质,数形结合思想和方程思想的运用是解题的关键.。
2018年上海市宝山区中考数学二模试卷含答案解析

B. 外切
C. 相交
D. 内切
一种细菌的半径是0.00000419米,用科学记数法把它表示为______米.
2 因式分解:������ ‒ 4������ = ______�� + 6 > 0的解集为______.
∘
24. 已知平面直角坐标系������������������(如图),直线������ = ������ + ������的经过点������( ‒ 4,0)和点������(������,3). (1)求 m、n 的值; (2)如果抛物线������ = ������2 + ������������ + ������经过点 A、B,该抛物线的顶点为点 P,求 ������������������∠������������������的值; (3)设点 Q 在直线������ = ������ + ������上,且在第一象限内,直线������ = ������ + ������与 y 轴的交点为 点 D,如果∠������������������ = ∠������������������,求点 Q 的坐标.
⃗ =⃗ ⃗ =⃗ ⃗ = ⃗ ⃗ 15. 在 △ ������������������中,点 D 是边 BC 的中点,������������ ������,������������ ������,那么������������ ______(用������、������表示
120 . ������ 如果近
). 16. 如图,在矩形 ABCD 中,点 E 在边 CD 上,点 F 在对角线 BD 上, DF:������������ = 2: 5,������������ ⊥ ������������,那么������������������∠������������������ = ______.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018~2019学年上海市宝山区九年级二模数学试卷(时间:100分钟,满分150分)一、选择题(本大题共6题,每题4分,满分24分) 1. 32400000用科学记数法表示为( ) (A )80.32410⨯; (B )632.410⨯; (C )73.2410⨯; (D )83.2410⨯. 2. 如果关于x 的一元一次方程20x m -+=的解是负数,那么则m 的取值范围是( )(A )2m ≥;(B )2m >;(C )2m <;(D )2m ≤.3. 将抛物线223y x x =-+向上平移1个单位,平移后所得的抛物线的表达式为( )(A )224y x x =-+; (B )222y x x =-+; (C )233y x x =-+;(D )23y x x =-+.4. 现有甲、乙两个合唱队,队员的平均身高都是175cm ,方差分别是2S 甲、2S 乙,如果22S S >甲乙,那么两个队中队员的身高较整齐的是( )(A )甲队; (B )乙队; (C )两队一样整齐; (D )不能确定.5. 已知3,2a b ==r r,而且b r 和a r 的方向相反,那么下列结论中正确的是( )(A )32a b =r r ; (B )23a b =r r ; (C )32a b =-r r ; (D )23a b =-r r. 6. 下列四个命题中,错误的是( )(A ) 所有的正多边形是轴对称图形,每条边的垂直平分线是它的对称轴; (B ) 所有的正多边形是中心对称图形,正多边形的中心是它的对称中心; (C )所有的正多边形每一个外角都等于正多边形的中心角; (D )所有的正多边形每一个内角都与正多边形的中心角互补.二、填空题(本大题共12题,每题4分,满分48分) 7. 计算63a a ÷=_________. 8. 分解因式:3a a -=_________.9. 已知关于x 的方程230x x m +-=有两个相等的实数根,那么m 的值为_________. 10. 不等式组1011x x +>⎧⎨-⎩≤的解集是_________.11. 方程2134x -+=的解为_________. 12. 不透明的袋中装有3个大小相同的小球,其中两个为白色,一个为红色,随机地从袋中摸取一个小球后放回,再随机地摸取一个小球,两次取的小球都是红球的概率为_____. 13. 为了解全区5000名初中毕业生的体重情况,随机抽测了200名学生的体重,频率分布如图所示(每小组数据可含最小值,不含最大值),其中从左至右前四个小长方形的高依次为0.02、0.03、0.04、0.05, 由此可估计全区初中毕业生的体重不小于60千克的学生人数约为_________人.14. 图像经过点(1,2)A 的反比例函数的解析式是_________.15. 如果圆O 的半径为3,圆P 的半径为2,且5OP =,那么圆O 和圆P 的位置关系是______. 16. 如图,平行四边形ABCD 的对角线AC 、BD 交于O ,过点O 的线段EF 与AD 、BC 分别交于E 、F ,若4AB =,5BC =, 1.5OE =,那么四边形EFCD 的周长为_________. 17. 各顶点都在方格纸横竖格子线的交错点上的多边形称为格点多边形,奥地利数学家皮克(G.Pick ,1859~1942年)证明了格点多边形的面积公式:112S a b =+-,其中a 表示多边表内部的格点数,b 表示多边形边界上的格点数,S 表示多边形的面积.如图格点多边形的面积是_________.第16题图 第17题图18. 如图,点M 的坐标为(3,2),动点P 从点O 出发,沿y 轴以每秒1个单位的速度向上移动,且过点P 的直线l :y x b =-+也随之移动,如果点M 关于l 的对称点落在坐标轴上,设点P 的移动时间为t ,那么t 的值可以是_________.第18题图三、解答题(本大题共7题,满分78分) 19. (本题满分10分)计算:2011(2019)22cot 30-⎛⎫+--+ ⎪+︒⎝⎭20. (本题满分10分)解方程:21612422x x x x ++=-+-.21. (本题满分10分,第(1)、第(2)小题满分各5分)如图已知:ABC △中,AD 是边BC 上的高、E 是边AC 的中点,11BC =,12AD =,DFGH 为边长为4的正方形,其中点F 、G 、H 分别在AD 、AB 、BC 上.(1)求BD 的长度; (2)求cos EDC ∠的值.22.(本题满分10分,第(1)小题满分4分、第(2)小题满分6分)某乒乓球馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费;② 银卡售价150元/张,每次凭卡另收10 元;暑期普通票正常出售,两种优惠卡仅限暑期使用,不限次数.设打乒乓x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一个坐标系中,若三种消费方式对应的函数图像如图所示,请根据函数图像,写出选择哪种消费方式更合算.23.(本题满分12分,第(1)、第(2)小题满分各6分)如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P 处,折痕为EC,联结AP并延长AP交CD于F点,(1)求证:四边形AECF为平行四边形;(2)如果PA PE△.△≌EPC,联结BP,求证:APB24. (本题满分12分,第(1)、第(2)、第(3)小题满分各4分)如图,已知对称轴为直线1x =-的抛物线23y ax bx =++与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A .(1)求点B 的坐标及此抛物线的表达式;(2)点D 为y 轴上一点,若直线BD 和直线BC 的夹角为15︒,求线段CD 的长度; (3)设点P 为抛物线的对称轴1x =-上的一个动点,当BPC △为直角三角形时,求点P 的坐标.25.(本题满分14分,第(1)、第(2)小题满分各4分,第(3)小题满分6分)如图已知:AB是圆O的直径,10AB=,点C为圆O上异于点A、B的一点,点M为弦BC的中点.(1)如果AM交OC于点E,求:OE CE的值;(2)如果AM OC∠的正弦值;⊥于点E,求ABC(3)如果:5:4⊥,交OC于点H,与射AB BC=,D为BC上一动点,过D作DF OC线BO交于圆内点F,请完成下列探究.探究一:设BD x=,求y关于x的函数解析式及其定义域.=,FO y探究二:如果点D在以O为圆心,OF为半径的圆上,写出此时BD的长度.2018~2019学年上海市宝山区九年级二模数学试卷参考答案一、选择题二、填空题三、解答题19. 解:2011(2019)22cot 30-⎛⎫+--+ ⎪+︒⎝⎭=413π+--..........................................................................................................8分2(2ππ=+-=+分(其中主要得分点为:负指数、零指数、特殊角三角比、二次根式性质等)20. 解:2162(2)x x +-=+.......................................................................................................3分 23100x x +-=(5)(3)0x x +-=...................................................................................................................3分 15x =-,22x =....................................................................................................................2分经检验5x =-是原方程的解,2x =是增根(舍去)......................................................2分 ②原方程的解是5x =-(其中主要得分点为:去分母、因式分解、化简、解方程、检验)21. 解:(1)②如图DFGH 为顶点在ABD △边长的正方形②GF AFBD AD=.........................................................................................................................3分 将12AD =,4GF DF ==代入得:6BD =,.................................................................2分 (2)②BC=11,BD=6,②CD=5......................................................................................1分在直角ADC △中,222AC AD DC =+,②13AC =............................................................................................................................1分 ②E 是边AC 的中点,②ED EC =..........................................................................................................................1分 ②EDC ACD ∠=∠...............................................................................................................1分②5cos cos 13EDC ACD ∠=∠=............................................................................................1分 (其中主要得分点为:相似性质、比例式、解方程、勾股定理、直角与等腰②性质、三角比)22. 解:(1)选择银卡消费时,y 与x 之间的函数关系式为:10150y x =+.....................2分选择普通票消费时,y 与x 之间的函数关系式为:20y x =..........................................2分 根据题意,分别求出(0,150)A 、(15,300)B 、(45,600)C ...............................................3分 ②当打球次数不足15次时,选择普通票最合算,当打球次数介于15次到45次之间时,选择银卡最合算,当打球次数超过45次时,选择金卡最合算,当打球次数恰为15次时,选择普通票或银卡同为最合算,当打球次数恰为45次时,选择金卡或银卡同为最合算…..3分(其中主要得分点为:函数解析式、读函数图像解决实际问题、数学语言表述、不重不漏分类原则)23. 解:(1)证明:由折叠得到EC 垂直平分BP ,..............................................................1分设EC 与BP 交于Q ,②BQ EQ =..........................................................................................................................1分 ②E 为AB 的中点,②AE EB =,.......................................................................................................................1分 ②EQ 为ABP △的中位线,②AF ②EC ,.....................................................................................................................2分 ②AE②FC ,②四边形AECF 为平行四边形;.......................................................................................1分 (2)②AF ②EC ,②90APB EQB ∠=∠=︒...................................................................1分 由翻折性质90EPC EBC ∠=∠=︒,PEC BEC ∠=∠........................................................1分 ②E 为直角APB △斜边AB 的中点,且AP EP =,②AEP △为等边三角形,60BAP AEP ∠=∠=︒,......................................................1+1分 18060602CEP CEB ︒-︒∠=∠==︒.......................................................................................1分 在ABP △和EPC △中,BAP CEP ∠=∠,APB EPC ∠=∠,AP EP =②ABP △②EPC △(AAS )............................................................................................1分24. 解:(1)依题意得:1203ba abc c ⎧-=-⎪⎪++=⎨⎪=⎪⎩,解之得:123a b c =-⎧⎪=-⎨⎪=⎩,.............................................3分②抛物线的解析式为223y x x =--+...........................................................................1分 (2)②对称轴为1x =-,且抛物线经过(1,0)A ,②(3,0)B -②直线BC 的解析式为3y x =+. 45CBA ∠=︒..........................................................1分 ②直线BD 和直线BC 的夹角为15︒, ②30DBA ∠=︒或60DBA ∠=︒.........................1分 在BOD △,tan DO BO DBO =⋅∠,3BO =....................................................................1分②DO =②3CD =或3..............................................................1分(3)设(1,)P t -,又(3,0)B -,(0,3)C ,②218BC =,2222(13)4PB t t =-++=+,2222(1)(3)610PC t t t =-+-=-+,②若点B 为直角顶点,则222BC PB PC +=即:22184610t t t ++=-+解之得:2t =-, ②若点C 为直角顶点,则222BC PC PB +=即:22186104t t t +-+=+解之得:4t =, ②若点P 为直角顶点,则222PB PC BC +=即:22461018t t t ++-+=解之得:1t =,2t =. ................................................................................................4分 综上所述P 的坐标为(1,2)--或(1,4)-或(-或(-.25. 解:点O 作ON //BC 交AM 于点N ,.............................................................................1分AB 是圆O 的直径,12ON AO BM AB ==..................................................................................1分 点M 为弦BC 的中点12ON ON CM BM ==..............................................................................1分:1:2OE CE =......................................................................................................................1分(2)点M 为弦BC 的中点OM BC ⊥..............................................................................1分AM OC ⊥于点E ,OME MCE ∠=∠,OME △②MCE △...........................................1分2ME OE CE =⋅ 设OE x =,则2CE x =,ME =...............................................1分在直角MCE △中,CM ,sin ECM ∠分sin ABC ∠ 过点D 作DL BO ⊥于点L ,10AB =,:5:4AB BC =,8BC =, ……………1分设BD x =,则8CD x =-,58BL DL x ==,4(8)5CH x =-,4755OH CO CH x =-=-OH FO LD FL =,475555588x y x y x -=+-....................................................................................1分20357x y -=(其中7742x <<)...............................................................................1+1分 以O 为圆心,OF 为半径的圆经过D OC 垂直平分DF ,FO OL =,558y x =-.....................................................................1分20355578x x -=-, 11219x =........................................................................................1分此时11219BD =.。