初二数学实数知识点总结
初二数学上册:实数知识点

初二数学上册:实数知识点初二数学上册:实数知识点?1、加法:(1)同号两数相加,取原先的符号,并把它们的绝对值相加;(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
可使用加法交换律、结合律。
2、减法:减去一个数等于加上那个数的相反数。
3、乘法:(1)两数相乘,同号取正,异号取负,并把绝对值相乘。
(2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。
(3)乘法可使用乘法交换律、乘法结合律、乘法分配律。
4、除法:(1)两数相除,同号得正,异号得负,并把绝对值相除。
(2)除以一个数等于乘以那个数的倒数。
(3)0除以任何数都等于0,0不能做被除数。
5、乘方与开方:乘方与开方互为逆运算。
课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也专门难做到恰如其分。
什么缘故?依旧没有完全“记死”的缘故。
要解决那个问题,方法专门简单,每天花3-5分钟左右的时刻记一条成语、一则名言警句即可。
能够写在后黑板的“积存专栏”上每日一换,能够在每天课前的3分钟让学生轮番讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。
如此,一年就可记300多条成语、30 0多则名言警句,日积月累,终究会成为一笔不小的财宝。
这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会为所欲为地“提取”出来,使文章增色添辉。
6、实数的运算顺序:唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义差不多相去甚远。
而对那些专门讲授“武事”或讲解“经籍”者,又称“讲师”。
“教授”和“助教”均原为学官称谓。
前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,要紧协助国子、博士培养生徒。
八上数学实数必背知识点总结

第二章 实数1、1-25的平方:12=122=432=942=1652=2562=3672=4982=6492=81102=100112=121122=144132=169142=196152=225162=256172=289182=324192=361202=400212=441222=484232=529242=576252=6252、1-10的立方:13=123=833=2743=6453=12563=21673=34383=51293=729103=10003、实数的分类:4、判断无理数的方法:① 带π的② 无限不循环的小数③ 带根号并且开不出来的5、算数平方根:算数平方根的定义:一般地,如果一个正数 x的平方等于 a,即 x2=a,那么这个正数 x就叫做 a的算术平方根. 0 的算术平方根是 0.(a≥0)符号表示: √a,表示求a的算术平方根,即 求谁 (非负数)的平方等于a.6、平方根:平方根的定义:一般地,如果一个数 x的平方等于 a,即x2 = a,那么这个数 x就叫做 a的平方根(或二次方根)。
0 的平方根是 0.(a≥0)符号表示: ±√a,表示求a的平方根,即 求谁的平方等于a.平方根的性质:①正数有两个平方根,它们互为相反数;0 的平方根还是 0;负数没有平方根.②双重非负性:a≥0,√a≥0③7、立方根:立方根的定义:一般地,如果一个数x 的立方等于a ,即x 3= a , 那么这个数x 就叫做a 的立方根(也叫做三次方根). 0的立方根是0 .(a 为任意数)。
符号表示:3√a ,表示求a 的立方根,即 求谁的立方等于a.立方根的性质:①正数的立方根是正数;负数的立方根是负数;0的立方根是0.②8、必考题:①√81的算数平方根是 3 . ②√16的平方根是 ±2 . ③√64的立方根是 2 .9、非负数有:( )2 ≥0, | | ≥0, √❑ ≥0几个非负数相加等于0,如( )2 + | | + √❑ = 0,说明里面都是0.10、两个答案的有:平方、平方根、绝对值,如:①若a 2 =4,则a= ±2 (两种情况!) ②若 |a | =4,则a= ±4 (两种情况!)③4的平方根是 ±2 (两种情况!)11、比大小:¿1¿GG 3¿GGGGGGGGGGG ①√❑和数字,比较它们的平方¿2¿GG 3¿GGGGGGGGGGG ②3√❑和数字,比较它们的立方③√❑和3√❑,比较它们的6次方④2√3和3√2,比较它们的平方⑤√3−12和12,分母相同比分子12、相反数、绝对值、倒数:相反数:①只有符号不同的两个数叫做相反数。
初二(下)实数的知识点与练习题

第十三章 实数知识要点一: 1.实数的性质(1)实数范围内仍然适用在有理数范围内定义的一些概念(如倒数,相反数);(2)两实数的大小关系:正数大于0,0大于负数;两个正实数,绝对值大的实数大;两个负实数,绝对值大的实数反而小;(3)在实数范围内,加、减、乘、除(除数不为零)、乘方五种运算是畅通无阻的,但是开方运算要注意,正实数和零总能进行开方运算,而负实数只能开奇次方,不能开偶次方;(4)有理数范围内的运算律和运算顺序在实数范围内仍然相同. 2.实数与数轴的关系每一个实数都可以用数轴上的一个点表示;反之,数轴上每一个点都表示一个实数,即数轴上的点与实数是一一对应关系.3.实数的分类(1)按实数的定义分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 (2)按实数的正负分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数负分数负整数负有理数负实数负数)零(既不是正数也不是正无理数正分数正整数正有理数正实数实数4.实数的大小比较两实数的大小关系如下:正实数都大于0,负实数都小于0,正数大于一切负数;两个正实数,绝对值大的实数较大;两个负实数,绝对值大的实数反而小.实数和数轴上的点一一对应,在数轴上表示的两个实数,右边的数总大于左边的数.【典型例题】2-1C B A 例1若a 为实数,下列代数式中,一定是负数的是( ) A. -a 2 B. -( a +1)2 C.-2a D.-(a -+1)分析:本题主要考查负数和非负数的概念,同时涉及考查字母表示数这个知识点.由于a 为实数, a 2、( a +1)2、2a 均为非负数,∴-a 2≤0,-( a +1)2≤0,-2a ≤0.而0既不是正数也不是负数,是介于正数与负数之间的中性数.因此,A 、B 、C 不一定是负数.又依据绝对值的概念及性质知-(a -+1)﹤0.故选D例2 实数a 在数轴上的位置如图所示, 化简:2)2(1-+-a a =分析:这里考查了数形结合的数学思想,要去掉绝对值符号,必须清楚绝对值符号内的数是正还是负.由数轴可知:1﹤a ﹤2,于是,22)2(,112a a a a a -=-=--=-所以, 2)2(1-+-a a =a -1+2-a =1.例3 如图所示,数轴上A 、B 两点分别表示实数1,5,点B 关于点A 的对称点为C ,则点C 所表示的实数为( ) A. 5-2 B. 2-5 C.5-3 D.3-5分析:这道题也考查了数形结合的数学思想,同时又考查了对称的性质.B 、C 两点关于点A 对称,因而B 、C 两点到点A 的距离是相同的,点B 到点A 的距离是5-1,所以点C 到点A 的距离也是5-1,设点C 到点O 的距离为a ,所以a +1=5-1,即a =5-2.又因为点C 所表示的实数为负数,所以点C 所表示的实数为2-5.例4 已知a 、b 是有理数,且满足(a -2)2+3-b =0,则a b 的值为分析:因为(a -2)2+3-b =0,所以a -2=0,b -3=0。
初二实数重要知识点总结

初二实数重要知识点总结一、有理数和无理数实数包括有理数和无理数两种类型。
有理数是可以写成整数比的数,包括正整数、负整数、零和分数四种类型。
无理数是不能写成整数比的数,它们是无限不循环小数。
有理数和无理数的概念在实数中是非常重要的,它们构成了实数的基本组成部分。
有理数和无理数在数轴上分布形成了密集的情况,它们一起构成了实数轴上的所有点。
二、数轴数轴是表示实数的一条直线,它从左到右依次表示了负无穷到正无穷的所有实数。
在数轴上,每个实数对应一点,反之亦然。
数轴的左侧是负数部分,右侧是正数部分,中间是零点。
利用数轴,我们可以直观地表示实数之间的大小关系,进行加减乘除的运算,以及表示绝对值等操作。
数轴在初二的数学学习中非常重要,它是理解实数概念的基础。
三、绝对值绝对值是一个非常重要的概念,它表示一个数到原点的距离。
对于正数来说,它的绝对值就是它自己,对于负数来说,它的绝对值是它的相反数。
绝对值可以用来表示距离、大小比较、解绝对值不等式等很多方面的概念。
在初二数学学习中,绝对值是一个非常重要的知识点,它在数轴上的表示、大小比较、解不等式等方面有着广泛的应用。
四、大小比较在实数中,大小比较是一个非常基本的操作,它包括了比较两个数的大小、比较绝对值、比较大小定理等多个方面的内容。
大小比较在初二数学中占据了非常重要的地位,它与绝对值、数轴等概念有着密切的联系。
大小比较是实数的基本性质之一,它在数学的各个分支中都有着广泛的应用。
在初二数学学习中,掌握好大小比较的概念对于后续学习是非常重要的。
五、相反数相反数是一个非常简单而重要的概念,它表示了一个数与它的相反数相加等于零。
对于正数来说,它的相反数就是负数,对于负数来说,它的相反数就是正数。
相反数在加减法运算中有着重要的作用,它能够帮助我们进行数的加减运算、解方程等多个方面的操作。
在初二数学中,相反数是一个需要重点掌握的知识点,它对于后续学习有着重要的作用。
总结一下,在初二数学学习中,实数是一个非常重要的知识点,它涉及了有理数、无理数、数轴、绝对值、大小比较、相反数等多个概念。
有关初中实数知识点总结

有关初中实数知识点总结实数是我们在日常生活中经常接触到的一种数,它可以用来表示物体的长度、重量和体积等实际量,并且可以进行加减乘除运算。
在初中数学中,实数是一个非常重要的概念,学好实数的知识对于理解后续的数学知识是非常有帮助的。
下面将对初中实数的相关知识点进行总结和归纳,以便同学们加深对实数的理解。
一、实数的定义实数是数学上的一个概念,它包括有理数和无理数两个部分。
有理数包括整数和分数,而无理数则是不能表示为有理数的数,如π和根号2等。
实数是实际存在的数,可以用来描述物理世界中的各种现象,如时间、距离、速度等。
实数可以用来进行加、减、乘、除等运算,并且可以比较大小。
二、实数的性质1. 实数的加法性质- 交换律:对任意的实数a和b,有a + b = b + a。
- 结合律:对任意的实数a、b和c,有(a + b) + c = a + (b + c)。
- 存在单位元素0:对任意的实数a,有a + 0 = a。
- 存在相反元素:对任意的实数a,存在一个实数-b,使得a + (-b) = 0。
2. 实数的乘法性质- 交换律:对任意的实数a和b,有a × b = b × a。
- 结合律:对任意的实数a、b和c,有(a × b) × c = a × (b × c)。
- 存在单位元素1:对任意的实数a,有a × 1 = a。
- 存在倒数:对任意的非零实数a,存在一个实数1/a,使得a × (1/a) = 1。
3. 实数的大小比较性质- 对任意的实数a和b,有且只有下列三种情况:- a = b;- a > b;- a < b。
- 反对称性:对任意的实数a和b,如果a > b,则-b > -a。
- 传递性:对任意的实数a、b和c,如果a > b且b > c,则a > c。
4. 实数的数轴表示实数可以在数轴上用点表示,数轴上的原点表示0,右侧表示正数,左侧表示负数。
实数知识点总结概括初中

实数知识点总结概括初中一、实数的基本概念1. 实数的定义实数是包括有理数和无理数的数的集合,记作R。
有理数包括整数和分数,而无理数是那些无法写成有理数形式的数,如π和√2等。
实数的概念是对数的一个总称,它是数学研究和运用的基础。
2. 实数的表示实数可以用小数表示,小数可以是有限的,也可以是无限的循环小数。
有理数可以表示为有限小数或无限循环小数,而无理数通常用无限不循环小数表示。
3. 实数的分布实数可以用数轴表示,数轴上的点对应着实数。
实数在数轴上是连续的,任意两个实数之间都存在着无穷多个实数。
这种连续的性质是实数的重要特点之一。
二、实数的性质1. 实数的比较实数之间可以比较大小,可以用不等式表达实数的大小关系。
对于任意两个实数a和b,有a<b、a=b或a>b三种可能的关系。
2. 实数的绝对值实数的绝对值是这个实数到原点的距离,记作|a|,其中a是实数。
绝对值有以下性质:(1)若a>0,则|a|=a;(2)若a<0,则|a|=-a;(3)|a|=0的充分必要条件是a=0。
3. 实数的有序性实数集合是有序的,即实数集合中的每个实数都可以和实数集合中的其他实数相比较大小。
这种有序性是实数与数学中其他集合的一个重要区别。
4. 实数的密度实数在数轴上是连续分布的,任意两个实数之间都存在着无穷多个实数。
这种性质体现了实数的密度,也是实数在数学中的重要性质之一。
三、实数的运算1. 实数的加法和减法实数的加法和减法是最基本的运算,可以利用数轴对实数的加法和减法进行图形化表示,以便更直观地理解实数的运算。
2. 实数的乘法和除法实数的乘法和除法是对实数进行组合和分解的运算,可以用数轴对实数的乘法和除法进行图形化表示,以便更直观地理解实数的运算。
3. 实数的乘方和开方实数的乘方和开方是对实数进行多次相乘或多次开方的运算,可以用数轴对实数的乘方和开方进行图形化表示,以便更直观地理解实数的运算。
4. 实数的混合运算实数的混合运算是实数运算的综合应用,包括加减乘除、乘方开方等多种运算的组合和应用。
实数知识点归纳总结

实数知识点归纳总结一、实数的分类实数可以分为有理数和无理数两类。
有理数是可以表示为分数形式的数,包括正整数、负整数、零、正分数和负分数。
无理数是无法用分数形式表示的数,如开根号或π。
有理数又可以分为整数和分数两类。
整数包括正整数、负整数和零,分数指的是整数之间的比值。
二、实数运算1.加法和减法实数的加法和减法满足交换律和结合律,即a+b=b+a,(a+b)+c=a+(b+c)。
加法的逆元是减法,即a+(-a)=0。
2.乘法和除法实数的乘法和除法满足交换律和结合律,即a*b=b*a,(a*b)*c=a*(b*c)。
乘法的逆元是除法,a/b * b/a = 1。
3.乘幂和开方实数的乘幂满足乘法的分配律,即(a*b)^n=a^n*b^n。
实数的开方是指找出一个数的n次方等于给定的数,如a^n=b,则a为b的n次方根。
4.比较大小实数的大小关系可以通过比较大小来确定,满足传递性和完全性。
传递性指的是如果a>b 且b>c,则a>c;完全性指的是对于任意实数a,b,要么a>b,要么a=b,要么a<b。
三、实数的性质1.有序性实数集合具有明确的大小关系,可以进行大小的比较。
任意两个实数a,b,存在且只存在下列三种关系之一:a>b,a=b,a<b。
2.稠密性实数集合中,任意两个不相等的数之间都有有理数,也有无理数。
在实数轴上,任意两个不相等的实数之间都存在无数个实数。
3.区间性实数轴上的一段连续的部分称为一个区间,包括开区间、闭区间、半开半闭区间等。
4.费马小定理p为素数,a为整数,则p不能整除a和p互质的一次方程ap-x=1有整数解x。
5.实数的稳定性实数的乘、除、取幂和开根号等有限次运算保持实数的性质。
6.实数的基数实数集合的基数是不可数的,比如自然数集合、有理数集合和无理数集合的基数都是不可数的。
四、实数的应用1.实数在几何中的应用实数可以用来表示点的坐标、线段的长度、角度的大小等。
初中数学实数知识点总结

初中数学实数知识点总结一、实数的分类实数是由整数、分数、无理数和有理数四种数构成的。
整数是不含小数部分的正整数、负整数和0。
例如,-3、-2、-1、0、1、2、3等都是整数。
分数是由整数和非零整数构成的比值。
例如,1/2、3/4、-2/3等都是分数。
无理数是指不能表示为有理数的数,通常是无限不循环小数。
如π、根号2、根号3等都是无理数。
有理数是整数和分数的集合,是可以表示为整数比整数的分数的数。
有理数包括整数和分数,例如-3、-2、-1、0、1、2、3、1/2、3/4等都是有理数。
二、实数的加法和减法实数的加法和减法是我们在日常生活中经常用到的运算方式。
对于整数和分数的加法和减法,我们可以按照它们的正负号和大小进行相应的运算。
例如,对于同号的整数,其加法就是两个数的绝对值相加,并且结果的符号与原来的符号相同;对于异号的整数,其加法就是两个数的绝对值相减,并且结果的符号取绝对值大的数的符号。
对于分数的加法和减法,我们可以先找到它们的公共分母,然后按照相同的公共分母进行运算。
三、实数的乘法和除法实数的乘法和除法也是我们在日常生活中经常用到的运算方式。
对于整数和分数的乘法和除法,我们可以按照相应的规则进行运算。
例如,对于整数的乘法和除法,我们可以按照同号和异号的规则进行运算。
对于分数的乘法和除法,我们可以把乘法转化为乘以倒数的形式进行运算。
四、实数的比较大小在日常生活中,我们经常需要比较不同的数的大小。
对于实数的比较大小,我们可以按照它们的绝对值和符号进行比较。
例如,比较两个正数的大小时,我们可以直接比较它们的绝对值大小;比较一个正数和一个负数的大小时,我们可以直接判断正数的大小。
对于分数的比较大小,我们可以将它们转化为相同的分母后再进行比较。
五、实数的混合运算在实际应用中,我们经常需要对不同类型的实数进行混合运算。
例如,我们需要计算一个整数与一个分数的乘积,或者一个整数与一个无理数的和。
对于这种情况,我们可以根据它们的类型进行相应的转化,然后再进行运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学实数知识点总结初二数学实数知识点总结在平平淡淡的学习中,不管我们学什么,都需要掌握一些知识点,知识点有时候特指教科书上或考试的知识。
还在苦恼没有知识点总结吗?下面是店铺整理的初二数学实数知识点总结,欢迎阅读,希望大家能够喜欢。
初二数学实数知识点总结1一、实数的有关概念1、无理数:无限不循环小数叫做无理数,这说明无理数有两个基本特征:一是小数位数无限多,二是不循环。
2、无理数的表现形式在初中阶段,无理数的表现形式有几下三种:①开方开不尽而得到的数,如3、5、7等②含有π的数,如π、等③无限不循环的小数,如1.1010010001······(每二个1之间依次多一个0)二、实数的分类有理数、无理数统称实数;它可以按以下两种方式分类实数或实数三、实数的重要性质1、有理数范围内的一些定义,概念和性质在实数范围内仍然适用,如绝对值、相反数、倒数等。
2、两个实数大小的比较;正数大于0;0大小一切负数;二个负实数,绝对值大的反而小3、在实数范围内,加、减、乘、除(除数不能为0)、乘方五种运算畅通无阻,在开方运算中,正实数和0总能进行开方运算,负实数只能开立方,不能开平方,4、在有理数范围内的运算顺序和运算律在实数范围内仍然适用。
四、实数和数轴的关系实数和数轴上的点存在着一一对应关系,即:任何一个实数都可以用数轴上的一个点表示,反之,数轴上的任何一个点都表示一个实数。
因此,我们不但可以将一个有理数用数轴上的一个点表示,同时,也可以将一个无理数用数轴上的点表示出来。
初二数学实数知识点总结2一、实数的概念及分类1、实数的分类正有理数有理数零有限小数和无限循环小数负有理数正无理数无理数无限不循环小数负无理数整数包括正整数、零、负整数。
正整数又叫自然数。
正整数、零、负整数、正分数、负分数统称为有理数。
2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如7,2等;π(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等; 3(3)有特定结构的数,如0。
1010010001等;二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=—a,则a≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和—1。
零没有倒数。
三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a的平方根记做“a”。
2、算术平方根正数a的正的平方根叫做a的算术平方根,记作“a”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a(a0)a2a ;注意aa0—a(a<0)a03、立方根如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:aa,这说明三次根号内的负号可以移到根号外面。
四、科学记数法和近似数1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。
2、科学记数法把一个数写做a10n的形式,其中1a10,n是整数,这种记数法叫做科学记数法。
五、实数大小的比较1、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。
(2)求差比较:设a、b是实数,ab0ab,ab0ab,ab0ab(3)求商比较法:设a、baaa1ab;1ab;1ab; bbb是两正实数,(4)绝对值比较法:设a、b是两负实数,则abab。
(5)平方法:设a、b是两负实数,则a2b2ab。
六、实数的运算1、加法交换律abba2、加法结合律(ab)ca(bc)3、乘法交换律abba4、乘法结合律(ab)ca(bc)5、乘法对加法的分配律 a(bc)abac6、实数混合运算时,对于运算顺序有什么规定?实数混合运算时,将运算分为三级,加减为一级运算,乘除为二能为运算,乘方为三级运算。
同级运算时,从左到右依次进行;不是同级的混合运算,先算乘方,再算乘除,而后才算加减;运算中如有括号时,先做括号内的运算,按小括号、中括号、大括号的顺序进行。
7、有理数除法运算法则就什么?两有理数除法运算法则可用两种方式来表述:第一,除以一个不等于零的数,等于乘以这个数的倒数;第二,两数相除,同号得正,异号得负,并把绝对值相除。
零除以任何一个不为零的数,商都是零。
8、什么叫有理数的乘方?幂?底数?指数?相同因数相乘积的运算叫乘方,乘方的结果叫幂,相同因数的个数叫指数,这个因数叫底数。
记作: a。
9、有理数乘方运算的法则是什么?负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数。
零的任何正整数幂都是零。
10、加括号和去括号时各项的符号的变化规律是什么?去(加)括号时如果括号外的因数是正数,去(加)括号后式子各项的符号与原括号内的式子相应各项的符号相同;括号外的因数是负数去(加)括号后式子各项的符号与原括号内式子相应各项的符号相反。
初二数学实数知识点总结3无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:①实数分有理数和无理数。
②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。
③每一个实数都可以在数轴上的一个点来表示。
相信通过上面对实数知识的内容讲解学习,可以很好的帮助同学们对此知识的巩固学习吧,希望同学们在考试中取得优异成绩。
中考数学知识点精讲:代数式对于初中数学代数式的学习,我们做了下面的内容归纳讲解,希望同学们好好学习下面讲解的知识代数式:单独一个数或者一个字母也是代数式。
合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
②把同类项合并成一项就叫做合并同类项。
③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。
以上对数学中代数式知识的讲解学习,同学们都能很好的掌握了吧,后面我们进行更多的关于数学知识点的讲解学习。
中考数学有理数知识点精讲同学们对数学中有理数知识点的内容还熟悉吧,下面是老师对此知识点的内容做的详解,希望给同学们的学习上很好的帮助。
有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。
正数大于0,负数小于0,正数大于负数。
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。
两个负数比较大小,绝对值大的反而小。
有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。
②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
通过上面对数学中关于有理数的知识点内容讲解学习,相信可以很好的帮助同学们对数学知识的学习吧,同学们努力学习哦!初二数学实数知识点总结41、算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作。
0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根。
2、平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根。
3、正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。
4、正数的立方根是正数;0的立方根是0;负数的立方根是负数。
5、数a的相反数是-a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0实数部分主要要求学生了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的`运算。
重点是实数的意义和实数的分类;实数的运算法则及运算律。
数学的学习思维方法1、比较法通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。
比较法要注意:(1)找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。
(2)找联系与区别,这是比较的实质。
(3)必须在同一种关系下(同一种标准)进行比较,这是“比较”的基本条件。
(4)要抓住主要内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出。
(5)因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。
2、公式法运用定律、公式、规则、法则来解决问题的方法。
它体现的是由一般到特殊的演绎思维。
公式法简便、有效,也是孩子学习数学必须学会和掌握的一种方法。