高一数学(必修一)《第五章-对数函数的图象和性质》练习题及答案解析-人教版
2023-2024学年高一上数学必修一:对数函数(附答案解析)

第1页共6页2023-2024学年高中数学必修一:对数函数一、选择题(每小题5分,共40分)1.已知a =log 213,b =5-3,c =212,则a ,b ,c 的大小关系为(A )A .a <b <cB .a <c <bC .c <b <aD .c <a <b解析:∵log 213<log 21=0,0<5-3<50=1,212=2>1,∴a <b <c .故选A.2.若a >b ,则(C )A .ln(a -b )>0B .3a <3bC .a 3-b 3>0D .|a |>|b |解析:法一:不妨设a =-1,b =-2,则a >b ,可验证A ,B ,D 错误,只有C 正确.法二:由a >b ,得a -b >0.但a -b >1不一定成立,则ln(a -b )>0不一定成立,故A 不一定成立.因为y =3x 在R 上是增函数,当a >b 时,3a >3b ,故B 不成立.因为y =x 3在R 上是增函数,当a >b 时,a 3>b 3,即a 3-b 3>0,故C 成立.因为当a =3,b =-6时,a >b ,但|a |<|b |,所以D 不一定成立.故选C.3.若log 34·log 8m =log 416,则m 等于(D )A .3B .9C .18D .27解析:原式可化为log 8m =2log 34,∴13log 2m =2log 43,∴m 13=3,m =27.4.下列函数中,随着x 的不断增大,增长速度最慢的是(B )A .y =5x B .y =log 5x C .y =x 5D .y =5x。
人教版数学高一-人教版必修1练习 .1对数函数的图象及其性质

第二章 基本初等函数(Ⅰ)2.2 对数函数2.2.2 对数函数及其性质第1课时 对数函数的图象及其性质A 级 基础巩固一、选择题1.已知集合A ={y |y =log 2x ,x >1},B =⎩⎨⎧⎭⎬⎫y ⎪⎪⎪⎭⎪⎫y =⎝ ⎛12x ,x <0,则A ∩B =( )A .{y |0<y <1}B .{y |y >1} C.⎩⎨⎧⎭⎬⎫y ⎪⎪⎪12<y <1 D .∅解析:因为A ={y |y >0},B ={y |y >1}.所以A ∩B ={y |y >1}.答案:B2.已知x =20.5,y =log 52,z =log 50.7,则x ,y ,z 的大小关系为( )A .x <y <zB .z <x <yC .z <y <xD .y <z <x解析:因为x =20.5>20=1,0<y =log 52<1,z =log 50.7<0,所以z <y <x .答案:C3.函数f (x )=12-log 3x的定义域是( ) A .(-∞,9]B .(-∞,9)C .(0,9]D .(0,9)解析:要使函数有意义,只需2-log 3x >0,即log 3x <2.所以0<x <9. 答案:D4.已知f (x )为R 上的增函数,且f (log 2x )>f (1),则x 的取值范围为( )A.⎝ ⎛⎭⎪⎫12,2B.⎝ ⎛⎭⎪⎫0,12∪(2,+∞) C .(2,+∞) D .(0,1)∪(2,+∞)解析:依题意有log 2x >1,所以x >2.答案:C5.函数f (x )=log 2(1-x )的图象为( )解析:由定义域知x <1,排除选项B 、D.又f (x )=log 2(1-x )是定义域上的减函数,所以选项A 正确.答案:A二、填空题6.如果函数f (x )=(3-a )x ,g (x )=log a x 的增减性相同,则a 的取值范围是________.解析:由题意,得⎩⎨⎧0<3-a <1,0<a <1,或⎩⎨⎧3-a >1,a >1,解得1<a <2.答案:(1,2)7.函数y =log a (2x -3)+1的图象恒过定点P ,则点P 的坐标是________.解析:当2x -3=1,即x =2时,y =1,故点P 的坐标是(2,1). 答案:(2,1)8.函数y =log 12(3x -a )的定义域是⎝ ⎛⎭⎪⎫23,+∞,则a =________. 解析:根据题意,得3x -a >0,所以x >a 3,所以a 3=23,解得a =2.答案:2三、解答题9.设a >1,函数f (x )=log a x 在区间[a ,2a ]上的最大值与最小值之差为12,求实数a 的值. 解:因为a >1,所以f (x )=log a x 在(0,+∞)上是增函数. 所以最大值为f (2a ),最小值为f (a ).所以f (2a )-f (a )=log a 2a -log a a =12, 即log a 2=12,所以a =4. 10.已知函数f (x )=lg (3x -3).(1)求函数f (x )的定义域和值域;(2)设函数h (x )=f (x )-lg(3x +3),若不等式h (x )>t 无解,求实数t 的取值范围.解:(1)由3x -3>0得x >1,所以定义域为(1,+∞),因为(3x -3)∈(0,+∞),所以值域为R.(2)因为h (x )=lg(3x -3)-lg(3x +3)=lg 3x -33x +3= lg ⎝ ⎛⎭⎪⎪⎫1-63x +3的定义域为(1,+∞),且在(1,+∞)上是增函数, 所以函数h (x )的值域为(-∞,0).若不等式h (x )>t 无解,则t 的取值范围是t ≥0.B 级 能力提升1.已知图中曲线C 1,C 2,C 3,C 4分别是函数y =log a 1x ,y =log a 2x ,y =log a 3x ,y =log a 4x 的图象,则a 1,a 2,a 3,a 4的大小关系是( )A .a 4<a 3<a 2<a 1B .a 3<a 4<a 1<a 2C .a 2<a 1<a 3<a 4D .a 3<a 4<a 2<a 1解析:作x 轴的平行线y =1,直线y =1与曲线C 1,C 2,C 3,C 4各有一个交点,则交点的横坐标分别为a 1,a 2,a 3,a 4.由图可知a 3<a 4<a 1<a 2.答案:B2.给出函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫12x ,x ≥4,f (x +1),x <4,则f (log 23)=______. 解析:因为1<log 23<log 24=2,所以3+log 23∈(4,5), 所以f (log 23)=f (log 23+1)=f (log 23+2)=f (log 23+3)=f (log 224)=⎝ ⎛⎭⎪⎫12log 224=答案:1243.已知实数x 满足-3≤log 12x ≤-12.求函数y =⎝ ⎛⎭⎪⎫log 2x 2·⎝ ⎛⎭⎪⎫log 2x 4的值域.解:y =⎝ ⎛⎭⎪⎫log 2x 2⎝ ⎛⎭⎪⎫log 2x 4=(log 2x -1)(log 2x -2)= log 22x -3log 2x +2.因为-3≤log 12x ≤-12,所以12≤log 2x ≤3. 令t =log 2x ,则t ∈⎣⎢⎡⎦⎥⎤12,3, y =t 2-3t +2=⎝ ⎛⎭⎪⎫t -322-14, 所以t =32时,y min =-14;t =3时,y max =2. 故函数的值域为⎣⎢⎡⎦⎥⎤-14,2.。
对数函数的图象和性质(教学课件)高一数学(人教A版2019)(1(完整版)5

其中[H ]表示溶液中氢离子的浓度,单位是摩尔 / 升.
(1)根据对数函数性质及上述pH的计算公式,说明溶液酸碱度
与溶液中氢离子的浓度之间的变化关系;
(2)已知纯净水中氢离子的浓度为[H ] 10 7 摩尔 / 升,计算纯
净水的pH 值.
解: (1)根据对数的运算性质得 pH lg[H ] lg[H ] 1 lg 1 , [H ]
)
A.b<c<a
B.b<a<c
C.c<a<b
D.c<b<a
解析:由题知,a=log45>1,b=120=1,c=log30.4<0,故 c<b<a. 答案:D
4.已知 log 1 m<log 1 n<0,则
2
2
A.n<m<1
B.m<n<1
C.1<m<n
D.1<n<m
解析:因为
0<12<1,log
1 2
题型二:比较对数值的大小
【例2】比较下列各组数的大小.
比较对数值大小的策略: 1.同底时,根据单调性比较两真数的大小; 2.同底但底数是字母时,需对字母进行分类讨论,再根据单调性比较两真数 的大小; 3.同真数但不同底时,可利用“底大图低”的口诀来直接判断大小; 4.不同底且不同真时,常借助中间值,如-1,0,1等进行比较.
解:在同一平面直角坐标系中,函数 y log3 x ,
y log1 x 的图象如图所示.它们的图象关于 x 轴对称. 3
说明:画对数函数 y loga x(a 0,且a 1) 的图象,可以抓住三个关
键点:
(
1 a
,
1),
(1,
0),
(
a,1)
,采用“三点法”来画简图.
2.比较下列各题中两个值的大小: (1) lg 0.6,lg 0.8 ; (2) log0.5 6,log0.5 4 ; (3) logm 5,logm 7 ; (4) log3 5 与 log6 4 .
2019-2020学年高一数学人教A版必修1练习:2.2.2 对数函数及其性质 Word版含解析

2.2.2 对数函数及其性质课后篇巩固提升基础巩固1.y=2x与y=log2x的图象关于( )A.x轴对称B.直线y=x对称C.原点对称D.y轴对称y=2x与y=log2x互为反函数,故函数图象关于直线y=x对称.2.函数y=ln(1-x)的图象大致为( )(-∞,1),且函数在定义域上单调递减,故选C.3.已知函数y=log a(x+c)(a,c为常数,且a>0,a≠1)的图象如图所示,则下列结论成立的是( )A.a>1,c>1B.a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<1y=log a (x+c )的图象是由y=log a x 的图象向左平移c 个单位长度得到的,结合题图知0<c<1.根据单调性易知0<a<1.4.已知a>0且a ≠1,函数y=log a x ,y=a x ,y=x+a 在同一坐标系中的图象可能是( )函数y=a x 与y=log a x 的图象关于直线y=x 对称,再由函数y=a x 的图象过(0,1),y=log a x 的图象过(1,0),观察图象知,只有C 正确.5.已知a=,b=log 2,c=lo ,则( )2-1313g 1213A.a>b>cB.a>c>bC.c>b>aD.c>a>b0<a=<20=1,b=log 2<log 21=0,c=lo >lo =1,∴c>a>b.故选D .2-1313g 1213g 12126.若对数函数f (x )的图象经过点P (8,3),则f = .(12)f (x )=log a x (a>0,a ≠1),则log a 8=3,∴a 3=8,∴a=2.∴f (x )=log 2x ,故f =log 2=-1.(12)1217.将y=2x 的图象先 ,再作关于直线y=x 对称的图象,可得到函数y=log 2(x+1)的图象( )A.先向上平移一个单位长度B.先向右平移一个单位长度C.先向左平移一个单位长度D.先向下平移一个单位长度,可求出解析式或利用几何图形直观推断.8.已知函数f (x )=直线y=a 与函数f (x )的图象恒有两个不同的交点,则a 的取值范围{log 2x ,x >0,3x ,x ≤0,是 .f (x )的图象如图所示,要使直线y=a 与f (x )的图象有两个不同的交点,则0<a ≤1.9.作出函数y=|log 2x|+2的图象,并根据图象写出函数的单调区间及值域.y=log 2x 的图象,如图甲.再将y=log 2x 在x 轴下方的图象关于x 轴对称翻折到x 轴上方(原来在x 轴上方的图象不变),得函数y=|log 2x|的图象,如图乙;然后将y=|log 2x|的图象向上平移2个单位长度,得函数y=|log 2x|+2的图象,如图丙.由图丙得函数y=|log 2x|+2的单调递增区间是[1,+∞),单调递减区间是(0,1),值域是[2,+∞).10.已知对数函数y=f(x)的图象经过点P(9,2).(1)求y=f(x)的解析式;(2)若x∈(0,1),求f(x)的取值范围.(3)若函数y=g(x)的图象与函数y=f(x)的图象关于x轴对称,求y=g(x)的解析式.设f(x)=log a x(a>0,且a≠1).由题意,f(9)=log a9=2,故a2=9,解得a=3或a=-3.又因为a>0,所以a=3.故f(x)=log3x.(2)因为3>1,所以当x∈(0,1)时,f(x)<0,即f(x)的取值范围为(-∞,0).g1(3)因为函数y=g(x)的图象与函数y=log3x的图象关于x轴对称,所以g(x)=lo x.3能力提升1.函数y=log a(x+2)+1(a>0,且a≠1)的图象过定点( )A.(1,2)B.(2,1)C.(-2,1)D.(-1,1)x+2=1,得x=-1,此时y=1.2.若函数f (x )=log 2x 的反函数为y=g (x ),且g (a )=,则a=( )14A.2 B.-2 C. D.-1212,得g (x )=2x .∵g (a )=,∴2a =,∴a=-2.14143.若函数f (x )=log 2(x 2-ax-3a )在区间(-∞,-2]上是减函数,则实数a 的取值范围是( )A.(-∞,4)B.(-4,4]C.(-∞,4)∪[2,+∞)D.[-4,4)t (x )=x 2-ax-3a ,则由函数f (x )=log 2t 在区间(-∞,-2]上是减函数,可得函数t (x )在区间(-∞,-2]上是减函数,且t (-2)>0,所以有-4≤a<4,故选D .4.已知函数f (x )=a x +log a (x+1)在[0,1]上的最大值与最小值之和为a ,则a 的值等于( )A. B.2 C.3D.1213y=a x 与y=log a (x+1)在[0,1]上的单调性相同,所以f (x )在[0,1]上的最大值与最小值之和为f (0)+f (1)=(a 0+log a 1)+(a 1+log a 2)=a ,整理得1+a+log a 2=a ,即log a 2=-1,解得a=.故选A .125.已知a=log 23.6,b=log 43.2,c=log 43.6,则a ,b ,c 的大小关系为 .a==2log 43.6=log 43.62,又函数y=log 4x 在区间(0,+∞)上是增函数,3.62>3.6>3.2,log 43.6log 42∴log 43.62>log 43.6>log 43.2,∴a>c>b.6.已知a>0且a ≠1,则函数y=a x 与y=log a (-x )在同一直角坐标系中的图象只能是下图中的 (填序号).方法一)首先,曲线y=a x 位于x 轴上方,y=log a (-x )位于y 轴左侧,从而排除①③.其次,从单调性考虑,y=a x 与y=log a (-x )的增减性正好相反,又可排除④.故只有②满足条件.(方法二)若0<a<1,则曲线y=a x 下降且过点(0,1),而曲线y=log a (-x )上升且过点(-1,0),所有选项均不符合这些条件.若a>1,则曲线y=a x 上升且过点(0,1),而曲线y=log a (-x )下降且过点(-1,0),只有②满足条件.(方法三)如果注意到y=log a (-x )的图象关于y 轴的对称图象为y=log a x 的图象,又y=log a x 与y=a x 互为反函数(两者图象关于直线y=x 对称),则可直接选②.7.已知函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是 .f (x )的解析式为f (x )=其图象如右图所示.{lg x ,x >0,0,x =0,-lg (-x ),x <0,由函数图象可得不等式f (x )>0时,x 的取值范围为(-1,0)∪(1,+∞).-1,0)∪(1,+∞)8.设函数f (x )=ln(ax 2+2x+a )的定义域为M.(1)若1∉M ,2∈M ,求实数a 的取值范围;(2)若M=R ,求实数a 的取值范围.由题意M={x|ax 2+2x+a>0}.由1∉M ,2∈M 可得{a ×12+2×1+a ≤0,a ×22+2×2+a >0,化简得解得-<a ≤-1.{2a +2≤0,5a +4>0,45所以a 的取值范围为.(-45,-1](2)由M=R 可得ax 2+2x+a>0恒成立.当a=0时,不等式可化为2x>0,解得x>0,显然不合题意;当a ≠0时,由二次函数的图象可知Δ=22-4×a×a<0,且a>0,即化简得解得a>1.{4-4a 2<0,a >0,{a 2>1,a >0,所以a 的取值范围为(1,+∞).9.已知函数f (x )=log 2(a 为常数)是奇函数.1+ax x -1(1)求a 的值与函数f (x )的定义域;(2)若当x ∈(1,+∞)时,f (x )+log 2(x-1)>m 恒成立,求实数m 的取值范围.∵函数f (x )=log 2是奇函数,1+axx -1∴f (-x )=-f (x ).∴log 2=-log 2.1-ax -x -11+ax x -1即log 2=log 2,∴a=1.ax -1x +1x -11+ax 令>0,解得x<-1或x>1.1+x x -1所以函数的定义域为{x|x<-1或x>1}.(2)f (x )+log 2(x-1)=log 2(1+x ),当x>1时,x+1>2,∴log 2(1+x )>log 22=1.∵x ∈(1,+∞),f (x )+log 2(x-1)>m 恒成立,∴m ≤1.故m 的取值范围是(-∞,1].。
高一数学(必修一)《第五章-正弦函数、余弦函数的图象》练习题及答案解析-人教版

高一数学(必修一)《第五章 正弦函数、余弦函数的图象》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.已知函数()sin(2)f x x ϕ=+(其中02πϕ<<)的图象经过1(,)42P π,则ϕ的值为( ) A .512π B .3πC .4π D .6π2.已知函数()cos f x x x =和()()g x f x '=,则( ). A .()g x 的图像关于点π,06⎛⎫⎪⎝⎭对称B .()g x 图像的一条对称轴是π6x =C .()g x 在5π5π,66⎛⎫- ⎪⎝⎭上递减D .()g x 在ππ,33⎛⎫- ⎪⎝⎭的值域为(0,1)3.设函数()2121log 2x a x f x x x ⎧-+<⎪⎪=⎨⎪≥⎪⎩,,的最小值为1-,则实数a 的取值范围是( ) A .12⎡⎫-+∞⎪⎢⎣⎭, B .12⎛⎫-+∞ ⎪⎝⎭, C .12⎛⎫-∞- ⎪⎝⎭, D .[)1-+∞, 4.已知函数()22πcos sin 2f x x x ⎛⎫=+- ⎪⎝⎭,将函数()f x 的图象先向右平移π12个单位长度,再向下平移1个单位长度得到函数()g x 的图象,则函数()g x 图象的对称轴方程为( ) A .()ππ+Z 12x k k =∈ B .()ππZ 6x k k =-∈ C .()ππZ 212k x k =-∈ D .()ππ+Z 212k x k =∈ 5.已知函数()f x 是定义在R 上的奇函数,当0x <时,则()()e 1xf x x =+,则下列结论中错误的是( )A .当0x >时,则()()e 1xf x x -=--B .函数()f x 有3个零点C .()0f x <的解集为()(),10,1-∞-⋃D .12,R x x ∀∈,都有()()122f x f x -<6.设集合{}{}2log 2,P x x Q y y x P =<=∈∣∣,则P Q =( ) A .{34}xx <<∣ B .{34}xx <∣ C .{04}xx <<∣ D .{05}xx <∣ 7.已知函数()f x 是定义域为(,)-∞+∞的奇函数,满足(2)(2)f x f x -=+,若(1)2f =,则(1)(2)(3)(2022)f f f f ++++=( ) A .2- B .0C .2D .48.函数()cos xf x xπ=在区间[]4,4-上的图象大致是( ) A . B .C .D .二、解答题9.已知函数2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭.(1)用五点法画出函数()f x 的大致图像,并写出()f x 的最小正周期; (2)写出函数()f x 在R x ∈上的单调递减区间; (3)将()y f x =图像上所有的点向右平移3π个单位长度,纵坐标不变,横坐标变为原来的12倍,得到()y g x =的图像,求()y g x =在区间0,2π⎡⎤⎢⎥⎣⎦上的最值.10.已知函数()22sin sin 363f x x x x πππ⎛⎫⎛⎫⎛⎫=-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(1)求函数()f x 的单调递增区间;(2)若函数()()2g x f x a =-在区间70,12π⎡⎤⎢⎥⎣⎦上恰有3个零点()123123,,x x x x x x <<(i )求实数a 的取值范围; (ii )求()123sin 2x x x +-的值.11.某实验室某一天的温度(℃)随时间()t h 的变化近似地满足函数关系:()sin1212f t k t t ππ=-[)0,24t ∈ R k ∈ 已知早上6时,则实验室温度为9℃.(1)求函数()f t 的解析式; (2)求实验室这一天中的最大温差;(3)若要求实验室温度不高于11℃,则在哪个时间段实验室需要降温? 12.已知函数222()log log (4),()log ()f x x x g x x a =--=+. (1)求()f x 的定义域,并证明()f x 的图象关于点(2,0)对称;(2)若关于x 的方程()()f x g x =有两个不同的实数解,求实数a 的取值范围. 13.已知函数32()1f x x ax bx =+++在点(1,(1))P f 处的切线方程为420x y --=. (1)求函数()f x 的单调区间(2)若函数()()g x f x m =-有三个零点,求实数m 的取值范围.三、填空题14.函数()2log 2cos 1y x =+的定义域是______.15.已知函数()22sin sin 2f x x x =的最大值为3,则实数a 的值为______.16.若函数()()sin 06f x x πωω⎛⎫=+> ⎪⎝⎭在[]0,π上有且仅有3个零点和2个极小值点,则ω的取值范围为______.四、多选题17.已知函数()()()2sin 0,f x x ωϕωϕπ=+><的部分图象如图所示,则( )A .2ω=B .3πϕ=C .()f x 在区间5,1212ππ⎡⎤-⎢⎥⎣⎦上单调递增D .若123x x π+=,则()()12f x f x =参考答案与解析1.【答案】B【分析】根据给定条件,结合特殊角的三角函数值求解作答.【详解】依题意,1()sin()cos 422f ππϕϕ=+==,而02πϕ<<,所以3πϕ=.故选:B 2.【答案】B【分析】利用导数求得()g x ,然后根据三角函数的对称性、单调性、特殊值等知识求得正确答案.【详解】()()'1sin 2sin 2g x f x x x x x ⎛⎫==-=- ⎪ ⎪⎝⎭4π2sin 3x ⎛⎫=+ ⎪⎝⎭. ππ4π3π2sin 2sin 26632g ⎛⎫⎛⎫=+==- ⎪ ⎪⎝⎭⎝⎭所以()g x 图像的一条对称轴是π6x =,B 选项正确,A 选项错误. ()g x 的最小正周期2πT =,半周期π2T= 5π5π5ππ663⎛⎫--=> ⎪⎝⎭,所以区间5π5π,66⎛⎫- ⎪⎝⎭不是()g x 的单调区间,C 选项错误. ()()4πππ02sin 2sin π2sin 0,1333g ⎛⎫==+=-= ⎪⎝⎭,D 选项错误.故选:B3.【答案】A【分析】分段讨论最小值即可.【详解】由于函数()2121log 2x a x f x x x ⎧-+<⎪⎪=⎨⎪≥⎪⎩,,的最小值为1- 当12x ≥时,则()211log 122f x f ⎛⎫≥==- ⎪⎝⎭当12x ≤时,则()112f x a >-+≥-,解得12a ≥-故选: A . 4.【答案】D【分析】整理可得()1cos2f x x =+,根据平移整理得()πcos 26g x x ⎛⎫=- ⎪⎝⎭,结合余弦函数得对称轴()ππZ 62k k x -=∈求解.【详解】()222πcos sin 2cos 1cos 22f x x x x x ⎛⎫=+-==+ ⎪⎝⎭由题意可得()cos 2cos 2ππ126g x x x ⎛⎫=-=- ⎪⎝⎭⎛⎫ ⎪⎝⎭则()ππZ 62k k x -=∈,解得()ππ+Z 212k x k =∈故选:D . 5.【答案】A【分析】由奇函数求出0x >的解析式即可判断A 选项;解方程求出零点即可判断B 选项;解分段函数不等式即可判断C 选项;求导确定单调性得出函数图象,即可判断D 选项.【详解】对于A ,已知函数()f x 是定义在R 上的奇函数,当0x >时,则0x -< ()()()e 1xf x x f x --=-+=-则()()()e 1e 1x xf x x x --=--+=-,A 错误;对于B ,易得()00f =,当0x <时,则()()e 10x f x x =+=,可得1x =-;当0x >时,则()()e 10xf x x -=-=可得1x =,则函数()f x 有3个零点,B 正确;对于C ,由()()()e 1,00,0e 1,0x x x x f x x x x -⎧+<⎪==⎨⎪->⎩,当0x <时,则由()()e 10xf x x =+<得1x <-;当0x >时,则由()()e 10xf x x -=-<得01x <<,则()0f x <的解集为()(),10,1-∞-⋃,C 正确;对于D ,当0x <时,则()()e 1x f x x =+,()()e 2xf x x '=+当2x <-时,则()0f x '<,()f x 单减,此时()0f x <;当20x -<<时,则()0f x '>,()f x 单增()10f -=,0x →时,则()1f x →;2x =-时,则()f x 有极小值()212e f -=-; 结合函数()f x 是定义在R 上的奇函数,可得()f x 的图象结合图象知,()f x 的值域为()1,1-,则12,R x x ∀∈,都有()()122f x f x -<,D 正确. 故选:A. 6.【答案】A【分析】由集合交集的定义计算即可.【详解】由2log 2x <解得04x <<,所以{|04}P x x =<<所以2(0,16)x ∈(3,5)和{|35}Q y y =<< 所以{|34}P Q x x =<<. 故选:A. 7.【答案】C【分析】结合函数的奇偶性、对称性和周期性求得正确答案. 【详解】()f x 是奇函数()()22f x f x -=+,即()f x 关于2x =对称()()()()()()42222f x f x f x f x f x +=++=-+=-=- ()()()()()()8444f x f x f x f x f x +=++=-+=--=所以()f x 是周期为8的周期函数.()()()()()()00,12,3212112f f f f f f ===+=-==()()()()4222200f f f f =+=-== ()()()()()52323112f f f f f =+=-=-=-=- ()()()()()6242422f f f f f =+=-=-=- ()()()74332f f f =+=-=- ()()800f f ==所以()()()()()()()()123456780f f f f f f f f +++++++= 由于202225286=⨯+ 所以(1)(2)(3)(2022)f f f f ++++=()()()()()()1234562f f f f f f +++++=.故选:C 8.【答案】C【分析】先判断函数奇偶性排除A ,再结合特殊值法和零点个数可选出正确答案. 【详解】易知函数cos ()xf x x π=是奇函数,图象关于原点对称,可以排除A ;在原点右侧附近,函数()f x 值大于0,排除D ;函数cos ()x f x x π=在区间[4,4]-上有零点1357,,,2222±±±±,共计8个,排除B.仅有C 符合上述要求. 故选:C.9.【答案】(1)图象见解析 T π=;(2)5,,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦(3)()max 2g x = ()min 2g x =-; 【分析】(1)根据“五点法”列表,即可做出函数图象,再根据周期公式求出周期; (2)根据正弦函数的性质计算可得;(3)根据三角函数的变换规则得到()g x 的解析式,再根据x 的取值范围,求出43x π-的取值范围,再根据正弦函数的性质计算可得;(1)解:因为2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭ 列表如下:函数图象如下:函数()f x 的最小正周期22T ππ==. (2)解:令222,Z232k x k k πππππ-+≤+≤+∈解得5,Z 1212k x k k ππππ-+≤≤+∈ 所以函数的单调递减区间为5,,Z 1212k k k ππππ⎡⎤-++∈⎢⎥⎣⎦(3)解:将()y f x =图像上所有的点向右平移3π个单位长度得到2sin 22sin 2333y x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 再2sin 23y x π⎛⎫=- ⎪⎝⎭将横坐标变为原来的12倍,纵坐标不变得到()2sin 43g x x π⎛⎫=- ⎪⎝⎭因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以54,333x πππ⎡⎤-∈-⎢⎥⎣⎦,所以[]sin 41,13x π⎛⎫-∈- ⎪⎝⎭,所以()[]2,2g x ∈-当432x ππ-=,即524x π=时()max 2g x =,当3432x ππ-=,即1124x π=时()min 2g x =-;10.【答案】(1)()5,1212k k k ππππ-++⎡⎤∈⎢⎥⎣⎦Z (2)(i )⎡⎤⎣⎦;(ii 【分析】(1)利用诱导公式、二倍角公式和辅助角公式可化简得到()2sin 23f x x π⎛⎫=- ⎪⎝⎭;根据正弦型函数单调性的求法可求得单调递增区间; (2)(i )令43t x π=-,将问题转化为2sin y t =与y a =在,23ππ⎡⎤-⎢⎥⎣⎦上恰有3个不同的交点,利用数形结合的方式即可求得a 的取值范围;(ii )由(i )中图像可确定233t t π+=,312t t π-=由此可得1232t t t π+-=-,整理可得123212x x x π+-=-,由两角和差正弦公式可求得sin12π-的值,即为所求结果.(1)()22sin cos 2cos 13263f x x x x ππππ⎛⎫⎫⎛⎫⎛⎫⎛⎫=--++-- ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎭2222sin cos 2sin 2233333x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=--+-=-- ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭22sin 22sin 2333x x πππ⎛⎫⎛⎫=-+=- ⎪ ⎪⎝⎭⎝⎭; ∴令()222232k x k k πππππ-+≤-≤+∈Z ,解得:()51212k x k k ππππ-+≤≤+∈Z ()f x ∴的单调递增区间为()5,1212k k k ππππ-++⎡⎤∈⎢⎥⎣⎦Z .(2)(i )由(1)得:()2sin 43g x x aπ⎛⎫=-- ⎪⎝⎭当70,12x π⎡⎤∈⎢⎥⎣⎦时,则4,233x πππ⎡⎤-∈-⎢⎥⎣⎦设43t x π=-,则()g x 在区间70,12π⎡⎤⎢⎥⎣⎦上恰有3个零点等价于2sin y t =与y a =在,23ππ⎡⎤-⎢⎥⎣⎦上恰有3个不同的交点;作出2sin y t =在,23ππ⎡⎤-⎢⎥⎣⎦上的图像如下图所示由图像可知:当0a ≤≤时,则2sin y t =与y a =恰有3个不同的交点∴实数a 的取值范围为⎡⎤⎣⎦;(ii )设2sin y t =与y a =的3个不同的交点分别为()123123,,t t t t t t << 则233t t π+= 312t t π-= ()123323232224t t t t t t t t πππ∴+-=-+-=+-=-即1232444333x x x ππππ⎛⎫⎛⎫⎛⎫-+---=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭整理可得:1238443x x x π+-=-123212x x x π∴+-=-()123sin 2sin sin sin cos cos sin 12464646x x x πππππππ⎛⎫⎛⎫∴+-=-=--=-+ ⎪ ⎪⎝⎭⎝⎭12==.11.【答案】(1)()102sin 123f t t ππ⎛⎫=-+ ⎪⎝⎭ (2)最大温差为4℃ (3)10时至18时【分析】(1)将6t =代入求出k 值即可得解.(2)在[)0,24t ∈时,则求出函数()f t 的最大值与最小值即可得解. (3)解关于t 的三角不等式()11f t >即可作答.(1)因1()sin )2sin()12212123f t k t t k t ππππ=-+=-+则当6t =时,则()2sin(6)9123f t k ππ=-⨯+=,解得10k =所以()f t 的解析式为()102sin()123f t t ππ=-+.(2)因024t ≤<,则731233t ππππ≤+<,得1sin()1123ππ-≤+≤t ,当1232t πππ+=,即2t =时,则()f t 取最小值8当31232t πππ+=,即14t =时,则()f t 取最大值12,即实验室这一天中的最高温度为12℃,最低温度8℃所以最大温差为4℃. (3)依题意,当()11f t >时,则实验室需要降温由()102sin 11123f t t ππ⎛⎫=-+> ⎪⎝⎭,得1sin 1232t ππ⎛⎫+<-⎪⎝⎭ 而当024t ≤<,即731233t ππππ≤+<时,则则有71161236t ππππ<+<,解得1018t <<所以在10时至18时实验室需要降温.12.【答案】(1)定义域为()0,4,证明见解析;(2)10a -<<.【分析】(1)根据解析式有意义可求函数的定义域,可证()()40f x f x +-=,从而得到()f x 的图象关于点(2,0)对称.(2)根据根分布可求参数的取值范围.(1)由题设可得040x x >⎧⎨-<⎩,故04x <<,故()f x 的定义域为()0,4而()()2222()4log log (4)log 4log 0f x f x x x x x +-=--+--=故()f x 的图象关于点(2,0)对称.(2)因为()()f x g x =有两个不同的实数解 故4x x a x=+-在()0,4上有两个不同的实数解 整理得到:2(3)40x a x a +--=在()0,4上有两个不同的实数解设()2(3)4h x x a x a =+--,则()()()2004030423160h h a a a >⎧⎪>⎪⎪-⎨<<⎪⎪⎪-+>⎩ 故240164(3)4030421090a a a a a a ->⎧⎪+-->⎪⎪-⎨<<⎪⎪++>⎪⎩,解得10a -<<. 13.【答案】(1)单调递减区间是11,3⎛⎫- ⎪⎝⎭,单调递增区间是1(,1),,3⎛⎫-∞-+∞ ⎪⎝⎭ (2)22,227⎛⎫ ⎪⎝⎭【分析】(1)根据题意,列出方程组求得()321f x x x x =+-+,得到()2321f x x x '=+-,进而求得函数的单调区间;(2)由题意得到()321g x x x x m =+-+-,结合条件列出不等式组,即得.(1)由题可得2()32f x x ax b '=++ 由题意得(1)22(1)324f a b f a b =++=⎧⎨=++='⎩解得1,1a b ==-所以322()1,()321f x x x x f x x x =+-+=+-'由()0f x '>得1x <-或13x > 由()0f x '<得113x -<< 所以()f x 的单调递减区间是11,3⎛⎫- ⎪⎝⎭,单调递增区间是1(,1),,3⎛⎫-∞-+∞ ⎪⎝⎭; (2)因为322()()1,()()321g x f x m x x x m g x f x x x =-=+-+='-=+-'由(1)可知,()g x 在1x =-处取得极大值,在13x =处取得极小值 ()g x 的单调递减区间是11,3⎛⎫- ⎪⎝⎭,单调递增区间是1(,1),,3⎛⎫-∞-+∞ ⎪⎝⎭ 依题意,要使()g x 有三个零点,则(1)0103g g ->⎧⎪⎨⎛⎫< ⎪⎪⎝⎭⎩ 即()1201220327g m g m ⎧-=->⎪⎨⎛⎫=-< ⎪⎪⎝⎭⎩ 解得22227m <<,经检验,(2)10,(2)110g m g m -=-<=+> 根据零点存在定理,可以确定函数有三个零点所以m 的取值范围为22,227⎛⎫ ⎪⎝⎭. 14.【答案】222,233ππk πk π⎛⎫-+ ⎪⎝⎭(k ∈Z ) 【分析】根据对数函数的性质可得2cos 10x +>,再由余弦函数的图象与性质即可求解.【详解】由题意可得2cos 10x +>,解得1cos 2x >- 作出cos y x =的图象,如下:由图象可得2222,33k x k k Z ππππ-<<+∈ 所以函数的定义域为222,233ππk πk π⎛⎫-+ ⎪⎝⎭(k ∈Z ). 故答案为: 222,233ππk πk π⎛⎫-+ ⎪⎝⎭(k ∈Z ) 15.【答案】±1【分析】先化简函数的解析式得()()21f x x ϕ++13=即得解.【详解】由题得()()22sin sin 21cos 2sin 221f x x x x x x ϕ==-++,其中tan ϕ=所以()f x 13=解得1a =±.故答案为:±1.16.【答案】1023,36⎡⎫⎪⎢⎣⎭ 【分析】找到临界位置,再根据条件建立不等式求解即可.【详解】如下图,作出简图,由题意知,[)45,x x π∈,设函数()f x 的最小正周期为T因为06x πω=-,则40077210443T x x x ππωω+=+⋅== 500223226x x T x ππωω=+=+⋅= 结合[)45,x x π∈有103ππω≥且236ππω<,解得1023,36ω⎡⎫∈⎪⎢⎣⎭.故答案为:1023,36⎡⎫⎪⎢⎣⎭17.【答案】AD 【分析】由图知22T π=即可求ω;根据()012f π-=且(0)0f >求ϕ;代入验证并结合正弦函数的单调性判断在5,1212ππ⎡⎤-⎢⎥⎣⎦上单调性;由213x x π=-代入解析式,利用诱导公式转化函数式判断()()12f x f x =是否成立. 【详解】由图知:5()212122T πππ=--=,而2T πω=,可得2ω=,A 正确; ∴()()2sin 2f x x ϕ=+,又()2sin()0126f ππϕ-=-+=且(0)2sin 0f ϕ=>,有6k πϕπ=+ k Z ∈ 又ϕπ< ∴0k =,即6π=ϕ,B 错误; 综上,()2sin 26f x x π⎛⎫=+ ⎪⎝⎭ ∴5,1212x ππ⎡⎤∈-⎢⎥⎣⎦,则22[,]633x πππ+∈-,显然()f x 在5,1212ππ⎡⎤-⎢⎥⎣⎦上不单调,C 错误; 若123x x π+=,则213x x π=-,故2115()()2sin(62)3f x f x x ππ=-=-12sin(2)56x ππ=+-112sin()()26x f x π=+= D 正确.故选:AD。
必修一对数函数(含答案)

2.6对数函数一、对数式的化简与求值 〖例1〗计算(1)2(lg2)lg2lg50lg25+⋅+; (2)3948(log 2log 2)(log 3log 3)+⋅+;(3)1.0lg 21036.0lg 21600lg )2(lg 8000lg 5lg 23--+⋅二、比较大小〖例〗对于01a <<,给出下列四个不等式: ①1log (1)log ();a a a a a+<+ ②1log (1)log (1)a a a a+>+; ③111;aa a a++<④111;aaaa++>其中成立的是( )()①与③()①与④()②与③()②与④ 三、对数函数图象与性质〖例1〗已知f(x)=log a (a x -1)(a>0,a ≠1) (1)求f(x)的定义域;(2)讨论函数f(x)的单调性.〖例2〗设函数()()()xxxf+-+=1ln212.(1)求()x f的单调区间;(2)若当⎥⎦⎤⎢⎣⎡--∈1,11eex时,(其中718.2=e)不等式()mxf<恒成立,求实数m的取值范围;(3)试讨论关于x的方程:()axxxf++=2在区间[]2,0上的根的个数.四、对数函数的综合应用〖例1〗已知函数f(x)=-x+112 logxx-+.(1)求f(12012)+f(-12012)的值;(2)当x∈(-a,a],其中a∈(0,1),a是常数时,函数f(x)是否存在最小值?若存在,求出f(x)的最小值;若不存在,请说明理由.〖例2〗(12分)已知过原点O 的一条直线与函数8log y x =的图象交于、两点,分别过、作y ,轴的平行线与函数8log y x =的图象交于、两点。
(1) 证明点、和原点O 在同一直线上; (2)当平行于x 轴时,求点的坐标。
【高考零距离】1.(2012·天津高考文科·T4)已知12-0.5312,,2log 22a b c ===(),则,,a b c 的大小关系为( )c b a <<(A ).c a b << b a c <<(C ) b c a <<(D )2.(2012·新课标全国高考文科·T11)当0<x ≤12时,4x<logax ,则a 的取值范围是( ) ()(0,22) ()(22,1) ()(1,2) ()(2,2) 3.(2011·安徽高考文科·T5)若点(),a b 在lg y x =图象上,1a ≠,则下列点也在此图象上的是()()1,b a ⎛⎫ ⎪⎝⎭ ()()10,1a b - ()10,1b a ⎛⎫+ ⎪⎝⎭ ())2,(2b a 4. (2011·辽宁高考理科·T9)设函数f (x )=⎩⎨⎧≤,>,,,1x x log -11x 22x -1则满足f (x )≤2的x 的取值范围是()[-1,2] ()[0,2] ()[1,+∞) ()[0,+∞)5. (2011.天津高考理科.T7)已知324log 0.3log 3.4log 3.615,5,,5a b c 骣琪===琪桫则 ().a b c>>.b ac >> .a c b >>.c a b >>6. (2011·江苏高考·T2)函数)12(log )(5+=x x f 的单调增区间是__________【考点提升训练】一、选择题(每小题6分,共36分)1.(2012·珠海模拟)函数2(x+2)的定义域为( ) ()(-∞,-1)∪(3,+∞) ()(-∞,-1)∪[3,+∞) ()(-2,-1) ()(-2,-1]∪[3,+∞)2.(2012·莆田模拟)设f(x)=()x 1232e x 2log x 1 x 2-⎧<⎪⎨-≥⎪⎩,则不等式f(x)>2的解集为( ) ()(1,2)∪(3,+∞) ()(10,+∞)()(1,2)∪(10,+∞) ()(1,2)3.设f(x)是定义在R 上以2为周期的偶函数,已知当x ∈(0,1)时,f(x)= 12log (1-x),则函数f(x)在(1,2)上( )()是增函数,且f(x)<0 ()是增函数,且f(x)>0 ()是减函数,且f(x)<0 ()是减函数,且f(x)>04.已知函数f(x)=|log 2x|,正实数m 、n 满足m <n ,且f(m)=f(n),若f(x )在区间[m 2,n]上的最大值为2,则m 、n 的值分别为( ) ()12、 2 ()12、4 ()2)14、4 5. (2012·福州模拟)函数f(x)=log a (2-ax 2)在(0,1)上为减函数,则实数a 的取值范围是( ) ()[12,1) ()(1,2) ()(12,1) ()(1,2]6.(预测题)已知函数f(x)= ()3lgx,x 23lg 3x ,x 2⎧≥⎪⎪⎨⎪-⎪⎩,<若方程f(x)=k 无实数根,则实数k 的取值范围是( ) ()(-∞,0) ()(-∞,1) ()(-∞,lg 32) ()(lg 32,+∞) 二、填空题(每小题6分,共18分)7. 23lg lg87-+8.(2012·青岛模拟)函数y=f(x)的图象与y=2x 的图象关于直线y=x 对称,则函数y=f(4x-x 2)的递增区间是_________.9.定义在R 上的函数f(x)满足f(2-x)=f(x),且f(x)在(1,+∞)上是增函数,设a=f(0),b=f(log 214),c=f(lg 3π),则a,b,c 从小到大的顺序是______. 三、解答题(每小题15分,共30分)10.若函数y=lg(3-4x+x 2)的定义域为M.当x ∈M 时,求f(x)=2x+2-3×4x的最值及相应的x 的值.11.(2012·厦门模拟)已知函数f(x)=ln x1x1 +-.(1)求函数f(x)的定义域,并判断函数f(x)的奇偶性;(2)对于x∈[2,6],f(x)= ln x1x1+->ln()()mx17x--恒成立,求实数m的取值范围.【探究创新】(16分)已知函数f(x)=log a(3-ax).(1)当x∈[0,2]时,函数f(x)恒有意义,求实数a的取值范围;(2)是否存在这样的实数a,使得函数f(x)在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a的值;如果不存在,请说明理由.答案解析1.【解析】选.要使函数有意义,需2x 2x 30x 20⎧--≥⎨+⎩,>得-2<x ≤-1或x ≥3, 即x ∈(-2,-1]∪[3,+∞),故选.2.【解析】选.当x<2时,f(x)>2,即2e x-1>2, 解得1<x<2,当x ≥2时,f(x)>2,即log 3(x 2-1)>2,解得, 综上所述,不等式的解集为(1,2)∪(10,+∞).3.【解析】选.f(x)是定义在R 上以2为周期的偶函数,由x ∈(0,1)时,f(x)= 12log (1-x)是增函数且f(x)>0,得函数f(x)在(2,3)上也为增函数且f(x)>0,而直线x=2为函数的对称轴,则函数f(x)在(1,2)上是减函数,且f(x)>0,故选.4.【解析】选.f(x)=|log 2x|= 22log x,x 1,log x,0x 1≥⎧⎨-⎩<< 根据f(m)=f(n)及f(x)的单调性,知0<m <1,n >1,又f(x)在[m 2,n]上的最大值为2,故f(m 2)=2,易得n=2,m=12. 5.【解析】选.由已知可知a>0,u(x)=2-ax 2在(0,1)上是减函数,∴f(x)=log a (2-ax 2)在(0,1)上是减函数.等价于()a 1u 10>⎧⎪⎨≥⎪⎩,即a 12a 0>⎧⎨-≥⎩,∴1<a ≤2.6.【解题指南】作出函数f(x)的图象,数形结合求解.【解析】选.在同一坐标系内作出函数y=f(x)与y=k 的图象,如图所示,若两函数图象无交点,则k <lg32.7.【解析】原式=lg4+12lg2-lg7-23lg8+lg7+12lg5 =2lg2+12(lg2+lg5)-2lg2=12.答案:128.【解题指南】关键是求出f(4x-x 2)的解析式,再求递增区间.【解析】∵y=2x的反函数为y=log 2x ,∴f(x)=log 2x,f(4x-x 2)=log 2(4x-x 2).令t=4x-x 2,则t >0,即4x-x 2>0,∴x ∈(0,4),又∵t=-x 2+4x 的对称轴为x=2,且对数的底数大于1,∴y=f(4x-x 2)的递增区间为(0,2). 答案:(0,2)9.【解析】由f(2-x)=f(x),可知对称轴x 0=2x x2-+=1,图象大致如图, ∵log 214=log 22-2=-2,-2<0<lg 3π<1,∴结合图象知f(lg 3π)<f(0)<f(log 214),即c <a <b.答案:c <a <b10.【解析】∵y=lg(3-4x+x 2),∴3-4x+x 2>0, 解得x <1或x >3, ∴M={x|x <1或x >3},f(x)=2x+2-3×4x =4×2x -3×(2x )2.令2x=t,∵x <1或x >3,∴t >8或0<t <2.设g(t)=4t-3t 2∴g(t)=4t-3t 2=-3(t-23)2+43(t >8或0<t <2). 由二次函数性质可知: 当0<t <2时,g(t)∈(-4,43], 当t >8时,g(t)∈(-∞,-160),∴当2x=t=23,即x=log 223时,f(x)max =43. 综上可知:当x=log 223时,f(x)取到最大值为43,无最小值.【变式备选】设a >0,a ≠1,函数y=()2lg x 2x 3a-+有最大值,求函数f(x)=log a(3-2x-x 2)的单调区间.【解析】设t=lg(x 2-2x+3)=lg[(x-1)2+2].当x=1时,t 有最小值lg2, 又因为函数y=()2lg x 2x 3a-+有最大值,所以0<a <1.又因为f(x)=log a (3-2x-x 2)的定义域为{x|-3<x <1},令u=3-2x-x 2,x ∈(-3,1),则y=log a u. 因为y=log a u 在定义域内是减函数,当x ∈(-3,-1]时,u=-(x+1)2+4是增函数,所以f(x)在(-3,-1]上是减函数.同理,f(x)在[-1,1)上是增函数.故f(x)的单 调减区间为(-3,-1],单调增区间为[-1,1).11.【解析】(1)由x 1x 1+->0,解得x <-1或x >1,∴定义域为(-∞,-1)∪(1,+∞),当x ∈(-∞,-1)∪(1,+∞)时,f(-x)=ln x 1x 1-+--=ln x 1x 1-+=ln(x 1x 1+-)-1=-ln x 1x 1+-=-f(x),∴f(x)=ln x 1x 1+-是奇函数.(2)由x ∈[2,6]时, f(x)=lnx 1x 1+->ln ()()mx 17x --恒成立, ∴x 1x 1+->()()m x 17x -->0,∵x ∈[2,6],∴0<m <(x+1)(7-x)在x ∈[2,6]上成立. 令g(x)=(x+1)(7-x)=-(x-3)2+16,x ∈[2,6],由二次函数的性质可知x ∈[2,3]时函数单调递增,x ∈[3,6]时函数单调递减,x ∈[2,6]时,g(x)min =g(6)=7,∴0<m <7. 【探究创新】 【解析】(1)由题设,3-ax >0对一切x ∈[0,2]恒成立,设g(x)=3-ax,∵a >0,且a ≠1,∴g(x)=3-ax 在[0,2]上为减函数.从而g(2)=3-2a >0,∴a <32. ∴a 的取值范围为(0,1)∪(1,32). (2)假设存在这样的实数a, 由题设知f(1)=1, 即log a (3-a)=1,∴a=32. 此时f(x)= 32log (3-32x), 当x=2时,f(x)没有意义,故这样的实数a 不存在.。
高一数学对数与对数函数试题答案及解析

高一数学对数与对数函数试题答案及解析1.在对数函数中,下列描述正确的是()①定义域是、值域是R ②图像必过点(1,0).③当时,在上是减函数;当时,在上是增函数.④对数函数既不是奇函数,也不是偶函数.A.①②B.②③C.①②④D.①②③④【答案】D【解析】对数函数的性质可结合函数图像来进行理解.单调性,对称性都可由图可以清楚的感知.【考点】对数函数的性质.2.已知()A.B.C.D.【答案】【解析】根据对数的运算法则,有.【考点】对数的运算法则.3.已知函数,若对于任意,当时,总有,则区间有可能是( )A.B.C.D.【答案】B【解析】对于任意,当时,总有,是说函数在区间上单调递增.函数是由与复合而成,因为在上单调递增,由复合函数的单调法则:同增异减,可知,只须在上单调递增即可,该二次函数的对称轴为,或,由二次函数的单调性可知在单调递增,所以区间可能是或它的子区间,故选B.【考点】函数的单调性.4.若点在函数的图象上,则函数的值域为()A.B.C.D.【答案】D【解析】因为点在函数的图象上,所以,解得,所以,故选D.【考点】1、对数函数的图象;2、幂函数.5.已知函数(1)求函数的定义域和值域;(2)若有最小值-2,求的值.【答案】(1)的定义域是.当时,值域为;(2)【解析】(1)由对数函数的定义可得,解此不等式组,从而求得函数的定义域;首先对函数解析式进行化归,考虑到对数函数中底数的范围制约着函数单调性,影响到函数的值域,所以需要对底数的范围进行分类讨论,从求出函数的值域;(2)根据(1)中函数值的分布情况,可知只有当时,函数有最小值,所以有,从而解得所求的值.试题解析:(1)依题意得则,, 3分当时,;当时,的定义域是.当时,值域为当时,值域为. 7分(2)因为有最小值-2,由(1)可知且,12分【考点】1.函数的定义域;2.对数函数.6.已知函数(1)判断函数的奇偶性,并说明理由。
(2)若,求使成立的集合。
高一数学对数与对数函数试题答案及解析

高一数学对数与对数函数试题答案及解析1.将转化为对数形式,其中错误的是().A.B.C.D.【答案】D【解析】将转化为对数式应为,即;由换底公式,得;;故选项A,B,C正确;而选项D:,错误;故选D.【考点】指数式与对数式的互化、换底公式.2.已知则的值等于( )A.B.C.D.【答案】A【解析】因为,所以因此【考点】对数式化简3.在对数函数中,下列描述正确的是()①定义域是、值域是R ②图像必过点(1,0).③当时,在上是减函数;当时,在上是增函数.④对数函数既不是奇函数,也不是偶函数.A.①②B.②③C.①②④D.①②③④【答案】D【解析】对数函数的性质可结合函数图像来进行理解.单调性,对称性都可由图可以清楚的感知.【考点】对数函数的性质.4.已知且,函数,,记(1)求函数的定义域及其零点;(2)若关于的方程在区间内仅有一解,求实数的取值范围.【答案】(1),0;(2)【解析】(1)均有意义时,才有意义,即两个对数的真数均大于0.解关于x的不等式即可得出的定义域,函数的零点,即,整理得,对数相等时底数相同所以真数相等,得到,基础x即为函数的零点(2)即,,应分和两种情况讨论的单调性在求其值域。
有分析可知在这两种情况下均为单调函数,所以的值域即为。
解关于m的不等式即可求得m。
所以本问的重点就是讨论单调性求其值域。
试题解析:(1)解:(1)(且),解得,所以函数的定义域为 2分令,则(*)方程变为,,即解得, 3分经检验是(*)的增根,所以方程(*)的解为,所以函数的零点为, 4分(2)∵函数在定义域D上是增函数∴①当时,在定义域D上是增函数②当时,函数在定义域D上是减函数 6分问题等价于关于的方程在区间内仅有一解,∴①当时,由(2)知,函数F(x)在上是增函数∴∴只需解得:或∴②当时,由(2)知,函数F(x)在上是减函数∴∴只需解得: 10分综上所述,当时:;当时,或(12分)【考点】对数函数的定义域,函数的零点,复合函数单调性5.式子的值为.【答案】5【解析】根据对数公式,可知,=5+0=5【考点】对数公式6.,则 ( )A.B.C.D.【答案】B【解析】由得故选B【考点】对数运算7.已知函数,则函数定义域是()A.B.C.D.【答案】C【解析】要使函数有意义需满足条件:,所以原函数的定义域为,答案选.【考点】1.根式有意义的条件以及对数函数有意义的条件;2.对数不等式.8.计算的结果为___________.【答案】1.【解析】由对数恒等式知,根据对数运算法则知,∴.【考点】对数的运算及对数恒等式.9.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学(必修一)《第五章 对数函数的图象和性质》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.函数()()2log 1f x x =-的图像为( )A .B .C .D .2.已知对数函数()f x 的图像经过点1,38A ⎛⎫- ⎪⎝⎭与点则( )A .c a b <<B .b a c <<C .a b c <<D .c b a <<3.函数1()ln f x x x x ⎛⎫=-⋅ ⎪⎝⎭的图象可能是( ) A . B .C .D .4.下图中的函数图象所对应的解析式可能是( )A .112x y -=-B .112xy =-- C .12x y -=- D .21xy =--5.函数f (x )=|ax -a |(a >0且a ≠1)的图象可能为( )A. B . C . D .6.下列函数中是减函数的为( ) A .2()log f x x = B .()13x f x =- C .()f x = D .2()1f x x =-+7.设0.30.50.514,log 0.6,16a b c -⎛⎫=== ⎪⎝⎭,则a ,b ,c 的大小关系为( )A .a b c <<B .b a c <<C .b c a <<D .c a b <<8.已知函数2(43)3,0()log (1)2,0a x a x a x f x x x ⎧+-+<=⎨++≥⎩ (a >0且a ≠1)是R 上的单调函数,则a 的取值范围是( )A .30,4⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎡⎤⎢⎥⎣⎦D .23,34⎛⎤ ⎥⎝⎦9.已知定义在R 上的函数()f x 满足()11f =,对于1x ∀,2R x ∈当12x x <时,则都有()()()12122f x f x x x -<-则不等式()222log 1log f x x +<的解集为( )A .(),2-∞B .()0,2C .1,2D .()2,+∞10.函数y ) A .1,2⎛⎤-∞ ⎥⎝⎦B .10,2⎛⎤⎥⎝⎦C .1,2⎡⎫+∞⎪⎢⎣⎭D .[]1,211.记函数2log 2x y x=-的定义域为集合A ,若“x A ∈”是关于x 的不等式()22200x mx m m +-<>成立”的充分不必要条件,则实数m 的取值范围是( ) A .()2,+∞ B .[)2,+∞ C .()0,2D .(]0,212.下列函数在(),1-∞-上是减函数的为( )A .()ln f x x =-B .()11f x x =-+ C .()234f x x x =--D .()21f x x =13.下列函数是偶函数且值域为[)0,∞+的是( )①y x =;②3y x =;③||2x y =;④2y x x =+ .A .①②B .②③C .①④D .③④14.已知函数22,2()log ,2x a x f x x x ⎧-<=⎨≥⎩,若()f x 存在最小值,则实数a 的取值范围是( )A .(],2-∞B .[)1,-+∞C .(),1-∞-D .(],1-∞-15.已知910,1011,89m m m a b ==-=-,则( ) A .0a b >>B .0a b >>C .0b a >>D .0b a >>16.已知集合{}1,0,1,2A =-和2{|1}B x x =≤,则A B =( ) A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,217.已知22log log 0a b +=(0a >且1a ≠,0b >且1b ≠),则函数()1()xf x a=与()log b g x x =的图像可能是( )A .B .C .D .18.设123a -=,1312b -⎛⎫= ⎪⎝⎭和21log 3c =,则( ) A .a c b << B .c a b << C .b c a << D .a b c <<19.已知函数212()log (3)f x x ax a =-+ 在[)2,+∞上单调递减,则a 的取值范围( )A .(,4]-∞B .(4,4]-C .[4,4]-D .(4,)-+∞20.函数22log (2)y x x =-的单调递减区间为( )A .(1,2)B .(]1,2C .(0,1)D .[)0,121.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,则()4322x xf x a =-⨯+.则关于x 的不等式()6f x ≤-的解集为( ) A .(,2]-∞-B .(,1]-∞-C .[)()2,00,2- D .[)()2,02,-⋃+∞二、解答题22.比较下列各数的大小: (1)12log 3与12log π;(2)4log 3与5log 3; (3)5log 2与2log 5.23.已知函数()()()ln 1ln 1f x ax x =++-的图象经过点()3,3ln 2.(1)求a 的值,及()f x 的定义域; (2)求关于x 的不等式()()ln 2f x x ≤的解集.24.已知函数()()9log 91xf x x =++.(1)若()()20f x x a -+>对于任意x 恒成立,求a 的取值范围; (2)若函数()()9231f x xx g x m -=+⋅+和[]90,log 8x ∈,是否存在实数m ,使得()g x 的最小值为0?若存在,求出m 的值,若不存在,请说明理由.25.已知函数()ln f x x =.(1)在①()21g x x =-,②()21g x x =+这两个条件中任选一个,补充在下面的横线上,并解答.问题:已知函数___________,()()()=h x f g x 求()h x 的值域. 注:如果选择两个条件分别解答,按第一个解答计分.(2)若1x ∀∈R ,()20,x ∈+∞和()1122421ln x xa x x -+<-,求a 的取值范围.26.已知______,且函数()22x bg x x a+=+.①函数()()224f x x a x =+-+在定义域[]1,1b b -+上为偶函数;②函数()()0f x ax b a =+>在[1,2]上的值域为[]2,4.在①,②两个条件中选择一个条件,将上面的题目补充完整,求出a ,b 的值,并解答本题. (1)判断()g x 的奇偶性,并证明你的结论;(2)设()2h x x c =--,对任意的1x ∈R ,总存在[]22,2x ∈-,使得()()12g x h x =成立,求实数c 的取值范围. 27.定义:若函数()y f x =在某一区间D 上任取两个实数12x x 、,且12x x ≠,都有()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭则称函数()y f x =在区间D 上具有性质L .(1)写出一个在其定义域上具有性质L 的对数函数(不要求证明). (2)判断函数1()f x x x=+在区间(0,)+∞上是否具有性质L ?并用所给定义证明你的结论. (3)若函数21()g x ax x=-在区间(0,1)上具有性质L ,求实数a 的取值范围.三、填空题28.函数()ln(4)f x x =+-的定义域是___________. 29.()()log 4a f x ax =-在(]1,3上递减,则a 的范围是_________.30.已知函数211,0()2,0xx f x x x x ⎧⎛⎫-≤⎪ ⎪=⎨⎝⎭⎪-+>⎩,则函数12()log g x f x ⎛⎫= ⎪⎝⎭的单调递增区间为__. 31.已知函数2(12)0()log (1)0a x a x f x x x +-<⎧=⎨+≥⎩,,的值域为R ,则实数a 的范围是_________32.已知函数()log (23)1(>0a f x x a =-+且1)a ≠,且的图象恒过定点P ,则点P 的坐标为_________.33.已知函数()2log 081584,,⎧<≤⎪=⎨-+>⎪⎩x x f x x x ,若a b c ,,互不相等,且()()()f a f b f c ==,则abc 的取值范围是____.34.若0x >和0y >,且111x y+=,则22log log x y +的最小值为___________.四、多选题35.已知函数()f x 和()g x 的零点所构成的集合分别为M ,N ,若存在M α∈和N β∈,使得1αβ-≤,则称()f x 与()g x 互为“零点伴侣”.若函数()1e 2xf x x -=+-与()23g x x ax a =--+互为“零点伴侣”,则实数a的取值不能是( ) A .1B .2C .3D .436.已知函数()()2lg 1f x x ax a =+--,下列结论中正确的是( )A .当0a =时,则()f x 的定义域为()(),11,-∞-⋃+∞B .()f x 一定有最小值C .当0a =时,则()f x 的值域为RD .若()f x 在区间[)2,+∞上单调递增,则实数a 的取值范围是{}4a a ≥-参考答案与解析1.A【分析】根据函数的定义域为(),1-∞可排除B 、D.再由单调性即可选出答案.【详解】当0x =时,则()()20log 10=0f =-,故排除B 、D. 当1x =-时,则()()21log 1110f -=+=>,故A 正确. 故选A.【点睛】本题考查函数的图像,属于基础题.解决本类题型的两种思路:①将初等函数的图像通过平移、伸缩、对称变换选出答案,对学生能力要求较高;②根据选项代入具体的x 值,判断y 的正负号. 2.C【分析】根据对数函数可以解得2a =,4t =再结合中间值法比较大小. 【详解】设()()log 0,1a f x x a a =>≠,由题意可得:1log 38a =-,则2a = ∴log 164a t ==0.1log 40a =<,()40.20,1b =∈和0.141c =>∴a b c << 故选:C . 3.A【分析】利用函数的奇偶性排除选项D ,利用当01x <<时,则()0f x >,排除选项B ,C ,即得解. 【详解】解:∵函数()f x 的定义域为{}0x x ≠,关于原点对称,1()ln f x x xx ⎛⎫-=-+⋅- ⎪⎝⎭1ln ()x x f x x ⎛⎫--⋅=- ⎪=⎝⎭ ∴()f x 为奇函数,排除选项D .当01x <<时,则2110x x x x--=<和ln 0x < ∴()0f x >,排除选项B ,C . 故选:A . 4.A【分析】根据函数图象的对称性、奇偶性、单调性以及特殊点,利用排除法即可求解.【详解】解:根据图象可知,函数关于1x =对称,且当1x =时,则1y =-,故排除B 、D 两项; 当1x >时,则函数图象单调递增,无限接近于0,对于C 项,当1x >时,则12x y -=-单调递减,故排除C项. 故选:A. 5.C【分析】根据指数函数的单调性分类讨论进行求解即可.【详解】当>1a 时,则,1()=,<1x xa a x f x a a x -≥-⎧⎨⎩显然当1x ≥时,则函数单调递增,当<1x 时,则函数单调递减 函数图象的渐近线为=y a ,而>1a ,故AB 不符合; 对于CD ,因为渐近线为=2y ,故=2a ,故=0x 时,则=1y 故选项C 符合,D 不符合;当0<<1a 时,则,<1()=,1x xa a x f x a a x --≥⎧⎨⎩当1x ≥时,则函数单调递增,当<1x 时,则函数单调递减 函数图象的渐近线为=y a ,而0<<1a ,故ABD 不符合; 故选:C 6.B【分析】利用对数函数单调性判断选项A ;利用指数函数单调性判断选项B ;利用幂数函数单调性判断选项C ;利用二次函数单调性判断选项D.【详解】选项A :由21>,可得2()log f x x =为增函数.判断错误; 选项B :由31>,可得3x y =为增函数,则()13x f x =-是减函数.判断正确; 选项C :由12-<,可得12y x -=是减函数,则()f x =为增函数.判断错误;选项D :2()1f x x =-+在(),0∞-上单调递增. 判断错误. 故选:B 7.B【分析】计算可得2a =,再分析()0.5log 0.60,1b =∈,0.3116c a -⎛⎫=> ⎪⎝⎭即可判断【详解】由题意0.542a ==,()()0.50.50.5log 0.6log 1,log 0.50,1b =∈=和0.30.30.2511616216c a -⎛⎫==>== ⎪⎝⎭,故b ac <<故选:B 8.C【分析】根据二次函数和对数函数的单调性,结合分段函数的性质进行求解即可.【详解】二次函数2(43)3y x a x a =+-+的对称轴为:432a x -=-因为二次函数开口向上,所以当0x <时,则该二次函数不可能单调递增 所以函数()f x 是实数集上的减函数则有01432302343log 122a a a a a <<⎧⎪-⎪-≥⇒≤≤⎨⎪≥+=⎪⎩故选:C 9.B【分析】由题设知()()2h x f x x =-在R 上递增,将不等式转化为2(log )(1)h x h <,利用单调性求解集即可. 【详解】由题设12x x <时1122()2()2f x x f x x -<-,即()()2h x f x x =-在R 上递增又(1)(1)21h f =-=-,而()222log 1log f x x +<等价于()22log 2log 1f x x -<-所以2(log )(1)h x h <,即2log 1x <,可得02x <<. 故不等式解集为()0,2. 故选:B 10.C【分析】依题意可得21log 0x +≥,根据对数函数的性质解不等式,即可求出函数的定义域. 【详解】解:依题意可得21log 0x +≥,即221log 1log 2x ≥-=,所以12x ≥ 即函数的定义域为1,2⎡⎫+∞⎪⎢⎣⎭.故选:C 11.B【分析】求出函数2log 2x y x=-的定义域得集合A ,解不等式()22200x mx m m +-<>得m 的范围,根据充分不必要条件的定义可得答案. 【详解】函数2log 2xy x =-有意义的条件为02x x>-,解得02x << 所以{}02A x x =<<,不等式()22200x mx m m +-<>,即()()20x m x m +-<因为0m >,所以2m x m -<<,记不等式()22200x mx m m +-<>的解集为集合B所以A B ⊆,所以220≥⎧⎨-≤⎩m m ,得2m ≥.故选:B . 12.C【分析】根据熟知函数的图象与性质判断函数的单调性.【详解】对于选项A ,()ln f x x =-在(),1-∞-上无意义,不符合题意; 对于选项B ,()11f x x =-+在(),1-∞-上是增函数,不符合题意; 对于选项C ,2234,? 4134,? 14x x x x x x x ⎧--≥≤-⎨-++-<<⎩或的大致图象如图所示中由图可知()f x 在(),1-∞-上是减函数,符合题意;对于选项D ,()21f x x =在(),1-∞-上是增函数,不符合题意. 故选:C. 13.C【分析】根据奇偶性的定义依次判断,并求函数的值域即可得答案. 【详解】对于①,y x =是偶函数,且值域为[)0,∞+; 对于②,3y x =是奇函数,值域为R ; 对于③,2xy =是偶函数,值域为[)1,+∞;对于④,2y x x=+是偶函数,且值域为[)0,∞+所以符合题意的有①④ 故选:C. 14.D【分析】根据函数的单调性可知,若函数存在最小值,则最小值是()21f =,则根据指数函数的性质,列式求实数a 的取值范围.【详解】2x <时,则()2,4xa a a -∈--,2x ≥时,则2log 1x ≥若要使得()f x 存在最小值,只需要2log 2a -≥,即1a ≤-. 故选:D. 15.A【分析】法一:根据指对互化以及对数函数的单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数的单调性即可解出. 【详解】[方法一]:(指对数函数性质)由910m=可得9lg10log 101lg 9m ==>,而()222lg9lg11lg99lg9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=.又()222lg8lg10lg80lg8lg10lg922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg9lg10lg8lg9>,即8log 9m > 所以8log 989890m b =-<-=.综上,0a b >>. [方法二]:【最优解】(构造函数) 由910m =,可得9log 10(1,1.5)m =∈.根据,a b 的形式构造函数()1(1)m f x x x x =--> ,则1()1m f x mx -'=- 令()0f x '=,解得110m x m -= ,由9log 10(1,1.5)m =∈ 知0(0,1)x ∈ .()f x 在 (1,)+∞ 上单调递增,所以(10)(8)f f > ,即 a b >又因为9log 10(9)9100f =-= ,所以0a b >> .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;法二:利用,a b 的形式构造函数()1(1)mf x x x x =-->,根据函数的单调性得出大小关系,简单明了,是该题的最优解.16.A【分析】根据一元二次不等式的求解得{}11B x x =-≤≤,根据集合的交运算即可求解. 【详解】因为{}1,0,1,2A =-和{}11B x x =-≤≤,所以{}1,0,1A B =-故选:A . 17.B【分析】由对数的运算性质可得ab =1,讨论a ,b 的范围,结合指数函数和对数函数的图像的单调性,即可得到答案.【详解】22log log 0a b +=,即为2log 0ab =,即有ab =1. 当a >1时,则0<b <1函数()1()xf x a=与()log b g x x =均为减函数,四个图像均不满足当0<a <1时,则b >1函数数()1()xf x a=与()log b g x x =均为增函数,排除ACD在同一坐标系中的图像可能是B 故选:B . 18.B【分析】结合指数函数,对数函数的单调性,以及临界值0和1,判断即可 【详解】由题意201313a -<==,故(0,1)a ∈ 1130312212b -⎛⎫==>= ⎪⎝⎭2231log log 10c =<= 故c a b << 故选:B 19.B【分析】转化为函数23y x ax a =-+在[)2,+∞上单调递增,且230x ax a -+>在[)2,+∞上恒成立,再根据二次函数的单调性以及不等式恒成立列式可求出结果. 【详解】因为函数212()log (3)f x x ax a =-+在[)2,+∞上单调递减所以函数23y x ax a =-+在[)2,+∞上单调递增,且230x ax a -+>在[)2,+∞上恒成立 所以2222230a a a ⎧≤⎪⎨⎪-+>⎩,解得44a -<≤.故选:B 20.A【分析】先求出函定义域,再通过换元法利用复合函数“同增异减”的性质得到结果【详解】由220x x ->,得02x <<令22t x x =-,则2log y t=22t x x =-在(0,1)上递增,在(1,2)上递减因为2log y t=在定义域内为增函数所以22log (2)y x x =-的单调递减区间为(1,2)故选:A 21.A【分析】由()f x 是R 上的奇函数求出a 值,并求出0x <时,则函数()f x 的解析式,再分段讨论解不等式作答.【详解】因函数()f x 是定义在R 上的奇函数,且当0x ≥时,则()4322x xf x a =-⨯+则()0004322220f a a =-⨯+=-=,解得1a =,即当0x ≥时,则()4322x xf x =-⨯+当0x <时,则0x ->,则()()(4322)x x f x f x --=--=--⨯+而当0x ≥时,则()2311(2)244xf x =--≥-,则当()6f x ≤-时,则0(4322)6x xx --<⎧⎨--⨯+≤-⎩,即0(24)(21)0x xx --<⎧⎨-+≥⎩变形得024x x -<⎧⎨≥⎩,解得2x -≤所以不等式()6f x ≤-的解集为(,2]-∞-. 故选:A22.(1)1122log 3log π>.(2)45log 3log 3>.(3)52log 2log 5<. 【分析】(1)根据12()log f x x=,在定义域内是减函数,即可比较二者大小;(2)根据3log y x =,在定义域内是增函数,可得330log 4log 5<<,故3311log 4log 5>,即可比较二者大小; (3)根据5log 21<,2log 51>即可比较二者大小. 【详解】(1)设12()log f x x =.3π<且()f x 是减函数 ∴(3)()f f π>即1122log 3log π>.(2)3log y x =是增函数∴330log 4log 5<<. ∴3311log 4log 5> 即45log 3log 3>. (3)55log 2log 51<=且22log 5log 21>=∴52log 2log 5<.【点睛】本题主要考查了比较对数的大小,解题关键是掌握对数的单调性和对数的运算性质,考查了分析能力和计算能力,属于基础题. 23.(1)1a =,定义域为()1,+∞ (2){112}x x <+∣【分析】(1)直接将()3,3ln 2代入函数解析式,即可求出参数a 的值,从而求出函数解析式,再根据对数的真数大于零得到不等式组,解得即可;(2)依题意可得()()2ln 1ln 2x x -,再根据对数函数的单调性,将函数不等式转化为自变量的不等式,解得即可; (1)解:由题意可得()()ln 31ln 313ln2a ++-=,即()ln 312ln2a +=,所以314a += 解得1a =则()()()ln 1ln 1f x x x =++-.由1010x x +>⎧⎨->⎩,解得1x >.所以()f x 的定义域为()1,+∞. (2)解:由(1)可得()()()()2ln 1ln 1ln 1,1f x x x x x =++-=->不等式()()ln 2f x x 可化为()()2ln 1ln 2x x -因为ln y x =在()0,+∞上是增函数所以20121x xx ⎧<-⎨>⎩ 解得112x <+.故不等式()()ln 2f x x 的解集为{}|112x x <+. 24.(1)(],0-∞(2)存在 m =【分析】(1)利用分离参数法得到()9log 91x a x <+-对于任意x 恒成立,令()()9log 91xh x x =+-,利用对数的图像与性质即可求得;(2)先整理得到()9232x xg x m =+⋅+令3x t =, t ⎡∈⎣研究函数()()222222p t t mt t m m =++=++-,t ⎡∈⎣根据二次函数的单调性对m 进行分类讨论,即可求出m . (1)由题意可知,()()20f x x a -+>对于任意x 恒成立代入可得()9log 910x x a +-->所以()9log 91xa x <+-对于任意x 恒成立令()()()99999911log 91log 91log 9log log 199x xxxx xh x x +⎛⎫=+-=+-==+ ⎪⎝⎭因为1119x +>,所以由对数的图像与性质可得:91log 109x⎛⎫+> ⎪⎝⎭,所以0a ≤. 即实数a 的范围为(],0-∞. (2) 由()()9231f x xx g x m -=+⋅+,[]90,log 8x ∈且()()9log 91x f x x =++代入化简可得()9232x xg x m =+⋅+.令3x t =,因为[]90,log 8x ∈,所以t ⎡∈⎣则()()222222p t t mt t m m =++=++- t ⎡∈⎣①当1m -≤,即1m ≥-时,则()p t 在⎡⎣上为增函数所以()()min 1230p t p m ==+=,解得32m =-,不合题意,舍去②当1m <-<1m -<-时,则()p t 在[]1,m -上为减函数,()p t 在m ⎡-⎣上为增函数所以()()2min 20p t p m m =-=-=,解得m =m =③当m ≤-,即m ≤-()p t 在⎡⎣上为减函数所以()(min 100p t p ==+=解得m =综上可知m =【点睛】二次函数中“轴动区间定”或“轴定区间动”类问题,分类讨论的标准是函数在区间里的单调性. 25.(1)答案见解析 (2)1,4⎛⎫-∞- ⎪⎝⎭【分析】(1)根据复合函数的性质即可得到()h x 的值域;(2)令()()1ln F x x x =-,求出其最小值,则问题转化为1142x x a <-恒成立,进而求1142x xy =-最小值即可.(1)选择①,()()2ln 1h x x =-令21t x =-,则()0,t ∈+∞,故函数ln y t =的值域为R ,即()h x 的值域为R .选择②,()()2ln 1h x x =+,令21t x =+,则[)1,t ∈+∞因为函数ln y t =单调递增,所以0y ≥,即()h x 的值域为[)0,∞+. (2)令()()1ln F x x x =-.令12x m =,则()0,m ∈+∞,所以112211142244x x m m m ⎛⎫-=-=--≥- ⎪⎝⎭故14a <-,即a 的取值范围为1,4⎛⎫-∞- ⎪⎝⎭.26.(1)选择条件见解析,a =2,b =0;()g x 为奇函数,证明见解析; (2)77,88⎡-⎤⎢⎥⎣⎦.【分析】(1)若选择①,利用偶函数的性质求出参数,a b ; 若选择②,利用单调性得到关于,a b 的方程,求解即可;将,a b 的值代入到()g x 的解析式中再根据定义判断函数的奇偶性; (2)将题中条件转化为“()g x 的值域是()f x 的值域的子集”即可求解. (1) 选择①.由()()224f x x a x =+-+在[]1,1b b -+上是偶函数得20a -=,且()()110b b -++=,所以a =2,b =0. 所以()222xg x x =+.选择②.当0a >时,则()f x ax b =+在[]1,2上单调递增,则224a b a b +=⎧⎨+=⎩,解得20a b =⎧⎨=⎩ 所以()222xg x x =+.()g x 为奇函数.证明如下:()g x 的定义域为R . 因为()()222xg x g x x --==-+,所以()g x 为奇函数.(2) 当0x >时,则()122g x x x=+,因为224x x +≥,当且仅当22x x =,即x =1时等号成立,所以()104g x <≤; 当0x <时,则因为()g x 为奇函数,所以()104g x -≤<;当x =0时,则()00g =,所以()g x 的值域为11,44⎡⎤-⎢⎥⎣⎦.因为()2h x x c =--在[]22-,上单调递减,所以函数()h x 的值域是[]22,22c c ---. 因为对任意的1x R ∈,总存在[]22,2x ∈-,使得()()12g x h x =成立 所以[]11,22,2244c c ⎡⎤-⊆---⎢⎥⎣⎦,所以12241224c c ⎧--≤-⎪⎪⎨⎪-≥⎪⎩,解得7788c -≤≤. 所以实数c 的取值范围是77,88⎡-⎤⎢⎥⎣⎦.27.(1)12log y x =;(2)函数1()f x x x =+在区间(0,)+∞上具有性质L ;答案见解析;(3)(,1]-∞.【分析】(1)由于底数在(0,1)上的对数函数满足题意,故可得答案; (2)任取12,(0,)x x ∈+∞,且12x x ≠,对()()122f x f x +与122x x f +⎛⎫ ⎪⎝⎭作差化简为因式乘积形式,判断出与零的大小,可得结论; (3)函数21()g x ax x =-在区间(0,1)上具有性质L ,即()()1212022g x g x x x g ++⎛⎫-> ⎪⎝⎭恒成立,参变分离求出最值,可得参数的范围. 【详解】(1)如12log y x=(或底在(0,1)上的对数函数);(2)函数1()f x x x=+在区间(0,)+∞上具有性质L .证明:任取12,(0,)x x ∈+∞,且12x x ≠()()12121212121211122222f x f x x x x x f x x x x x x +⎛⎫⎛⎫++⎛⎫-=+++-+ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭()()()()2212121212121212121241112222x x x x x x x x x x x x x x x x x x +--⎛⎫=+-== ⎪+++⎝⎭ 因为12,(0,)x x ∈+∞且12x x ≠所以()()21212120,20x x x x x x ->⋅+>,即()()1212022f x f x x x f ++⎛⎫-> ⎪⎝⎭. 所以函数1()f x x x=+在区间(0,)+∞上具有性质L . (3)任取12,(0,1)x x ∈,且12x x ≠,则()()21222121212121211122222g x g x x x x x g ax ax a x x x x ⎡⎤+⎛⎫++⎛⎫⎛⎫-=-+---⎢⎥ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦()()()()()()2221212121212121212122244ax x x x x x x x a x x x x x x x x x x -+⎡⎤--⎣⎦=-⋅=-++ 因为12,(0,1)x x ∈且12x x ≠,所以()()21212120,40x x x x x x ->⋅+> 要使上式大于零,必须()121220a x x x x -⋅⋅+>在12,(0,1)x x ∈上恒成立 即()12122a x x x x <+()212124x x x x +< ()()()()231212*********8x x x x x x x x x x +∴++>=+ 令()()3120,8x x t +=∈,则38y t =在()0,1上单调递减,即()()()()2331212121212228148x x x x t x x x x x x ∴>=++=>++ 所以1a ≤,即实数a 的取值范围为(,1]-∞.【点睛】关键点点睛:本题考查函数新概念,考查不等式的恒成立问题,解决本题的关键点是将函数21()g x ax x =-在区间(0,1)上具有性质L ,即()()1212022g x g x x x g ++⎛⎫-> ⎪⎝⎭恒成立,参变分离后转化为求最值问题,并借助于基本不等式和幂函数的单调性得出参数的范围,考查学生逻辑思维能力和计算能力,属于中档题. 28.(3,4)【分析】由对数的真数大于零,同时二次根式在分母,则其被开方数大于零,从而可求出定义域【详解】由题意可得260,40,x x ->⎧⎨->⎩解得34x <<,即()f x 的定义域是(3,4).故答案为:(3,4) 29.413a <<【分析】使复合函数()()log 4a f x ax =-在(]1,3上递减,需内增外减或外增内减,讨论a 求解即可 【详解】由题可得,根据对数的定义,0a >且1a ≠,所以4y ax =-是减函数,根据复合函数单调性的“同增异减”特点,得到1430a a >⎧⎨->⎩,所以413a <<.故答案为:413a <<30.2⎛ ⎝⎭[1,)+∞ 【分析】先根据题意求出()g x 的解析式,然后在每一段上求出函数的增区间即可 【详解】由12log 0x ≤,得1≥x ,由12log 0x >,得01x <<所以当1≥x 时,则12log 1()112xg x x ⎛⎫=-=- ⎪⎝⎭,则()g x 在[1,)+∞上递增当01x <<时,则21122()loglog g x x x =-+则121212log 11()2log 111lnlnln222x g x x x x x -'=-⋅+=由()0g x '>,得1212log 0x -<,解得0x <<所以()g x在⎛ ⎝⎭上递增 综上得函数()g x的单调递增区间为⎛ ⎝⎭ [1,)+∞故答案为:⎛ ⎝⎭,[1,)+∞ 31.1(,0]2-【分析】先求出分段函数中确定的一段的值域,然后分析另一段的值域应该有哪些元素.【详解】当0x ≥时,则2()log 0f x x =≥,因此当0x <时,则()(12)f x a x a =+-的取值范围应包含(,0)-∞ ∴1200a a +>⎧⎨-≥⎩,解得102-<≤a . 故答案为1(,0]2-. 【点睛】本题考查分段函数的值域问题,解题时注意分段讨论.32.()2,1【解析】根据对数函数的性质求解.【详解】令231x -=,则2x =,(2)1f =即()f x 图象过定点(2,1).故答案为:(2,1)33.()820,【分析】利用函数图像,数形结合进行分析.【详解】不妨设a b c <<,画出函数()f x 图像:()()()f a f b f c ==221log log 54a b c ∴==-+- ()2log 0ab ∴= 10534c <-+< 解得1ab = 820c <<820abc ∴<<.故答案为:()820,34.2【分析】由均值不等式求出xy 的最小值,再由对数的运算及性质即可求解.【详解】因为0x >,0y >且111x y+=所以111x y ≥+=4xy ≥,当且仅当11x y =,即2x y ==时等号成立 即xy 的最小值为4所以2222log log log log 42x y xy +=≥=故答案为:235.AD【分析】首先确定函数()f x 的零点,然后结合新定义的知识得到关于a 的等式,分离参数,结合函数的单调性确定实数a 的取值范围即可.【详解】因为函数()1e 2x f x x -=+-是R 上的增函数,且()10f =,所以1α=,结合“零点伴侣”的定义得11β-≤,则02β≤≤又函数()23g x x ax a =--+在区间[]0,2上存在零点,即方程230x ax a --+=在区间[]0,2上存在实数根 整理得2232122411x x x x a x x +++--+==++()4121x x =++-+ 令()()4121h x x x =++-+,[]0,2x ∈所以()h x 在区间[]0,1上单调递减,在[]1,2上单调递增 又()03h =,()723h =和()12h =,所以函数()h x 的值域为[]2,3 所以实数a 的取值范围是[]2,3.故选:AD .36.AC【分析】A 项代入参数,根据对数型函数定义域求法进行求解;B 项为最值问题,问一定举出反例即可;C 项代入参数值即可求出函数的值域;D 项为已知单调性求参数范围,根据二次函数单调性结合对数函数定义域求解即可.【详解】对于A ,当0a =时,则()()2lg 1f x x =-,令210x ->,解得1x <-或1x >,则()f x 的定义域为()(),11,-∞-⋃+∞,故A 正确;对于B 、C ,当0a =时,则()()2lg 1f x x =-的值域为R ,无最小值,故B 错误,C 正确;对于D ,若()f x 在区间[)2,+∞上单调递增,则21y x ax a =+--在[)2,+∞上单调递增,且当2x =时,则0y >则224210aa a⎧-≤⎪⎨⎪+-->⎩,解得3a>-,故D错误.故选:AC.。