三角函数解三角形的综合应用
2025年高考数学总复习课件36第四章第七节解三角形应用举例

落实“四基”
自查自测
知识点 测量中的几个有关术语
1.判断下列说法的正误,正确的画“√”,错误的画“×”.
(1)东南方向与南偏东45˚方向相同.( √ ) (2)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关
系.( √ ) (3)从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为α+β=
在△ACM中,由正弦定理得sinA6C0˚=siAnM45˚,所以AC=siAnM45˚·sin 60˚,
所以BC=AC·sin 60˚=siAnM45˚·sin260˚=1002 2 × 34=150(m).
2
第七节 解三角形应用举例
必备知识 落实“四基”
核心考点 提升“四能”
课时质量评价
测量高度问题的求解策略 (1)理解仰角、俯角、方向(位)角是关键. (2)在实际问题中,若遇到空间与平面(地面)同时研究的问题,最好画两个图 形,一个空间图形,一个平面图形. (3)注意山或塔垂直于地面或海平面,把空间问题转化为平面问题.
(2)若b2+c2=8,求b,c. 解:(方法一)在△ABD与△ACD中,
必备知识 落实“四基”
核心考点 提升“四能”
课时质量评价
c2=
由余弦定理得൞
b2=
1 4 1 4
a2+1-2×
1 2
a2
+1-2×
1 2
a×1× cos a×1× cos
π-∠ADC ∠ADC,
,
整理得12a2+2=b2+c2,而b2+c2=8,则a=2 3.
△ABC中,若AD是边BC上的中线,则AB2+AC2=2(BD2+AD2),AD2=14(b2+c2
三角函数的综合应用+课件-2025届高三数学一轮复习

(2)由题意,得 f(A)=2sin 2A-π3- 3=0,即 sin 2A-π3= 23,
∵A∈0,π2, 则 2A-π3∈-π3,23π, ∴2A-π3=π3,∴A=π3.
在△ABC 中, 由 a2=b2+c2-2bc cos A=42+32-2×4×3×12=13, 可得 a= 13, 又∵12bc sin A=12AD×a,即12×4×3× 23=21AD× 13, ∴AD=61339,故 BC 边上的高 AD 的长为61339.
(2)根据正弦定理得sina A=sinc C=sinb
B=
4 =8 3
3
3,
2
所以
a=8
3
3 sin
A,c=8
3
3 sin
C.
所以
a+c=8
3
3 (sin
A+sin
C).
因为 A+B+C=π,B=π3,所以 A+C=23π,
所以 a+c=8
3
3 sin
A+sin
23π-A=8
3
33 2sin
A+
23cos
A
=8sin A+π6.
因为 0<A<23π,
所以 A+π6∈π6,56π,所以 sin A+π6∈12,1,则 a+c∈(4,8].
所以 a+c 的取值范围是(4,8].
【反思感悟】已知三角形一边及其对角,求取值范围的问题 的解法
(1)(不妨设已知 a 与 sin A 的值)根据 2R=sina A求出三角形外接
∴a2+c2 b2=sin2Asi+n2Csin2B=cos22sCin+2Ccos2C =(1-2sin2Cs)in2+2C(1-sin2C)=2+4sins4iCn2-C 5sin2C
高考数学专题讲座 第7讲 三角函数的综合应用

高考数学专题讲座 第7讲 三角函数的综合应用一、考纲要求1.掌握两角和与两角差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式; 2.能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明; 3.会由已知三角函数值求角,并会用符号arcsin x, arcos x,arctan x 表示角;4.掌握正弦定理、余弦定理,并能初步运用它们解斜三角形,能利用计算器解决解三角形的计算问题.二、基础过关 1.设α、β是一个钝角三角形的两个锐角, 下列四个不等式中不正确的是( ).A .tan αtan β<1B .sin α+sin β<2C .cos α+cos β>1D .21tan(α+β)<tan 2βα+ 2.在△ABC 中,∠A=60°,b =1,△ABC 面积为3,则CB B cb a sin sin sin ++++的值为( ).A .8138 B .3932C .3326D .72 3.)sin()(ϕω+=x A x f (A >0,ω>0)在x =1处取最大值,则( ). A .)1(-x f 一定是奇函数 B .)1(-x f 一定是偶函数C .)1(+x f 一定是奇函数D .)1(+x f 一定是偶函数4.已知方程x 2+4ax +3a +1=0(a >1)的两根均tan α、tan β,且α,β∈(-2,2ππ),则tan 2βα+的值是( ).A .21 B .2- C .34 D .21或2- 5.给出四个命题:(1)若sin2A =sin2B ,则△ABC 为等腰三角形; (2)若sin A =cos B ,则△ABC 为直角三角形;(3)若sin 2A +sin 2B +sin 2C <2,则△ABC 为钝角三角形;(4)若cos(A -B )cos(B -C )cos(C -A )=1,则△ABC 为正三角形. 以上正确命题的个数是( ).A .1B .2C .3D .46.x x x f 32cos 32sin )(+=的图象中相邻的两条对称轴间距离为( ).A .3πB .π34C .π23D .π677.︒+︒+︒+︒10cos 1)370tan 31(100sin 130sin 2= .8.下列命题正确的有 . (1)若-2π<α<β<2π,则βα-范围为(-π,π);(2)若α在第一象限,则2α在第一、三象限; (3)若θsin =53+-m m ,524cos +-=m mθ,则m ∈(3,9);(4)2sin θ=53,2cos θ=54-,则θ在第三、四象限.三、典型例题例1 已知:定义在]4,(-∞上的减函数)(x f ,使得)cos 4721()sin (2x m f x m f +-+≤- 对一切实数x 均成立,求实数m 的范围.例2 化工厂的主控制表盘高1米,表盘底边距地面2米,问值班人员坐在什么位置上表盘看得最清楚?(设值班人员坐在椅子上时,眼睛距地面2.1米)例3 已知向量a →=(2,2),向量b →与向量a →的夹角为43π,且a →·b →=-2.(1)求向量b →;(2)若t →=(1,0),且b →⊥t →,c →=(cosA,22cos 2C ),其中A ,C 是△ABC 的内角,若三角形的三内角A 、B 、C 依次成等差数列,试求|b →+c →|的取值范围.四、 热身演练 1.已知,那么下列命题成立的是( ).A .若α,β是第一象限角,则βαcos cos >B .若α,β是第二象限角,则βαtan tan >C .若α,β是第三象限角,则βαcos cos >D .若α,β是第四象限角,则βαtan tan > 2.函数的部分图象是( ).3.函数的反函数是( ).A .)20)(1arccos(≤≤--=x x yB .)20)(1arccos(≤≤--=x x y πC .)20)(1arccos(≤≤-=x x yD .)20)(1arccos(≤≤-+=x x y π4.任意实数x,不等式 ),,(0cos sin R c b a c x b x a ∈>++都成立的充要条件是( ).A .00>==c b a 且B .c b a =+22C .c b a <+22D .c b a >+225.若1cos sin =+θθ,则对任意的实数n ,θθnncos sin +的取值范围是( ).A .1B .(0,1)C .121-n D .无法确定6.定义在R 上的偶函数f (x )满足f (x+2)=f (x ),且f (x )在[-3,-2]上是减函数,又α,β是锐角三角形的两内角,则( ).A .)(cos )(sin βαf f >B .)(cos )(sin βαf f <C .)(sin )(sin βαf f >D .)(cos )(cos βαf f <7.下列说法正确的是(填上你认为正确的所有命题的代号) . ①函数y=-sin(kπ+x)(k∈Z)是奇函数; ②函数y=2sin(2x+π/3)关于点(π/12,0)对称;③函数y =sin(2x+π/3)+sin(2x -π/3)的最小正周期是π;④ΔABC 中cosA>cosB 的充要条件是A<B ; 8.在△ABC 中,sinA+cosA=137,则AA A A cos 7sin 15cos 4sin 5-+= .9.如右图,在半径为R 的圆桌的正中央上空挂一盏电灯,桌子边缘一点处的照度和灯光射到桌子边缘的光线与桌面的夹角θ的正弦成正比,角和这一点到光源的距离 r 的平方成反比,即I =k ·2sin r θ,其中 k 是一个和灯光强度有关的常数,那么怎样选择电灯悬挂的高度h ,才能使桌子边缘处最亮?10.设关于x 的方程sinx+3cosx+a=0在(0, 2π)内有相异二解α、β. (1)求α的取值范围; (2)求tan(α+β)的值.12.设α、β、γ是锐角,且tan 2α=2tan 3γ,tan β=21tan γ求证:α、β、γ成等差数列.三角函数的综合应用一、考纲要求:1. 掌握两角和与两角差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式 2. 能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明. 3. 会由已知三角函数值求角,并会用符号arcsin x, arcos x,arctan x 表示角.4.掌握正弦定理、余弦定理,并能初步运用它们解斜三角形,能利用计算器解决解三角形的计算问题. 二、基础过关: 1.设α、β是一个钝角三角形的两个锐角, 下列四个不等式中不正确的是( A ).A .tan αtan β<1B .sin α+sin β<2C .cos α+cos β>1D .21tan(α+β)<tan 2βα+ 2.在△ABC 中,∠A=60°,b =1,△ABC 面积为3,则CB B cb a sin sin sin ++++的值为( B ).A .8138 B .3932C .3326D .72 3.)sin()(ϕω+=x A x f (A >0,ω>0)在x =1处取最大值,则( D ). A .)1(-x f 一定是奇函数 B .)1(-x f 一定是偶函数C .)1(+x f 一定是奇函数D .)1(+x f 一定是偶函数4.已知方程x 2+4ax +3a +1=0(a >1)的两根均tan α、tan β,且α,β∈(-2,2ππ),则tan2βα+的值是( B ).A .21B .2-C .34D .21或2- 5.给出四个命题:(1)若sin2A =sin2B ,则△ABC 为等腰三角形;(2)若sin A =cos B ,则△ABC 为直角三角形;(3)若sin 2A +sin 2B +sin 2C <2,则△ABC 为钝角三角形;(4)若cos(A -B )cos(B -C )cos(C -A )=1,则△ABC 为正三角形.以上正确命题的个数是( B ).A .1B .2C .3D .46.x x x f 32cos 32sin )(+=的图象中相邻的两条对称轴间距离为( C ).A .3πB .π34C .π23D .π677.︒+︒+︒+︒10cos 1)370tan 31(100sin 130sin 2= .28.下列命题正确的有 .(2)(1)若-2π<α<β<2π,则βα-范围为(-π,π); (2)若α在第一象限,则2α在第一、三象限;(3)若θsin =53+-m m ,524cos +-=m mθ,则m ∈(3,9);βφαDCBA1.2 m2 m 1 m (4)2sinθ=53,2cosθ=54-,则θ在第三、四象限. 三、典型例题例1 已知:定义在]4,(-∞上的减函数)(x f ,使得)cos 4721()sin (2x m f x m f +-+≤- 对一切实数x 均成立,求实数m 的范围.解:由题意可得 ⎪⎩⎪⎨⎧≤-+-+≥-4sin cos 4721sin 2x m xm x m , 即 ⎪⎩⎪⎨⎧+≤-+-≥+-xm x x m m sin 443sin sin 212恒成立对R x ∈,又 21)21(sin 43sin 2sin 2---=-+-x x x ,∴3sin 4≥+x ,∴⎪⎩⎪⎨⎧≤-≥+-32121m m m , ∴⎪⎩⎪⎨⎧≤+≥+32121m m m , ∴21-=m ,或323≤<m例2 化工厂的主控制表盘高1米,表盘底边距地面2米,问值班人员坐在什么位置上表盘看得最清楚?(设值班人员坐在椅子上时,眼睛距地面2.1米)解:如图,8.02.12=-=CD ,设x AD =,则x x AD BD 8.18.01tan =+==α, xAD CD 8.1tan ==β, βαβαβαφtan tan 1tan tan )tan(tan +-=-= ,∴4.2144.12144.118.08.118.08.1tan =⋅≤+=⋅+-=xx x x x x x x φ当xx 44.1=,即2.1=x 时, φtan 达到最大值4.21,φ是锐角,φtan 最大时,φ也最大,所以值班人员看表盘最清楚的位置为2.1=AD 米.例3 已知向量a →=(2,2),向量b →与向量a →的夹角为43π,且a →·b →=-2,(1)求向量b →;(2)若t →=(1,0),且b →⊥t →,c →=(cosA,22cos 2C ),其中A ,C 是△ABC 的内角,若三角形的三内角A 、B 、C 依次成等差数列,试求|b →+c →|的取值范围.解:(1)设b →=(x,y ),则2x+2y=-2,且a →·b →=|b →||c →|cos 43π=22y x +×22×(-22)=-2,解得⎩⎨⎧=-=01y x 或⎩⎨⎧-==1y x , ∴b →=(-1,0) 或b →=(0,-1).(2)∵三角形的三内角A 、B 、C 依次成等差数列,∴b=3π,∵b →⊥t →,∴b →=(0,-1),∴b →+c →=( cosA,22cos 2C -1)=(cosA,cosC),∴|b →+c →|2=C A 22cos cos +=1+21(cos2A+cos2C)=1+cos(A+C)cos(A -C)=1-21cos(A -C),∴-32π<A -C<32π ,∴-21<cos(A -C)≤1,22≤|b →+c →|<25.例4 已知△ABC 的三内角A 、B 、C 满足A +C =2B ,设x =cos2CA -, f (x )=cosB (CA cos 1cos 1+). (1)试求函数f (x )的解析式及其定义域; (2)判断其单调性,并加以证明; (3)求这个函数的值域. 解:(1)∵A +C =2B ,∴B =60°,A +C =120°)cos()cos(2cos2cos2cos cos cos cos 21)(C A C A CA C A C A C A x f -++-+=⋅+⋅= 342122122-=-+-=x xx x , ∵0°≤|2C A -|<60°,∴x =cos 2C A -∈(21,1].又4x 2-3≠0,∴x ≠23,∴定义域为(21,23)∪(23,1). (2)设x 1<x 2,∴f (x 2)-f (x 1)=342342211222---x x x x=)34)(34()34)((222212121--+-x x x x x x ,若x 1,x 2∈(23,21),则4x 12-3<0,4x 22-3<0,4x 1x 2+3>0,x 1-x 2<0,∴f (x 2)-f (x 1)<0,即f (x 2)<f (x 1),若x 1,x 2∈(23,1],则4x 12-3>0. 4x 22-3>0,4x 1x 2+3>0,x 1-x 2<0,∴f (x 2)-f (x 1)<0.即f (x 2)<f (x 1),∴f (x )在(21,23)和(23,1]上都是减函数.(3)由(2)知,f (x )<f (21)=-21或f (x )≥f (1)=2.故f (x )的值域为(-∞,-21)∪[2,+∞). 四、热身演练: 1.已知,那么下列命题成立的是( B ).A .若α,β是第一象限角,则βαcos cos >B .若α,β是第二象限角,则βαtan tan >C .若α,β是第三象限角,则βαcos cos >D .若α,β是第四象限角,则βαtan tan > 2.函数的部分图象是( D ).AB C D3.函数的反函数是( A ).A .)20)(1arccos(≤≤--=x x yB .)20)(1arccos(≤≤--=x x y πC .)20)(1arccos(≤≤-=x x yD .)20)(1arccos(≤≤-+=x x y π4.任意实数x,不等式 ),,(0cos sin R c b a c x b x a ∈>++都成立的充要条件是( C ).A .00>==c b a 且B .c b a =+22C .c b a <+22D .c b a >+225.若1cos sin =+θθ,则对任意的实数n ,θθnncos sin +的取值范围是( D ).A .1B .(0,1)C .121-n D .无法确定6.定义在R 上的偶函数f (x )满足f (x+2)=f (x ),且f (x )在[-3,-2]上是减函数,又α,β是锐角三角形的两内角,则( A ).A .)(cos )(sin βαf f >B .)(cos )(sin βαf f <C .)(sin )(sin βαf f >D .)(cos )(cos βαf f <7.下列说法正确的是(填上你认为正确的所有命题的代号) .①②③④ ①函数y=-sin(k π+x)(k ∈Z)是奇函数; ②函数y=2sin(2x+π/3)关于点 (π/12,0)对称;③函数y=sin(2x+π/3)+sin(2x-π/3)的最小正周期是π; ④ΔABC 中cosA>cosB 的充要条件是A<B ; 8.在△ABC 中,sinA+cosA=137,则AA A A cos 7sin 15cos 4sin 5-+= .4389.如右图,在半径为R 的圆桌的正中央上空挂一盏电灯,桌子边缘一点处的照度和灯光射到桌子边缘的光线与桌面的夹角θ的正弦成正比,角和这一点到光源的距离 r 的平方成反比,即I =k ·2sin r θ,其中 k 是一个和灯光强度有关的常数,那么怎样选择电灯悬挂的高度h ,才能使桌子边缘处最亮?解:R =r cos θ,由此得:20,cos 1π<θ<θ=R r , RR h R k I Rk R k I R k R k r k I 22tan ,33sin ,392)32()()sin 1)(sin 1(sin 2)(2)cos (sin cos sin sin 232222222222222=θ==θ⋅≤⋅≤θ-θ-⋅θ⋅=θ⋅θ⋅=θ⋅θ⋅=θ⋅=此时时成立等号在由此得 10.设关于x 的方程sinx+3cosx+a=0在(0, 2π)内有相异二解α、β. (1)求α的取值范围; (2)求tan(α+β)的值. 解:(1)∵sinx+3cosx=2(21sinx+23cosx)=2 sin(x+3π),∴方程化为sin(x+3π)=-2a .∵方程sinx+3cosx+a=0在(0, 2π)内有相异二解,∴sin(x+3π)≠sin 3π=23. 又sin(x+3π)≠±1 (∵当等于23和±1时仅有一解),∴|-2a |<1,且-2a≠23, 即|a|<2,且a ≠-3.,∴a 的取值范围是(-2, -3)∪(-3, 2).(2) ∵α、 β是方程的相异解,∴sin α+3cos α+a=0 ① sin β+3cos β+a=0 ②①-②得(sin α- sin β)+3( cos α- cos β)=0, ∴ 2sin 2βα-cos2βα+-23sin 2βα+,sin2βα-=0,又sin2βα+≠0,∴tan2βα+=33, ∴tan(α+β)=2tan 22tan22βαβα+-+=3.11.求20sin 6420cos 120sin 3222+-的值.解:原式=20cos 20sin 20sin 20cos 32222-+64sin 220°=40sin 41)20sin 20cos 3)(20sin 20cos 3(2+-+64sin 220°=40sin 41)2030cos()2030cos(42-++64sin 220°=40sin 80sin 40sin 162+64sin 220°=32cos40°+64(240cos 1-)=32.12.设α、β、γ是锐角,且tan 2α=2tan 3γ,tan β=21tan γ求证:α、β、γ成等差数列.解:要证α、β、γ成等差数列,∵α、β、γ是锐角,只要证:tan β=tan 2γα+.∵tan 2γα+=2tan2tan12tan2tanγαγα-+=2tan2tan12tan 2tan 33γγγγ-+=)2tan 1)(2tan 1()2tan 1(2tan222γγγγ+-+=212tan 12tan22γγ-=21tan γ= tan β.∴α、β、γ成等差数列.。
第4课:解三角形与三角函数综合应用

第四课:解三角形与三角函数综合应用第一部分:知识点1.三角形中的边角关系:三角形中大边对大角,小边对小角;三角形中任意两边之和大小第三边;2.正弦定理:2sin sin sin a b c R A B C===,其中R 是△ABC 外接圆半径. 3.余弦定理:2222222222cos ,2cos ,2cos a b c bc A b a c ac B c a b ab C =+-=+-=+-余弦定理变形: 222222222cos ,cos ,cos ,222b c a a c b a b c A B C bc ac ab+-+-+-===4.三角形的面积公式有:11,sin ,22S ah S ab C S === 其中,h 是BC 边上高,P 是半周长.5.利用正、余弦定理及三角形面积公式等解任意三角形(1)已知两角及一边,求其它边角;已知两边及其中一边的对角,求另一边的对角,用正弦定理.(2)已知三边,求三个角;已知两边和它们的夹角,求第三边和其他两个角,常选用余弦定理.第二部分:练习题1. 在中,,,,求tan A 的值和的面积.2.在△ABC 中,已知3=a ,b =2,B =45°,求A 、C 及c .3.在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,已知a 、b 、c 成等比数列,且22a c ac bc -=-, 求∠A 的大小及c B b sin 的值。
4已知∆ABC 中,sin :sin :sin 1:2:3A B C =,求::a b c5在∆ABC 中,已知=a c 060=B ,求b 及A6在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,2274sin cos 22B C A +-=. (1)求角A 的度数;(2)若a =3,b +c =3,求b 和c 的值.7.在ABC ∆中,角A ,B ,C 所对应的边分别为a ,b ,c ,且C b B c a cos cos )2(=-.(Ⅰ)求角B 的大小;(Ⅱ)若cos 2A a ==,求ABC ∆的面积. 8.在ABC ∆中,角A ,B ,C 的对边分别为,,a b c ,且A ,B , C 成等差数列.(Ⅰ)若b =3a =,求c 的值;(Ⅱ)设sin sin t A C =,求t 的最大值.9.已知ABC ∆的三个内角A ,B ,C 所对的边分别是a ,b ,c ,tan tan tan A B A B +=,,2=a c =(Ⅰ)求tan()A B +的值; (Ⅱ)求ABC ∆的面积.10. 在中,已知1230,cos ,13ABC S A ∆==求(1)AB AC u u u r u u u r g ,(2)若1c b -=,求a 。
三角函数解三角形综合

1.已知函数fx=sinωx﹣2sin2+mω>0的最小正周期为3π,当x∈0,π时,函数fx 的最小值为0.1求函数fx的表达式;2在△ABC中,若fC=1,且2sin2B=cosB+cosA﹣C,求sinA的值.解:Ⅰ.依题意:函数.所以.,所以fx的最小值为m.依题意,m=0..Ⅱ∵,∴..在Rt△ABC中,∵,∴.∵0<sinA<1,∴.2.已知函数其中ω>0,若fx的一条对称轴离最近的对称中心的距离为.I求y=fx的单调递增区间;Ⅱ在△ABC中角A、B、C的对边分别是a,b,c满足2b﹣acosC=c•cosA,则fB恰是fx的最大值,试判断△ABC的形状.解答解:Ⅰ∵,=,∵fx的对称轴离最近的对称中心的距离为,∴T=π,∴,∴ω=1,∴.∵得:,∴函数fx单调增区间为;Ⅱ∵2b﹣acosC=c•cosA,由正弦定理,得2sinB﹣sinAcosC=sinC•cosA2sinBcosC=sinAcosC+sinCcosA=sinA+C,∵sinA+C=sinπ﹣B=sinB>0,2sinBcosC=sinB,∴sinB2cosC﹣1=0,∴,∵0<C<π,∴,∴,∴.∴,根据正弦函数的图象可以看出,fB无最小值,有最大值y max=1,此时,即,∴,∴△ABC为等边三角形.3.已知函数fx=sinωx+cosωx++cosωx﹣﹣1ω>0,x∈R,且函数的最小正周期为π:1求函数fx的解析式;2在△ABC中,角A、B、C所对的边分别是a、b、c,若fB=0,•=,且a+c=4,试求b的值.解答解:1fx=sinωx+cosωx++cosωx﹣﹣1==.∵T=,∴ω=2.则fx=2sin2x﹣1;2由fB==0,得.∴或,k∈Z.∵B是三角形内角,∴B=.而=ac•cosB=,∴ac=3.又a+c=4,∴a2+c2=a+c2﹣2ac=16﹣2×3=10.∴b2=a2+c2﹣2ac•cosB=7.则b=.4.已知函数.1求fx单调递增区间;2△ABC中,角A,B,C的对边a,b,c满足,求fA的取值范围.解答解:1fx=﹣+sin2x=sin2x﹣cos2x=sin2x﹣,令2kπ﹣≤2x﹣≤2kπ+,k∈Z,得到﹣+kπ≤x≤+kπ,k∈Z, 则fx的增区间为﹣+kπ, +kπk∈Z;2由余弦定理得:cosA=,即b2+c2﹣a2=2bccosA,代入已知不等式得:2bccosA>bc,即cosA>,∵A为△ABC内角,∴0<A<,∵fA=sin2A﹣,且﹣<2A﹣<,∴﹣<fA<,则fA的范围为﹣,.5.在△ABC中,内角A,B,C的对边分别是a,b,c,已知A为锐角,且bsinAcosC+csinAcosB=a.1求角A的大小;2设函数fx=tanAsinωxcosωx﹣cos2ωxω>0,其图象上相邻两条对称轴间的距离为,将函数y=fx的图象向左平移个单位,得到函数y=gx图象,求函数gx在区间﹣,上值域.解:1∵bsinAcosC+csinAcosB=a,∴由正弦定理可得:sinBsinAcosC+sinCsinAcosB=sinA,∵A为锐角,sinA≠0,∴sinBcosC+sinCcosB=,可得:sinB+C=sinA=,∴A=.2∵A=,可得:tanA=,∴fx=sinωxcosωx﹣cos2ωx=sin2ωx﹣cos2ωx=sin2ωx﹣,∵其图象上相邻两条对称轴间的距离为,可得:T=2×=,解得:ω=1,∴fx=sin2x﹣,∴将函数y=fx的图象向左平移个单位,得到图象对应的函数解析式为y=gx=sin2x+﹣=sin2x+,∵x∈﹣,,可得:2x+∈,,∴gx=sin2x+∈,1.6.已知向量,向量,函数.Ⅰ求fx单调递减区间;Ⅱ已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,,c=4,且fA恰是fx 在上的最大值,求A,b,和△ABC的面积S.解:Ⅰ∵=+1+sin2x+=sin2x﹣cos2x+2=sin2x﹣+2,…∴, 所以:fx的单调递减区间为:.…Ⅱ 由1知:,∵时,,由正弦函数图象可知,当时fx 取得最大值3,…7分∴,…8分由余弦定理,a 2=b 2+c 2﹣2bccosA,得:,∴b=2,…10分∴.…12分7.已知函数.Ⅰ作出在一个周期内的图象;Ⅱ分别是中角的对边,若,求的面积.()cos sin 6f x x x π⎛⎫=++ ⎪⎝⎭()f x a b c ,,ABC △ A B C ,,() 1a f A b ===,,ABC △利用“五点法”列表如下:……………………………………………………4分 画出在上的图象,如图所示:Ⅱ由Ⅰ,在中,,所以.由正弦定理可知,,所以,………………9分又,∴,∴,∴. 因此.…………………………12分 ()f x 5 33ππ⎡⎤-⎢⎥⎣⎦,()sin 3f A A π⎛⎫=+ ⎪⎝⎭ABC △0A π<<3A π=sin sin a b A B =1sin sin 3B =1sin 2B =203B π<<6B π=2C π=11122S ab ==ABC △8.已知函数fx=m+2cos2x•cos2x+θ为奇函数,且f=0,其中m∈R,θ∈0,πⅠ求函数fx的图象的对称中心和单调递增区间Ⅱ在△ABC中,角A,B,C的对边分别是a,b,c,且f+=﹣,c=1,ab=2,求△ABC的周长.解答解:Ⅰf=﹣m+1sinθ=0,∵θ∈0,π.∴sinθ≠0,∴m+1=0,即m=﹣1,∵fx为奇函数,∴f0=m+2cosθ=0,∴cosθ=0,θ=.故fx=﹣1+2cos2xcos2x+=cos2x•﹣sin2x=﹣sin4x,由4x=kπ,k∈Z得:x=kπ,k∈Z,故函数fx的图象的对称中心坐标为:kπ,0,k∈Z,由4x∈+2kπ, +2kπ,k∈Z得:x∈+kπ, +kπ,k ∈Z,即函数fx的单调递增区间为+kπ, +kπ,k∈Z,Ⅱ∵f+=﹣sin2C+﹣,C为三角形内角,故C=,∴c2=a2+b2﹣2abcosC==,∵c=1,ab=2,∴a+b=2+,∴a+b+c=3+,即△ABC的周长为3+.9.已知向量=sin,1,=cos,cos2,记fx=•.Ⅰ若fx=1,求cosx+的值;Ⅱ在锐角△ABC中,角A,B,C的对边分别是a,b,c,且满足2a﹣ccosB=bcosC,求f2A的取值范围.解答解:Ⅰ向量=sin,1,=cos,cos2,记fx=•=sincos+cos2=sin+cos+=sin+,因为fx=1,所以sin=,所以cosx+=1﹣2sin2=,Ⅱ因为2a﹣ccosB=bcosC,由正弦定理得2sinA﹣sinCcosB=sinBcosC所以2sinAcosB﹣sinCcosB=sinBcosC所以2sinAcosB=sinB+C=sinA,sinA≠0,所以cosB=,又0<B<,所以B=,则A+C=,即A=﹣C,又0<C<,则<A<,得<A+<,所以<sinA+≤1,又f2A=sinA+,所以f2A的取值范围.10.已知向量,函数fx=.1求函数fx的最小正周期及在上的值域;2在△ABC中,若fA=4,b=4,△ABC的面积为,求a的值.解答解:1向量,函数fx==2+sin2x+2cos2x=3+sin2x+cos2x=3+2sin2x+,可得函数fx的最小正周期为=π,x∈,即有2x+∈﹣,,可得sin2x+∈﹣,1,则在上的值域为2,5;2在△ABC中,若fA=4,b=4,△ABC的面积为,可得3+2sin2A+=4,即sin2A+=,由0<A<π,可得<2A+<,可得2A+=,即A=,由=bcsinA=•4c•sin=c,解得c=1,则a2=b2+c2﹣2bccosA=16+1﹣8×=13,即a=.11.已知函数fx=2sinx+•cosx.1若0≤x≤,求函数fx的值域;2设△ABC的三个内角A,B,C所对的边分别为a,b,c,若A为锐角且fA=,b=2,c=3,求cosA﹣B的值.解答解:1fx=2sinx+•cosx=sinx+cosx•cosx=sinxcosx+cos2x=sin2x+cos2x+=sin2x++;…由得,,∴,…∴,即函数fx的值域为;…2由,得,又由,∴,∴,解得;…在△ABC中,由余弦定理a2=b2+c2﹣2bccosA=7,解得;…由正弦定理,得,…∵b<a,∴B<A,∴,∴cosA﹣B=cosAcosB+sinAsinB=.…12..已知向量x ∈R,设函数fx=﹣1.1求函数fx 的单调增区间;2已知锐角△ABC 的三个内角分别为A,B,C,若fA=2,B=,边AB=3,求边BC .解答解:由已知得到函数fx=﹣1=2cos 2x+2sinxcosx ﹣1=cos2x+sin2x=2cos2x ﹣;所以1函数fx 的单调增区间是2x ﹣∈2kπ﹣π,2kπ,即x ∈kπ﹣,kπ+,k ∈Z ;已升级到最新版2已知锐角△ABC 的三个内角分别为A,B,C,fA=2,则2cos2A ﹣=2,所以A=,又B=,边AB=3,所以由正弦定理得,即,解得BC=.13.. 1求函数的单调递减区间;2在中,角的对边分别为,若,的面积为,求a 的最小值.2()sin 2f x x x =+()f x ABC ∆,,A B C ,,a b c ()12A f =ABC∆试题解析:1, 令,解得,,∴的单调递减区间为. 14.已知fx=•,其中=2cosx,﹣sin2x,=cosx,1,x ∈R .1求fx 的单调递减区间;2在△ABC 中,角A,B,C 所对的边分别为a,b,c,fA=﹣1,a=,且向量=解答解:1由题意知.3分∵y=cosx 在a 2上单调递减,∴令,得∴fx 的单调递减区间,6分2∵,∴,又,∴,即,8分∵,由余弦定理得a 2=b 2+c 2﹣2bccosA=b+c 2﹣3bc=7.10分因为向量与共线,所以2sinB=3sinC,由正弦定理得2b=3c .∴b=3,c=2.12 分.111()cos 22sin(2)2262f x x x x π=-=-+3222262k x k πππππ+≤-≤+536k x k ππππ+≤≤+k Z ∈()f x 5[,]36k k ππππ++k Z ∈15.已知函数fx=2sinx+•cosx.1若0≤x≤,求函数fx的值域;2设△ABC的三个内角A,B,C所对的边分别为a,b,c,若A为锐角且fA=,b=2,c=3,求cosA ﹣B的值.解答解:1fx=2sinx+•cosx=sinx+cosx•cosx=sinxcosx+cos2x=sin2x+cos2x+=sin2x++;…由得,,∴,…∴,即函数fx的值域为;…2由,得,又由,∴,∴,解得;…在△ABC中,由余弦定理a2=b2+c2﹣2bccosA=7,解得;…由正弦定理,得,…∵b<a,∴B<A,∴,∴cosA﹣B=cosAcosB+sinAsinB=.…16.在△ABC中,角A,B,C所对的边分别为a,b,c,fx=2sinx﹣Acosx+sinB+Cx∈R,函数fx的图象关于点,0对称.Ⅰ当x∈0,时,求fx的值域;Ⅱ若a=7且sinB+sinC=,求△ABC的面积.解答解:Ⅰfx=2sinx﹣Acosx+sinB+C=2sinxcosA﹣cosxsinAcosx+sinA=2sinxcosxcosA﹣2cos2xsinA+sinA=sin2xcosA﹣cos2xsinA=sin2x﹣A,由于函数fx的图象关于点,0对称,则f=0,即有sin﹣A=0,由0<A<π,则A=,则fx=sin2x﹣,由于x∈0,,则2x﹣∈﹣,,即有﹣<sin2x﹣≤1.则值域为﹣,1;Ⅱ由正弦定理可得===, 则sinB=b,sinC=c,sinB+sinC=b+c=,即b+c=13,由余弦定理可得a2=b2+c2﹣2bccosA,即49=b2+c2﹣bc=b+c2﹣3bc,即有bc=40,则△ABC的面积为S=bcsinA=×40×=10.17.已知函数fx=2sinxcosx﹣3sin2x﹣cos2x+3.1当x∈0,时,求fx的值域;2若△ABC的内角A,B,C的对边分别为a,b,c,且满足=,=2+2cosA+C,求fB的值.解答解:1∵fx=2sinxcosx﹣3sin2x﹣cos2x+3=sin2x﹣3﹣+3=sin2x﹣cos2x+1=2sin2x++1,∵x∈0,,∴2x+∈,,∴sin2x+∈,1,∴fx=2sin2x++1∈0,3;2∵=2+2cosA+C,∴sin2A+C=2sinA+2sinAcosA+C,∴sinAcosA+C+cosAsinA+C=2sinA+2sinAcosA+C,∴﹣sinAcosA+C+cosAsinA+C=2sinA,即sinC=2sinA,由正弦定理可得c=2a,又由=可得b=a,由余弦定理可得cosA=== ,∴A=30°,由正弦定理可得sinC=2sinA=1,C=90°,由三角形的内角和可得B=60°,∴fB=f60°=218.设函数fx=cos2x﹣+2cos2x.1求fx的最大值,并写出使fx取得最大值时x的集合;2求fx的单调递增区间;3已知△ABC中,角A,B,C的对边分别为a,b,c,若fB+C=,b+c=2,求a的最小值.解答解:1由三角函数公式化简可得fx=cos2x﹣+2cos2x=cos2xcos+sin2xsin+2cos2x=﹣cos2x﹣sin2x+1+cos2x=cos2x﹣sin2x+1=cos2x++1,当2x+=2kπ即x=kπ﹣k∈Z时,fx取得最大值2,此时x的集合为{x|x=kπ﹣,k∈Z};2由2kπ+π≤2x+≤2kπ+2π可解得kπ+≤x≤kπ+,∴fx的单调递增区间为得kπ+,kπ+,k∈Z;3由2可得fB+C=cos2B+2C++1=,∴cos2B+2C+=,由角的范围可得2B+2C+=,变形可得B+C=,A=, 由余弦定理可得a2=b2+c2﹣2bccosA=b2+c2﹣bc=b+c2﹣3bc=4﹣3bc≥4﹣32=1当且仅当b=c=1时取等号,故a的最小值为119.已知函数,x∈R.1求函数fx的最大值和最小正周期;2设△ABC 的内角A,B,C 的对边分别a,b,c,且c=3,fC=0,若sinA+C=2sinA,求a,b 的值.解答解:1 (3)∵,∴,∴fx 的最大值为0,最小正周期是…6分2由,可得∵0<C <π,∴0<2C <2π,∴∴,∴∵sinA+C=2sinA,∴由正弦定理得①…9分由余弦定理得∵c=3∴9=a 2+b 2﹣ab②由①②解得,…12分20..已知向量,设函数.1求在上的最值;2在中,分别是角的对边,若,,求的值.()()3sin 22,cos ,1,2cos m x x n x =+=()f x m n =⋅()f x 0,4π⎡⎤⎢⎥⎣⎦ABC ∆,,a b c ,,A B C ()4,1f A b ==ABC ∆a;2.21.已知函数fx=sin 2x+sin2x .1求函数fx 的单调递减区间;2在△ABC 中,角A,B,C 的对边分别为a,b,c,若f =,△ABC 的面积为3,求a 的最小值.解答解:1∵fx=sin 2x+sin2x=+sin2x=sin2x ﹣+,∴2kπ+≤2x ﹣≤2kπ+,k ∈Z,解得:kπ+≤x ≤kπ+,k ∈Z,∴函数fx 的单调递减区间为:kπ+,kπ+,k ∈Z .()()min max 4,5f x f x ∴==()12sin 234,sin 2662f A A A ππ⎛⎫⎛⎫=++=∴+= ⎪ ⎪⎝⎭⎝⎭1352,2666663AA A ππππππ⎛⎫+∈∴+=∴= ⎪⎝⎭1sin 2ABC S bc A ∆==2c ∴=2222cos 3a b c bc A a ∴=+-=∴=2∵f=,即: sin2×﹣+=,化简可得:sinA﹣=,又∵A∈0,π,可得:A﹣∈﹣,,∴A﹣=,解得:A=,∵S△ABC=bcsinA=bc=3,解得:bc=12,∴a==≥=2.当且仅当b=c时等号成立.故a的最小值为2.22.已知函数fx=2sinxcosx+2,x∈R.1求函数fx的最小正周期和单调递增区间;2在锐角三角形ABC中,若fA=1,,求△ABC的面积.解答解:1fx=2sinxcosx+=sin2x+=2sin2x+,∴函数fx的最小正周期为π,由2kπ﹣≤2x+≤2kπ+,k∈Z,得,∴函数fx的单调增区间是k,k k∈Z,2由已知,fA=2sin2A+=1,∴sin2A+=,∵0<A<,∴,∴2A+=,从而A=,又∵=,∴,∴△ABC的面积S===.23.已知向量=sinx,﹣1,向量=cosx,﹣,函数fx=+•.1求fx的最小正周期T;2已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,a=2,c=4,且fA恰是fx在0,上的最大值,求A和b.解答解:1∵向量=sinx,﹣1,向量=cosx,﹣,∴fx=+•=sin2x+1+sinxcosx+=+1+sin2x+= sin2x﹣cos2x+2=sin2x﹣+2,∵ω=2,∴函数fx的最小正周期T==π;2由1知:fx=sin2x﹣+2,∵x∈0,,∴﹣≤2x﹣≤,∴当2x﹣=时,fx取得最大值3,此时x=,∴由fA=3得:A=, 由余弦定理,得a2=b2+c2﹣2bccosA,∴12=b2+16﹣4b,即b﹣22=0,∴b=2.24.在中,分别是角的对边,且满足. 1求角的大小;2设函数,求函数在区间上的值域.25.已知函数在处取最小值.ABC ∆c b a ,,C B A ,,CBc b a cos cos 2=-C 23sin sin 2cos cos sin 2)(2-+=C x C x x x f )(x f ]2,0[π2()2sin coscos sin sin (0)2f x x x x ϕϕϕπ=+-<<x π=1求的值;2在中,分别为内角的对边,已知求角.试题分析:1利用三角恒等变换公式化简函数解析式得,由在处取最小值及查求得;2由可得,再由正弦定理求出,从而求出角的值,即可求角.2因为,所以,因为角为的内角,所以. 又因为所以由正弦定理,得, 也就是, 因为,所以或. 当时,; 当时,. 26.已知函数的最小正周期为.ϕABC∆,,a b c ,,A B C 1,()a b f A ===C ()sin()f x x ϕ=+x π=0ϕπ<<2πϕ=()f A =6A π=sin B B C ()2f A =cos 2A =A ABC ∆6A π=1,a b ==sin sin a bA B=sin 1sin 22b A B a ===b a >4B π=34B π=4B π=76412C ππππ=--=34B π=36412C ππππ=--=2()2sin(0)2xf x x ωωω=->3π1求函数在区间上的最大值和最小值; 2已知分别为锐角三角形中角的对边,且满足,,求的面积.答案及解析:26.1,;2.试题分析:1利用三角恒等变换相关公式化简函数解析式得,由周期为,可求的值,由三角函数性质可求函数的最值.2及正弦定理可求得,从而是求出解的值,由可求出角及角,由正弦定理求出边,即可求三角形面积.27.已知函数.Ⅰ求函数fx 的单调递增区间;Ⅱ在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c .已知,a=2,,求△ABC 的面积.解答解:Ⅰ =sin2xcos+cos2xsin+cos2x=sin2x+cos2x=sin2x+cos2x=sin2x+.令 2kπ﹣≤2x+≤2kπ+,k ∈z,求得 kπ﹣≤x ≤kπ+,()f x 3[,]4ππ-,,a b c ABC ,,A B C 2,()1b f A ==2sin b A =ABC ∆min ()1f x =max ()1f x =33+()2sin()16f x x πω=+-3πω2sin b A =sin B =B ()1f A =4A π=51246C πππ==+a函数fx的单调递增区间为kπ﹣,kπ+,k∈z.Ⅱ由已知,可得 sin2A+=,因为A为△ABC内角,由题意知0<A<π,所以<2A+<,因此,2A+=,解得A=.由正弦定理,得b=,…由A=,由B=,可得 sinC=,…∴S=ab•sinC==.28.已知函数fx=Asinωx+φA>0,ω>0,|φ|<,x∈R,且函数fx的最大值为2,最小正周期为,并且函数fx的图象过点,0.1求函数fx解析式;2设△ABC的角A,B,C的对边分别为a,b,c,且f=2,c=,求a+2b的取值范围.解答解:1根据题意得:A=2,ω=4,即fx=2sin4x+φ,把,0代入得:2sin+φ=0,即sin+φ=0,∴+φ=0,即φ=﹣,则fx=2sin4x﹣;2由f=2sinC﹣=2,即sinC﹣=1,∴C﹣=,即C=,由正弦定理得: ==2R,即=2R=1,∴a+2b=2RsinA+4RsinB=sinA+2sinB=sinA+2sin﹣A=sinA+2sin cosA﹣2cossinA=sinA+cosA﹣sinA=cosA,∵<cosA<1,即<cosA<,∴a+2b的范围为,.29.已知函数fx=2cos2x+cos2x+.1若fα=+1,0<a<,求sin2α的值;2在锐角△ABC中,a,b,c分别是角A,B,C的对边;若fA=﹣,c=3,△ABC的面积S△ABC=3,求a的值.解答解:1化简可得fx=2cos2x+cos2x+=1+cos2x+cos2x﹣sin2x=cos2x﹣sin2x+1=cos2x++1,∴fα=cos2α++1=+1,∴cos2α+=,∵0<α<,∴0<2α+<,∴sin2α+==,∴2∵fx=cos2x++1,∴fA=cos2A++1=﹣,∴cos2A+=﹣,又∵A∈0,,∴2A+∈,,∴2A+=,解得A=又∵c=3,S △ABC =bcsinA=3,∴b=4由余弦定理得a 2=b 2+c 2﹣2bccosA=13, ∴a=30.已知函数13cos 3cos sin 3)(-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛++=πωπωωx x x x f 0>ω,R ∈x ,且函数)(x f 的最小正周期为π.1求函数)(x f 的解析式;2在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若0)(=B f ,23=⋅BC BA ,且4=+c a ,求b 的值.参考答案1, ……………3分 又,所以,, ………………………………………………5分所以,. …………………………………………………6分π()cos 12sin 16f x x x x ωωω⎛⎫=+-=+- ⎪⎝⎭πT =2=ωπ()2sin 216f x x ⎛⎫=+- ⎪⎝⎭2,故, 所以,或, 因为是三角形内角,所以.……9分 而,所以,, …………………………11分 又,所以,,所以,,所以,. …………………………………14分31.已知函数2()sin(2)2cos 1()6f x x x x π=--∈+R .Ⅰ求()f x 的单调递增区间;Ⅱ在△ABC 中,三个内角,,A B C 的对边分别为,,a b c ,已知()12f A =,且△ABC 外求a 的值. 试题解析:Ⅰ∵x x x x x x f 2cos 2cos 212sin 231cos 2)62sin()(2+-=-+-=π ………………2分x x 2cos 212sin 23+==)62sin(π+x ………………3分 由∈+≤+≤+-k k x k (226222πππππZ 得,∈+≤≤+-k k x k (63ππππZ 5分π()2sin 2106f B B ⎛⎫=+-= ⎪⎝⎭π1sin 262B ⎛⎫+= ⎪⎝⎭ππ22π66B k +=+π5π22π66B k +=+Z ∈k B π3B =3cos 2BA BC ac B ⋅=⋅=3=ac 4=+c a 1022=+c a 7cos 2222=-+=B ac c a b 7=a∴)(x f 的单调递增区间是∈++-k k k ](6,3[ππππZ (7)Ⅱ∵21)62sin()(=+=πA A f ,π<<A 0,62626ππππ+<+<A于是6562ππ=+A ∴ 3π=A ∵ABC ∆外接圆的半径为由正弦定理2sin a R A =,得2sin 3a R A ===,32.在中,分别是角A,B,C 的对边,已知,且1求的大小;2设且的最小正周期为,求在的最大值;试题解析:1∵ ∴∴ 又∵0<x < ∴A=2.==++=+== sin x+∵ = ∴=2 ∴=sin2x+∵ ∴2x+, ∴时.33.已知函数fx=sinxcosx++1.1求函数fx 的单调递减区间;2在△ABC中,a,b,c分别是角A、B、C的对边fC=,b=4,•=12,求c.解答解:1fx=sinx cosx﹣sinx+1=sin2x﹣+1=sin2x++.令≤2x+≤,解得≤x≤.∴函数fx的单调递减区间是,,k∈Z.2∵fC=sin2C++=,∴sin2C+=1,∴C=.∵•=abcosA=2a=12,∴a=2.由余弦定理得c2=a2+b2﹣2abcosC=12+16﹣24=4.∴c=2.34.在△ABC中,角A,B,C的对边分别为a,b,c,已知a2+c2﹣b2=ac,且b=c.1求角A的大小;2设函数fx=1+cos2x+B﹣cos2x,求函数fx的单调递增区间.解答解:1在△ABC中,因为,所以.…在△ABC中,因为,由正弦定理可得,所以,,,故…2由1得===…,得即函数fx 的单调递增区间为…35.ABC 的三个内角A,B,C 所对的边分别为a,b,c,已知46cos ,a .55A == 1当3B π=时,求b 的值;2设B x =02x π⎛⎫<< ⎪⎝⎭,求函数()22x f x b =+的值域.36.已知函数fx=sinxsinx+cosx .1求fx 的最小正周期和最大值;2在锐角三角形ABC 中,角A,B,C 的对边分别为a,b,c,若f =1,a=2,求三角形ABC面积的最大值. 解答解:1fx=sin 2x+sinxcosx=﹣cos2x+sin2x=sin2x ﹣.∴fx的最小正周期T==π,fx的最大值是.2∵f=sinA﹣+=1,∴sinA﹣=,∴A=.∵a2=b2+c2﹣2bccosA,∴12=b2+c2﹣bc,∴b2+c2=12+bc≥2bc,∴bc≤12.∴S==bc≤3.∴三角形ABC面积的最大值是3.37.已知向量=cos2x, sinx﹣,=1,,设函数fx=.Ⅰ求函数fx取得最大值时x取值的集合;Ⅱ设A,B,C为锐角三角形ABC的三个内角,若cosB=,fC=﹣,求sinA的值.解答解:Ⅰ∵向量=cos2x, sinx﹣,=1,,∴函数fx==cos2x+sinx﹣2=cos2x+sin2x+cos2x﹣sinxcosx=cos2x﹣sin2x+=cos2x++故当cos2x+=1时,函数fx取得最大值,此时2x+=2kπ,解得x=kπ﹣,k∈Z,故x取值的集合为{x|x=kπ﹣,k∈Z};Ⅱ∵A,B,C为锐角三角形ABC的三个内角,且cosB=,∴sinB==,又fC=cos2C++=﹣,∴cos2C+=﹣,∴2C+=,解得C=,∴sinA=sin﹣B=cosB+sinB==38..已知向量=sin2x+2,cosx,=1,2cosx,设函数fx=1求fx的最小正周期与单调递增区间;2在△ABC中,a,b,c分别是角A,B,C所对应的边,若fA=4,b=1,得面积为,求a的值.解答解:1∵向量=sin2x+2,cosx,=1,2cosx,∴函数fx=•=sin2x+2+2cos2x=sin2x+cos2x+3=2sin2x++3,∵ω=2,∴T=π,令2kπ﹣≤2x+≤2kπ+,k∈Z,得到kπ﹣≤x≤kπ+,k∈Z,则fx的最小正周期为π;单调递增区间为kπ﹣,kπ+,k∈Z;2由fA=4,得到2sin2A++3=4,即sin2A+=,∴2A+=或2A+=,解得:A=0舍去或A=,∵b=1,面积为,∴bcsinA=,即c=2,由余弦定理得:a2=b2+c2﹣2bccosA=1+4﹣2=3,则a=.39..设△ABC的内角A、B、C的对边长分别为a、b、c,设S为△ABC的面积,满足S=.Ⅰ求B;Ⅱ若b=,设A=x,,求函数y=fx的解析式和最大值.解答解:Ⅰ∵S=acsinB,cosB=,S=a2+c2﹣b2,∴acsinB=•2accosB,∴tanB=,又B∈0,π,∴B=;Ⅱ由Ⅰ知B=,△ABC的内角和A+B+C=π,又A>0,C>0,得0<A<,由正弦定理,知a===2sinx,c==2sin﹣x,∴y=﹣1a+2c=2﹣1sinx+4sin﹣x=2sinx+2cosx=2sinx+0<x<,当x+=,即x=时,y取得最大值2.40.在△ABC中,a,b,c分别是内角A,B,C的对边,且2a﹣ccosB﹣bcosC=0.1求∠B;2设函数fx=﹣2cos2x+B,将fx的图象向左平移后得到函数gx的图象,求函数gx的单调递增区间.解答解:1由2a﹣ccosB﹣bcosC=0及正弦定理得,2sinA﹣sinCcosB﹣sinBcosC=0,即2sinAcosB﹣sinB+C=0,因为A+B+C=π,所以sinB+C=sinA,因为sinA≠0,所以cosB=,由B是三角形内角得,B=,2由1得,B=,则fx=﹣2cos2x+B=﹣2cos2x+,所以gx=﹣2cos2x++,=﹣2cos2x+=2sin2x,由得,故函数gx的单调递增区间是:.41..已知函数 fx=sin2x﹣cos2x﹣,x∈R.1求函数fx的最小正周期和单调递减区间;2设△ABC的内角A,B,C的对边分别为a,b,c且c=,fC=0.若sinB=2sinA,求a,b的值.解答解:1∵fx=sin2x﹣cos2x﹣,x∈R.=sin2x﹣﹣=sin2x﹣﹣1∴T==π∴由2kπ+≤2x﹣≤2kπ+,k∈Z可解得:x∈kπ,kπ+ ,k∈Z∴fx单调递减区间是:kπ,kπ+,k∈Z2fC=sin2C﹣﹣1=0,则sin2C﹣=1∵0<C<π,∴C=∵sinB=2sinA,∴由正弦定理可得b=2a①∵c=,∴由余弦定理可得c2=a2+b2﹣ab=3②由①②可得a=1,b=2.42..在锐角△ABC中,角A,B,C的对边分别为a,b,c,且,1求角B的值;2设A=θ,求函数的取值范围.解:1∵由正弦定理得a=2RsinA,b=2RsinB,c=2RsinC,sinB+C=sinAcosB,∴cosB= ,∴B=.…2锐角△ABC中,A+B=,∴θ∈,,…=1﹣cos+2θ﹣cos2θ=1+sin2θ﹣cos2θ=sin2θ﹣cos2θ+1=2sin2θ﹣+1.…9分∵θ∈,,∴2θ﹣∈,,∴2<2sin2θ﹣+1≤3.所以:函数fθ的取值范围是2,3.…12分。
三角函数的应用解三角形

三角函数的应用解三角形三角函数是数学中的一个重要概念,广泛应用于解决各种与三角形相关的问题。
通过运用三角函数的知识,我们可以准确地计算并解决各类三角形相关的数学题。
本文将介绍三角函数的应用,并举例说明如何利用三角函数来解决三角形问题。
1. 正弦函数的应用正弦函数是三角函数中最常用的函数之一,它在解决三角形问题中具有重要作用。
我们知道,在一个任意三角形ABC中,正弦函数的定义为:sinA = 边BC/边AC,sinB = 边AC/边BC,sinC = 边AB/边AC。
根据这个定义,我们可以通过已知的边长和角度来求解未知的边长或角度。
举个例子,假设我们已知三角形ABC中的角A和边BC的长度,我们需要求解边AC和角B的值。
根据正弦函数的定义,我们可以列出以下方程:sinA = 边BC/边AC通过移项和替换公式,我们可以得到:边AC = 边BC/sinA角B = 180° - 角A - 角C通过以上公式,我们可以根据已知条件计算出边AC和角B的值,从而解决三角形问题。
2. 余弦函数的应用余弦函数也是三角函数中常用的函数之一,它在解决三角形问题中同样具有重要作用。
在一个任意三角形ABC中,余弦函数的定义为:cosA = 边BC/边AC,cosB = 边AC/边BC,cosC = 边AB/边AC。
同样地,我们可以通过已知的边长和角度来求解未知的边长或角度。
举个例子,假设我们已知三角形ABC中的角A和边AC的长度,我们需要求解边BC和角C的值。
根据余弦函数的定义,我们可以列出以下方程:cosA = 边BC/边AC通过移项和替换公式,我们可以得到:边BC = 边AC * cosA角C = 180° - 角A - 角B通过以上公式,我们可以根据已知条件计算出边BC和角C的值,从而解决三角形问题。
3. 正切函数的应用正切函数是三角函数中另一个常用的函数,它同样可以应用于解决三角形问题。
在一个任意三角形ABC中,正切函数的定义为:tanA = 边BC/边AC,tanB = 边AC/边BC,tanC = 边AB/边AC。
专题4-4 三角函数与解三角形大题综合归类-(原卷 版)

专题4-4 三角函数与解三角形大题综合归类目录一、热点题型归纳【题型一】三角函数求解析式:“识图”................................................................................................. 1 【题型二】图像与性质1:单调性与值域................................................................................................ 3 【题型三】图像与性质2:恒等变形:结构不良型 ................................................................................ 4 【题型四】图像与性质3:恒成立(有解)求参数 ................................................................................ 5 【题型五】图像与性质4:零点与对称轴................................................................................................ 6 【题型六】解三角形1:面积与周长常规................................................................................................ 8 【题型七】解三角形2:计算角度与函数值 ............................................................................................ 9 【题型八】解三角形3:求面积范围(最值) ...................................................................................... 10 【题型九】解三角形4:周长最值 ......................................................................................................... 11 【题型十】解三角形5:巧用正弦定理求“非对称”型 ...................................................................... 11 【题型十一】解三角形6:最值范围综合.............................................................................................. 12 二、真题再现 ............................................................................................................................................ 12 三、模拟测试 .. (14)【题型一】三角函数求解析式:“识图”【典例分析】(2023·全国·高三专题练习)函数()sin(π),R f x A x x ϕ=+∈(其中π0,02A ϕ>≤≤)部分图象如图所示,1(,)3P A 是该图象的最高点,M ,N 是图象与x 轴的交点.(1)求()f x 的最小正周期及ϕ的值;(2)若π4PMN PNM ∠+∠=,求A 的值.1.(2023·全国·高三专题练习)已知函数()()sin 0,0,02f x A x A πωϕωϕ⎛⎫=+>><< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)将()f x 图象上所有点的横坐标缩短到原来的12(纵坐标不变),得到函数()y g x =的图象,求函数()g x ≥.2.(2022·四川·宜宾市教科所三模(理))已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示:(1)求()f x ;(2)若2f α⎛⎫= ⎪⎝⎭()0,πα∈,求cos2α的值.3.(2022·全国·高三专题练习)已知函数()()sin ,0,0,2f x A x x R A ωϕωϕπ⎛⎫=+∈>>< ⎪⎝⎭部分图象如图所示.(1)求()f x 的最小正周期及解析式; (2)将函数()y f x =的图象向右平移3π个单位长度得到函数()y g x =的图象,求函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.【题型二】图像与性质1:单调性与值域【典例分析】(2022·浙江·高三开学考试)已知函数()21cos cos 2f x x x x =⋅-. (1)求函数()f x 的单调递增区间; (2)求()f x 在区间[0,2π]上的最值.【变式演练】1.(2022·湖北·高三开学考试)已知函数2()sin cos sin sin 44f x x x x x x ππ⎛⎫⎛⎫=+++- ⎪ ⎪⎝⎭⎝⎭.(1)求()f x 的最小正周期;(2)若[0,]x π∈,求出()f x 的单调递减区间.2.(2022·黑龙江·双鸭山一中高三开学考试)已知函数()sin 2cos 22sin cos .36f x x x x x ππ⎛⎫⎛⎫=+++- ⎪ ⎪⎝⎭⎝⎭(1)求函数()f x 的最小正周期及对称轴方程;(2)将函数()y f x =的图象向左平移12π个单位,再将所得图象上各点的纵坐标不变、横坐标伸长为原来的2倍,得到函数()y g x =的图象,求()y g x =在[0,2π]上的单调递减区间.3.(2022·全国·高三专题练习)已知函数()()()2sin cos cos 04f x x x x ππωωωω⎛⎫=--+> ⎪⎝⎭的最小正周期为π.(1)求()f x 图象的对称轴方程;(2)将()f x 的图象向左平移6π个单位长度后,得到函数()g x 的图象,求函数()g x 在0,2π⎡⎤⎢⎥⎣⎦上的值域.【题型三】图像与性质2:恒等变形:结构不良型【典例分析】(2023·全国·高三专题练习)在①sin α=①2tan 40αα-=这两个条件中任选一个,补充到下面的问题中,并解答.已知角a 是第一象限角,且___________. (1)求tan α的值;(2)3)cos()cos(3)2πααπαπ+++-的值.注:如果选择多个条件分别解答,按第一个解答计分.【变式演练】1.(2022·北京·二模)已知函数2()cos cos (0,)ωωωω=++>∈R f x x x x m m .再从条件①、条件①、条件①这三个条件中选择能确定函数()f x 的解析式的两个作为已知. (1)求()f x 的解析式及最小值;(2)若函数()f x 在区间[]0,(0)t t >上有且仅有1个零点,求t 的取值范围. 条件①:函数()f x 的最小正周期为π;条件①:函数()f x 的图象经过点10,2⎛⎫⎪⎝⎭;条件①:函数()f x 的最大值为32.注:如果选择的条件不符合要求,得0分;如果选择多组符合要求的条件分别解答,按第一组解答计分.2.(2023·全国·高三专题练习)已知函数()()sin cos 0,0f x a x x a ωωω=>>.从下列四个条件中选择两个作为已知,使函数()f x 存在且唯一确定.条件①:π14f ⎛⎫= ⎪⎝⎭;条件①:()f x 为偶函数;条件①:()f x 的最大值为1;条件①:()f x 图象的相邻两条对称轴之间的距离为π2. 注:如果选择的条件不符合要求,第(1)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.(1)求()f x 的解析式;(2)设()()22cos 1g x f x x ω=-+,求函数()g x 在()0,π上的单调递增区间.3.(2023·全国·高三专题练习)已知函数()()2sin cos f x a x x x x =∈R ,若__________.条件①:0a >,且()f x 在x ∈R 时的最大值为1条件①:6f π⎛⎫= ⎪⎝⎭请写出你选择的条件,并求函数()f x 在区间,43ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.注:如果选择条件①和条件①分别解答,按第一个解答计分.【题型四】图像与性质3:恒成立(有解)求参数【典例分析】(2023·全国·高三专题练习)已知函数()π2sin()3f x x =+.(1)若不等式()3f x m -≤对任意ππ[,]63x ∈-恒成立,求整数m 的最大值;(2)若函数()π()2g x f x =-,将函数()g x 的图象上各点的横坐标缩短到原来的12倍(纵坐标不变),再向右平移12π个单位,得到函数()y h x =的图象,若关于x 的方程()102h x k -=在π5π[,]1212x ∈-上有2个不同实数解,求实数k 的取值范围.【变式演练】1.(2023·全国·高三专题练习)已知平面向量2sin 2,26m x π⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,()21,sin n x =,()f x m n =⋅,其中0,2x π⎡⎤∈⎢⎥⎣⎦. (1)求函数()f x 的单调增区间; (2)将函数()f x 的图象所有的点向右平移12π个单位,再将所得图象上各点横坐标缩短为原来的12(纵坐标不变),再向下平移1个单位得到()g x 的图象,若()g x m =在5,824x ππ⎡⎤∈-⎢⎥⎣⎦上恰有2个解,求m 的取值范围.2.(2023·全国·高三专题练习)已知函数()sin()0,0,02f x A x A πωϕωϕ⎛⎫=+>><< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)先将函数()f x 的图象向右平移3π个单位长度,再将所得图象上各点的纵坐标不变,横坐标变为原来的2倍,得到()g x 的图象.(i )若0m >,当[0,]x m ∈时,()g x 的值域为[2],求实数m 的取值范围;(ii )若不等式2()(21)()10g x t g x t -+--≤对任意的,32x ππ⎡⎤∈⎢⎥⎣⎦恒成立,求实数t 的取值范围.3.(2022·全国·高三专题练习)已知:函数()2sin cos f x x x x =. (1)求()f x 的最小正周期; (2)求()f x 的单调递减区间;(3)若函数()()g x f x k =-在π0,4⎡⎤⎢⎥⎣⎦上有两个不同的零点,写出实数k 的取值范围.(只写结论)【题型五】图像与性质4:零点与对称轴【典例分析】(2022·全国·高三专题练习)已知函数()4cos cos 1(0)3f x x x πωωω⎛⎫=⋅-- ⎪>⎝⎭的部分图像如图所示,若288AB BC π⋅=-,B ,C 分别为最高点与最低点.(1)求函数()f x 的解析式;(2)若函数()y f x m =-在130,12π⎡⎤⎢⎥⎣⎦,上有且仅有三个不同的零点1x ,2x ,3x ,(123x x x <<),求实数m 的取值范围,并求出123 cos (2)x x x ++的值.【变式演练】1.(2023·全国·高三专题练习)已知函数()sin()0,0,||2f x A x B A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)将函数()y f x =的图象上所有的点向右平移12π个单位,再将所得图象上每一个点的横坐标变为原来的2倍(纵坐标不变),得到函数()y g x =的图象.当130,6x π⎡⎤∈⎢⎥⎣⎦时,方程()0g x a -=恰有三个不相等的实数根()123123,,x x x x x x <<,求实数a 的取值范围和1232x x x ++的值.2.(2023·全国·高三专题练习)已知函数()sin()0,0,||2f x A x B A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)将函数()y f x =的图象上所有的点向右平移12π个单位,再将所得图象上每一个点的横坐标变为原来的2倍(纵坐标不变),得到函数()y g x =的图象,若方程()0g x m -=在70,3π⎡⎤⎢⎥⎣⎦上有三个不相等的实数根()123123,,x x x x x x <<,求m 的取值范围及()123tan 2x x x ++的值.3.(2023·全国·高三专题练习)已知数2()2sin 1(0)6212x f x x πωπωω⎛⎫⎛⎫=+++-> ⎪ ⎪⎝⎭⎝⎭的相邻两对称轴间的距离为2π. (1)求()f x 的解析式;(2)将函数()f x 的图象向右平移6π个单位长度,再把各点的横坐标缩小为原来的12(纵坐标不变),得到函数()y g x =的图象,当,126x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()g x 的值域;(3)对于第(2)问中的函数()g x ,记方程4()3g x =在4,63x ππ⎡⎤∈⎢⎥⎣⎦上的根从小到大依次为12,,n x x x ,若m =1231222n n x x x x x -+++++,试求n 与m 的值.【题型六】解三角形1:面积与周长常规【典例分析】(2022·安徽·高三开学考试)在ABC 中,点,M N 分别在线段,BC BA 上,且,BM CM ACN BCN =∠=∠,3,22AB AM AC ===.(1)求BM 的长;(2)求BCN △的面积.【变式演练】1.(2022·北京·高三开学考试)在ABC 中,角A ,B ,C 的对边分别为,,,sin2sin =a b c C C . (1)求C ∠;(2)若1b =,且ABCABC 的周长.2.(2022·江苏·南京市金陵中学河西分校高三阶段练习)已知ABC 的三个内角,,A B C 所对的边分别为a ,b ,c ,)tan tan tan tan 1+=B C B C . (1)求角A 的大小;(2)若1a =,21)0c b -=,求ABC 的面积.3.(2022·云南昆明·高三开学考试)已知ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,sin cos 0B b A -=. (1)求A ;(2)若c =a =ABC 的面积.【题型七】解三角形2:计算角度与函数值【典例分析】(2022·全国·高三专题练习)在ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知12,cos 4a b c A ==-.(1)求c 的值; (2)求sin B 的值; (3)求sin(2)A B -的值.【变式演练】1.(2021·天津静海·高三阶段练习)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,满足()()2sin 2sin 2sin a b A b a B c C -+-=. (1)求角C 的大小;(2)若c =4a b +=,求ABC 的面积.(3)若cos =A ,求()sin 2A C -的值.2.(2022·北京市第二十二中学高三开学考试)已知ABC 的内角,,A B C 所对的对边分别为,,a b c ,周长为1,且sin sin A B C +. (1)求c 的值;(2)若ABC 的面积为1sin 6C ,求角C 的大小.3.(2022·青海玉树·高三阶段练习(文))在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且ABC 的面积)222S a c b =+-. (1)求角B 的大小;(2)若2a c =,求sin C .【题型八】解三角形3:求面积范围(最值)【典例分析】(2022·云南·昆明一中高三开学考试)已知ABC 的内角,,A B C 所对边分别为,,a b c ,且222sin sin sin sin A B C B C -=. (1)求A ;(2)若a =ABC 面积的最大值.【变式演练】1.(2022·河南·高三开学考试(文))已知,,a b c 分别为ABC 的内角,,A B C 所对的边,且()()sin sin sin sin a c b A C B c B +--+=(1)求角A 的大小;(2)若a =ABC 面积的最大值.2.(2022·湖南·麻阳苗族自治县第一中学高三开学考试)在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .已知ABC 的外接圆半径R =tan tan B C +=.(1)求B 和b 的值;(2)求ABC 面积的最大值.3.(2021·江苏·矿大附中高三阶段练习)ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,设sin cos sin (2cos )A B B A =-.(1)若b c +,求A ;(2)若2a =,求ABC 的面积的最大值.【题型九】解三角形4:周长最值【典例分析】(2022·黑龙江·双鸭山一中高三开学考试)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且222sin sin sin sin sin A B C A B +-=. (1)求角C 的大小;(2)若ABCABC 周长的取值范围.【变式演练】1.(2022·广东·深圳外国语学校高三阶段练习)已知ABC 中,内角,,A B C 所对边分别为,,a b c ,若()2cos cos 0a c B b C --=.(1)求角B 的大小;(2)若2b =,求a c +的最大值.2.(2022·湖北·襄阳五中高三开学考试)在锐角ABC 中,角A ,B ,C ,的对边分别为a ,b ,c ,从条件①:3sin cos tan 4A A A =,条件①12=,条件①:2cos cos cos a A b C c B -=这三个条件中选择一个作为已知条件. (1)求角A 的大小;(2)若2a =,求ABC 周长的取值范围.3.(2022·广东·高三开学考试)已知锐角ABC 中,角A 、B 、C 所对边为a 、b 、c ,= (1)求角A ;(2)若4a =,求b c +的取值范围.【题型十】解三角形5:巧用正弦定理求“非对称”型【典例分析】(2022·四川成都·模拟预测(理))①ABC 中,角,,A B C 所对边分别是,,a b c ,tan tan 2tan tan A AB C bc,cos cos 1b C c B +=.(1)求角A 及边a ; (2)求2b c +的最大值.【变式演练】1.(2022·全国·南京外国语学校模拟预测)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且5sin sin 35cos cos cos2B C B C A -=+. (1)求角A 的大小;(2)若a =2b c +的最大值.2..(2022·辽宁·抚顺市第二中学三模)在①()()222sin 2sin B c a C b c a b -=+-,①23cos cos cos 24A C A C --=,tan tan A B =+这三个条件中,任选一个,补充在下面问题中,问题:在ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,b =_______. (1)求角B ﹔(2)求2a c -的范围.【题型十一】解三角形6:最值范围综合【典例分析】(2022·浙江·高三开学考试)记ABC 内角,,A B C 的对边分别是,,a b c ,已知tan tan 2tan tan tan B CB A A=-.(1)求证:2222b c a +=;(2)求2abc 的取值范围.【变式演练】1.(2022·辽宁·渤海大学附属高级中学模拟预测)ABC 的内角A 、B 、C 所对边的长分别为a 、b 、c ,已cos sin B b C =+. (1)求C 的大小;(2)若ABC 为锐角三角形且c =22a b +的取值范围.2.(2022·湖南湘潭·高三开学考试)设ABC 的内角,,A B C 的对边分别为,,a b c ,A 为钝角,且tan bB a =.(1)探究A 与B 的关系并证明你的结论; (2)求cos cos cos A B C ++的取值范围.1.(2022·天津·高考真题)在ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知12,cos 4a b c A ===-.(1)求c 的值; (2)求sin B 的值; (3)求sin(2)A B -的值. 2.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知12313S S S B -+==.(1)求ABC 的面积;(2)若sin sin A C =,求b . 3.(2022·全国·高考真题(文))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-. (1)若2A B =,求C ; (2)证明:2222a b c =+4.(·浙江·高考真题(理))已知ABC 的内角,,A B C 所对的对边分别为,,a b c 1,且sin sin A B C +. (1)求c 的值;(2)若ABC 的面积为1sin 6C ,求角C 的大小.5.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ;(2)求222a b c +的最小值.6.(2020·山东·高考真题)小明同学用“五点法”作某个正弦型函数sin()0,0,2y A x A ωϕωϕπ⎛⎫=+>>< ⎪⎝⎭在根据表中数据,求:(1)实数A ,ω,ϕ的值;(2)该函数在区间35,44ππ⎡⎤⎢⎥⎣⎦上的最大值和最小值.7.(山东·高考真题)已知函数()2sin 2y x ϕ=+,x ∈R ,π02ϕ<<,函数的部分图象如下图,求(1)函数的最小正周期T 及ϕ的值: (2)函数的单调递增区间.8.(2021·天津·高考真题)在ABC ,角 ,,A B C 所对的边分别为,,a b c ,已知sin :sin :sin 2A B C =b =(I )求a 的值; (II )求cos C 的值;(III )求sin 26C π⎛⎫- ⎪⎝⎭的值.9.(2021·全国·高考真题)在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+.. (1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.10.(2021·北京·高考真题)在ABC 中,2cos c b B =,23C π=.(1)求B ;(2)再从条件①、条件①、条件①这三个条件中选择一个作为已知,使ABC 存在且唯一确定,求BC 边上中线的长.条件①:c =;条件①:ABC 的周长为4+条件①:ABC11.(2023·全国·高三专题练习)在ABC 中.3sin cos 64A A π⎛⎫-= ⎪⎝⎭.(1)求角A ;(2)若8AC =,点D 是线段BC 的中点,DE AC ⊥于点E ,且DE =CE 的长.1.(2022·浙江省杭州学军中学模拟预测)已知函数()()sin y f x A x B ωϕ==++(其中A ,ω,ϕ,B 均为常数,且0A >,0>ω,ϕπ<)的部分图像如图所示.(1)求()f x 的解析式;(2)若5()126g x f x f x ππ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,,02x π⎛⎫∈- ⎪⎝⎭,求()g x 的值域.2.(2022·全国·高三专题练习)已知向量(sin a x =,(1,cos )b x =.(1)若a b ⊥,求sin 2x 的值;(2)令()f x a b =⋅,把函数()f x 的图像上每一点的横坐标都缩短为原来的一半(纵坐标不变),再把所得的图像沿x 轴向左平移6π个单位长度,得到函数()g x 的图像,求函数()g x 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.3.(2023·全国·高三专题练习)已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,再从条件①、条件①、条件①这三个条件中选择两个作为一组已知条件,使()f x 的解析式唯一确定. (1)求()f x 的解析式;(2)设函数()()6g x f x f x π⎛⎫=++ ⎪⎝⎭,求()g x 在区间0,4⎡⎤⎢⎥⎣⎦π上的最大值.条件①:()f x 的最小正周期为π;条件①:()00f =;条件①:()f x 图象的一条对称轴为4x π=. 注:如果选择多组条件分别解答,按第一个解答计分.4.(2023·全国·高三专题练习)已知函数()()()3,sin 26f x x x a a a g x x π⎛⎫=--+∈=+ ⎪⎝⎭R .(1)若()f x 为奇函数,求实数a 的值;(2)若对任意[]10,1x ∈,总存在20,2x π⎡⎤∈⎢⎥⎣⎦,使()()12f x g x =成立,求实数a 的取值范围.5.(2023·全国·高三专题练习)已知函数()2sin 216f x x πω⎛⎫=++ ⎪⎝⎭.(1)若()()()12f x f x f x ≤≤,12min 2x x π-=,求()f x 的对称中心;(2)已知05ω<<,函数()f x 图象向右平移6π个单位得到函数()g x 的图象,3x π=是()g x 的一个零点,若函数()g x 在[],m n (m ,n R ∈且m n <)上恰好有10个零点,求n m -的最小值; 6、(2022·安徽·高三开学考试)记ABC 的内角,,A B C 的对边分别为,,a b c ,且23,2b c B C ==.(1)求cos C ;(2)若5a =,求c .7.(2022·广西·模拟预测(文))设ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,且2cos 2sin c b A b A -=. (1)证明:()sin 2sin sin A B B A -=; (2)若3A B =,求B 的值.8.(2022·全国·高三专题练习)在①2cos cos c b B a A -=;①sin cos 2AA =;()sin a C C =,这三个条件中任选一个,补充在下面的横线上,并加以解答.在ABC 中,角,,A B C 的对边分别是,,a b c ,若__________.(填条件序号) (1)求角A 的大小;(2)若3a =,求ABC 面积的最大值.注:如果选择多个条件分别解答,按第一个解答计分.9.(2021·福建省华安县第一中学高三期中)在①π1cos cos 32B B ⎛⎫-=+ ⎪⎝⎭,①sin (sin sin )sin a A c C A b B +-=,tan tan A B =+这三个条件中,任选一个,补充在下面问题中.问题:在ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,b =______________. (1)求角B ;(2)求a c +的最大值.注:如果选择多个条件分别解答,按第一个解答计分. 10.(2022·山东烟台·三模)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且22cos cos 2cos b a A C c A =+. (1)求角A ;(2)若4a =,求2c b -的取值范围.11.(2023·全国·高三专题练习)在ABC 中,点D 在边BC 上,3AB =,2AC =. (1)若AD 是BAC ∠的角平分线,求:BD DC ;(2)若AD 是边BC 上的中线,且AD =,求BC .12.(2022·全国·模拟预测(文))在①3cos210cos 10A A +-=,①sin cos A A -=①tan 2A =三个条件中任选一个,补充在下面的问题中,并作答.如果多选,则按第一个解答给分. 已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且______ (1)求cos A ;(2)sin sin B C 的最大值.。
如何应用三角函数解决初中几何问题

如何应用三角函数解决初中几何问题在初中数学的学习过程中,几何问题是一个重要的知识点。
而三角函数作为几何学的重要工具,可以帮助我们解决很多初中几何问题。
本文将介绍如何应用三角函数来解决初中几何问题,并以具体案例进行说明。
一、利用正弦定理解决三角形问题正弦定理是应用三角函数解决三角形问题的重要工具之一。
当我们遇到三角形的边长和角度的关系问题时,可以利用正弦定理来求解。
正弦定理的表达式为:a/sinA = b/sinB = c/sinC,其中a、b、c分别是三角形的边长,A、B、C分别是三角形对应的角度。
例如,已知三角形ABC,已知角A的度数为40°,边AC的长度为10 cm,边BC的长度为8 cm,我们可以利用正弦定理来求解角B的度数。
根据正弦定理可得:10/sin40° = 8/sinB通过求解这个方程,可以得到sinB的值,再通过逆正弦函数求解出角B的大小。
二、利用余弦定理解决三角形问题余弦定理也是应用三角函数解决三角形问题的重要方法之一。
当我们已知三角形的两边和夹角的关系时,可以利用余弦定理求解未知角度或边长。
余弦定理的表达式为:c² = a² + b² - 2abcosC,其中a、b、c分别是三角形的边长,C为两边夹角的大小。
例如,已知三角形ABC,已知边AB的长度为4 cm,边AC的长度为5 cm,角B的度数为60°,我们可以利用余弦定理来求解边BC的长度。
根据余弦定理可得:BC² = 4² + 5² - 2*4*5*cos60°通过求解这个方程,可以得到BC的长度。
三、利用正弦函数解决高度问题在解决一些高度与角度的关系问题时,可以利用正弦函数来求解。
例如,已知一个三角形ABC,已知角A的度数为30°,边AB的长度为10 m,需要求解边BC的垂直高度CD。
根据正弦函数我们可以得到 sin30° = CD / 10通过求解这个方程,可以得到CD的长度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
sin B=2sin Asin C・
(1)右a=b,求cosB;[来源:学科网zxxk]
(2)设B=90°,且a=込,求厶ABC的面积.
教 学 效 果 分 析
6.(2015山东高考)△ABC中,角A,B,C所对的边分别为a,b,c.已知cosB=3,sin(A+B)=^6,ac=2 3,求sin A和c的值.
39
7.(2015全国卷n)△ABC中,D是BC上的点,AD平分/BAC,BD=2DC.
亠sin B
(1)求sin C;
(2) 若/BAC=60°,求/B.
8.(2015浙江高考)在厶ABC中,内角A,B,C所对的边分别为a,b,
学思 堂教育 个性化 教程教案数学学生姓名教师姓名刘梦凯
班主任
日期
时间段
年级
课时
教学内容
教学目标
重点
难点
教 学 过 程
命题点二解三角形
难度:高、中、低命题指数:☆☆☆☆☆
1.(2015安徽高考)在厶ABC中,AB={6,/A=75°,/B=45。,贝U
AC=.
2.(2015广东高考改编)设厶ABC的内角A,B,C的对边分别为a,b,
c若a=2-c=2百-cos A=专且bV C,贝V b=.
2 n
3.(2015北京高考)在厶ABC中,a=3,b=p6,/A=-3,则/B=
4.(2015福建高考)若厶ABC中,A C ={3,A=45°,C=75°,贝U
BC=.
5.(2015全国卷I )已知a,b,c分别为△ABC内角A,B,C的对边,