初中几何图形题解题技巧

合集下载

初中数学几何题解题技巧

初中数学几何题解题技巧

初中数学几何题解题技巧立体几何是初中数学中的重要内容,也是学习的难点,而且在中考中立体几何属于必考点,通常在一个题目中会包含多个立体几何的考查点,掌握立体几何解题技巧至关重要。

那么接下来给大家分享一些关于初中数学几何题解题技巧,希望对大家有所帮助。

一.添辅助线有二种情况1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

初中二年级几何学习技巧利用分数解决几何问题

初中二年级几何学习技巧利用分数解决几何问题

初中二年级几何学习技巧利用分数解决几何问题初中二年级几何学习技巧:利用分数解决几何问题初中阶段是学习几何的关键时期,掌握好几何学习的技巧对于学生们的数学成绩至关重要。

本文将介绍一些初中二年级学生可以利用分数来解决几何问题的技巧。

一、分数的引入和理解在学习几何时,我们经常会遇到分数的概念。

分数可以表示图形的部分与整体之间的比例关系,因此在解决几何问题时,合理运用分数是很重要的。

首先,我们需要引入分数的概念,让学生理解分数的含义和使用场景。

例如,在解决长度比例问题时,我们可以让学生使用分数表示两个线段的比例关系。

通过将线段等分、测量线段长度等活动,让学生逐渐理解分数的表示方法和意义。

二、在平面几何中应用分数1. 利用分数计算图形面积学生可以利用分数计算简单图形的面积,如矩形、三角形等。

以矩形为例,学生可以按照以下步骤进行计算:(1)将矩形分割成若干个小正方形或小矩形;(2)统计小矩形的数量;(3)以小矩形面积为单位,计算整个矩形的面积。

2. 利用分数计算图形的比例尺在图形的缩放和变形问题中,比例尺的计算是必不可少的。

学生可以利用分数来计算图形的放大或缩小比例。

例如,当要求将一个图形放大到原来的两倍时,学生可以使用2/1来表示放大的比例。

三、在空间几何中应用分数1. 利用分数计算体积在学习立体几何时,计算体积是常见的问题。

通过将立体图形分割为小块,然后计算小块的体积并加总,学生可以利用分数来计算立体图形的体积。

2. 利用分数计算表面积同样,在计算立体图形的表面积时,也可以运用分数。

将立体图形分解成各个面的组合,计算每个面的面积再求和,就可以得到立体图形的表面积。

四、综合运用分数解决几何问题通过以上的技巧,学生可以逐渐掌握在几何问题中使用分数的能力。

在实际解题时,学生还需要注意几何问题的转化,将问题转化为使用分数进行计算的形式。

例如,当要求计算一个图形的面积时,学生可以先寻找到具体的形状,然后根据分数计算对应形状的面积并进行相应的运算,最后得到结果。

中考几何解题技巧

中考几何解题技巧

中考几何解题技巧
中考几何解题技巧主要包括以下几点:
1. 图形认知:首先要熟悉常见的几何图形,了解它们的性质和特点。

通过练习和观察,掌握直线、角、三角形、四边形等基本图形的定义和性质。

2. 绘制图形:遇到几何问题时,尽量将图形绘制出来,并按照已知条件进行标记。

这样有助于更好地理解问题并找出解题思路。

3. 利用几何定理和公式:根据题目给出的条件,运用几何定理和公式进行推理和计算。

例如,利用三角形内角和为180度、相似三角形的性质、平行线的性质等。

4. 利用对称性质:如果题目中存在图形的对称性质,可以利用对称性进行推理和计算。

例如,利用对称轴或对称图形的对应部分相等的特点。

5. 利用反证法:有时候可以运用反证法进行证明或推理。

假设结论不成立,然后推导出矛盾的结论,从而证明所假设的条件是正确的。

6. 多角度思考:如果某种方法无法解决问题,可以尝试从不同的角度思考,寻找其他可能的解决办法。

灵活运用多种方法可以提高解题效率。

7. 培养逻辑思维:几何问题常常需要运用逻辑推理和分析能力,在解题过程中
要注重思考和推敲每一步的合理性。

通过不断练习和积累经验,结合上述技巧,可以提高在中考几何题目上的解题能力和应对问题的能力。

初中数学几何动点问题解题技巧

初中数学几何动点问题解题技巧

初中数学几何动点问题解题技巧初中数学中的几何动点问题是一个常见的考点,也是令很多学生感到头疼的问题。

然而,只要掌握了解题技巧,就能够迎刃而解。

下面,我们就一起来了解一下初中数学几何动点问题解题技巧吧!一、建立坐标系首先,我们需要建立一个适合题目的坐标系,把图形往坐标系上放。

这个坐标系可以是平面直角坐标系或极坐标系,具体是哪种坐标系,需要根据题目要求确定。

二、确定动点接下来,我们需要确定几何图形中的动点,画出动点在坐标系上的轨迹。

通常来说,轨迹可以是一个直线、一个抛物线、一个圆、一个椭圆甚至一个不规则图形等等。

三、列方程有了轨迹,我们就可以根据题目所给条件列出方程,从而解题了。

核心思想是,假设动点的坐标为(x,y),然后利用题目给出的条件,将x和y用一个或多个方程表示出来。

四、解方程列出方程后,我们就可以解方程了。

根据方程的形式不同,我们可以采用不同的方法解方程,如代入法、消元法等等。

五、验证答案最后,我们需要验证答案是否合理。

一般情况下,我们需要将求出的结果代入题目中,看看能否符合题目给出的条件。

如果符合条件,那么我们的答案就是正确的。

在解初中数学几何动点问题时,我们需要注意以下几点:1. 确定坐标系时,要选择适合题目的坐标系。

2. 在列出方程时,要注意是否有无效信息,如引入了负数、零,或者不可取的解等等。

3. 解方程时,要注意正确使用代入法、消元法等各种解法,尤其是在多解的情况下,选择符合题意的解。

4. 最后,做题要认真,润色答案要细心,保证答案的正确性。

通过以上的步骤,我们就能够迎刃而解初中数学几何动点问题,而且效率也会大大提高!。

初中数学几何模型的60种解题技巧

初中数学几何模型的60种解题技巧

初中数学作为学生学习的基础课程之一,其中的几何模型在数学解题中占据着重要的地位。

掌握几何模型的解题技巧不仅可以帮助学生更好地理解数学知识,还可以提高他们的解题效率。

本文将介绍初中数学几何模型的60种解题技巧,希望能为学生们的学习提供帮助。

1. 角度概念的运用:在几何模型的解题过程中,学生可以通过具体的角度概念来解答问题,例如利用垂直角、平行线、内角和为180度等概念来解题。

2. 图形相似的判断:判断两个图形是否相似是解题的基础,学生可以利用边长比例、角度比例等方法来确定图形的相似性。

3. 平行线相关性质的应用:平行线的性质在几何模型的解题中经常会出现,学生可以通过平行线与角度的关系来解答问题。

4. 圆的相关性质的利用:圆的性质在几何模型中也是常见的,学生需要掌握圆的直径、半径、圆心角等概念,以便解题。

5. 三角形的分类和性质的运用:学生需要掌握等边三角形、等腰三角形、直角三角形等不同类型三角形的性质,并根据题目的要求来进行合理的运用。

6. 应用解题:在学习几何模型的解题过程中,学生需要结合实际的应用场景,将抽象的几何原理与具体的问题相结合来解答问题。

7. 连线问题的求解:对于一些多边形的连线问题,学生可以通过几何模型的知识来进行合理的求解。

8. 几何图形的对称性:对称图形在几何模型中也是常见的,学生可以通过对称性来解答与对称图形相关的问题。

9. 正多边形的性质:正多边形的性质是几何模型解题中的重要内容,学生需要掌握正多边形的内角和为180度、外角的性质等知识。

10. 形状的变换:在几何模型的解题中,学生需要掌握形状的平移、旋转、翻转等变换操作,以便解答形状变换后的问题。

11. 圆的面积和周长的求解:学生需要掌握圆的面积和周长的相关公式,并结合题目要求来进行求解。

12. 三角形的面积和周长的求解:学生需要掌握不同类型三角形的面积和周长的求解方法,并灵活运用到不同的题目中。

13. 平行四边形的面积和周长的求解:平行四边形的面积和周长的求解也是初中数学几何模型解题的重要内容,学生需要掌握相关公式及其应用。

初中几何经典例题及解题技巧

初中几何经典例题及解题技巧

初中几何证明技巧及经典试题证明两线段相等1. 两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

*9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

*10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

*12.两圆的内(外)公切线的长相等。

13.等于同一线段的两条线段相等。

证明两个角相等1.两全等三角形的对应角相等。

2.同一三角形中等边对等角。

3.等腰三角形中,底边上的中线(或高)平分顶角。

4.两条平行线的同位角、内错角或平行四边形的对角相等。

5.同角(或等角)的余角(或补角)相等。

*6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。

*7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。

8.相似三角形的对应角相等。

*9.圆的内接四边形的外角等于内对角。

10.等于同一角的两个角相等。

证明两条直线互相垂直1.等腰三角形的顶角平分线或底边的中线垂直于底边。

2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。

3.在一个三角形中,若有两个角互余,则第三个角是直角。

4.邻补角的平分线互相垂直。

5.一条直线垂直于平行线中的一条,则必垂直于另一条。

6.两条直线相交成直角则两直线垂直。

7.利用到一线段两端的距离相等的点在线段的垂直平分线上。

8.利用勾股定理的逆定理。

9.利用菱形的对角线互相垂直。

*10.在圆中平分弦(或弧)的直径垂直于弦。

初中几何题解题技巧(带例题)

初中几何题解题技巧(带例题)
S△ACD ,则 S 四边形 EFGO=S 阴影-S△ACD 。四边形 EFGO 的面积为:880 -1500÷2=130(平方厘米)。
练一练 7: 如图 19 所示,已知平行四边形 EFGH 的底是 8 厘米,高是 6 厘 米,阴影部分的面积是 16 平方厘米,求四边形 ABCD 的面积。
八、两次求差法 两次求差法是指根据图形之间相容相斥的原理,通过两次求差求出面积的方 法。 例 8 如图 20,长方形 ABCD 的长是 6 厘米,宽是 4 厘米,求阴影部分的面积。
分析与解:通过作辅助线,可以将三角形 ABC 平均分成 16 个完全一样的小 三角形(如图 11 所示),阴影部分为其中 3 个小三角形,即阴影部分的面积占 三角形 ABC 的面积的。阴影部分的面积为:48×=9(平方分米)。
练一练 4: 如图 12 所示,长方形 ABCD 的长是 10 厘米,宽是 6 厘米,E、F 分别是 AB 和 AD 的中点,求阴影部分的面积。
七、等量代换法 等量代换法是指根据题目中图形之间面积相等的关系,以此代彼,相互替换, 从而求出面积的方法。 例 7 如图 18,长方形 ABCD 的面积为 1500 平方厘米,阴影部分的面积为 880 平方厘米,求四边形 EFGO 的面积。
分析与解:在长方形 ABCD 中,△ABF 与△DBF 同底(即 BF 的长)、等高(即 长方形的宽),所以 S△ABF= S△DBF 。若从这两个三角形中同时减去△BEF, 则剩下的图形面积相等,即:S△ABE=S△DEF 。这样 S 阴影=S 四边形 EFGO+
分析与解:通过仔细观察图形,我们可以发现:在大圆中,与阴影Ⅰ、阴影 Ⅱ、阴影Ⅲ面积相等的图形均有 4 个,其中阴影 1 个,空白 3 个。要求阴影部分 的面积,就相当于把大圆的面积平均分成 4 份,求其中一份的面积,列式为: 3.ቤተ መጻሕፍቲ ባይዱ4×(20÷2)2÷4=78.5(平方厘米)。

初中几何最值问题解题技巧

初中几何最值问题解题技巧

初中几何最值问题解题技巧初中几何最值问题是一个比较常见的问题,通常涉及到线段、角度、面积等几何元素的最小值或最大值的求解。

下面将详细讲解一些常见的解题技巧:1.利用轴对称性转化:对于一些具有轴对称性的几何图形,可以利用轴对称性将问题转化为更简单的问题。

例如,对于一个关于直线对称的图形,可以找到对称轴,然后将问题转化为求解对称轴上的点到原图形的最短距离或最大距离。

2.利用三角形不等式:三角形不等式是解决几何最值问题的重要工具。

例如,对于一个三角形,任意两边之和大于第三边,任意两边之差小于第三边。

利用这些不等式,可以推导出一些关于几何元素的最值关系。

3.利用特殊位置和极端位置:在解决几何最值问题时,可以考虑特殊位置或极端位置的情况。

例如,对于一个矩形,当它的一条对角线与矩形的一条边垂直时,该对角线的长度达到最小值。

对于一个三角形,当它的一条边与另一条边的延长线垂直时,该三角形的面积达到最小值。

4.利用几何定理:几何定理是解决几何最值问题的有力工具。

例如,对于一个三角形,当它的一条边与另一条边的中线重合时,该三角形的周长达到最小值。

对于一个四边形,当它的一条对角线与另一条对角线的中线重合时,该四边形的面积达到最小值。

5.利用数形结合:数形结合是解决几何最值问题的常用方法。

通过将几何问题转化为代数问题,可以更容易地找到问题的解。

例如,对于一个圆上的点到圆心的距离的最大值和最小值,可以通过将问题转化为求解圆的半径的平方的最大值和最小值来解决。

以上是一些常见的初中几何最值问题的解题技巧,希望能够帮助你更好地解决这类问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中几何图形题解题技巧
一、分割法
二、添加辅助线法
三、倍比法
四、割补平移法
五、等量代换法
六、等腰直角三角形法
七、扩倍、缩倍法
八、代数法
九、外高法
十、概念法
初中数学学习方法
1.主动预习
预习的目的是主动获取新知识的过程,有助于调动学习积极主动性,新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。

因此,要注意培养自学能力,学会看书。

如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。

抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。

2.主动思考
很多同学在听课的过程中,只是简简单单的听,不能主动思考,这样遇到实际问题时,会无从下手,不知如何应用所学的知识去解答问题。

主要原因还是听课过程中不思考惹的祸。

除了我们跟着老师的思路走,还要多想想为什么要这么定义,这样解题的好处是什么,这样主动去想,不仅能让我们更加认真的听课,也能激发对某些知识的兴趣,更有助于学习。

靠着老师的引导,去思考解题的思路;答案真的不重要;重要的是方法!
3.善于总结规律
解答数学问题总的讲是有规律可循的。

在解题时,要注意总结解题规律,在解决每一道练习题后,要注意回顾以下问题:
(1)本题最重要的特点是什么?
(2)解本题用了哪些基本知识与基本图形?
(3)本题你是怎样观察、联想、变换来实现转化的?
(4)解本题用了哪些数学思想、方法?
(5)解本题最关键的一步在哪里?
(6)你做过与本题类似的题目吗?在解法、思路上有什么异同?
(7)本题你能发现几种解法?其中哪一种最优?那种解法是特殊技巧?你能总结在什么情况下采用吗?
把这一连串的问题贯穿于解题各环节中,逐步完善,持之以恒,孩子解题的心理稳定性和应变能力就可以不断提高,思维能力就会得到锻炼和发展。

4.扩宽解题思路
数学解题不要局限于本题,而要做到举一反三、多思多想,解答完一个题目,要想想有没有其他更加简便的方法,这样能够帮助大家拓宽思路,这样在以后的做题过程中就会有更多的选择。

5.必须要有错题本
说到错题本不少同学都觉得自己的记忆力好,不需要错题本就能记住,这是一种“错觉”,每个人都有这种感觉,等到题目增多,学习内容加深,这时就会发现自己力不从心了。

错题本能够随时记录自己的知识短板,帮助强化知识体系,有助于提升学习效率。

有很多学霸都是因为积极使用了错题本,而考取了高分。

6.“1x5”学习法
“1×5”学习法,就是做一道题,要从五个方面思考,这点可以结合前面说到的“总结规律”“拓展思路”。

五个方面分别为:
①这道题考查的知识点是什么。

②为什么要这样做。

③我是如何想到的。

④还可以怎样做,有其它方法吗?
⑤一题多变看看它有几种变化的形式。

千万不要觉得麻烦,学习习惯的培养最难的就是最初的一个月,这就像火箭升空一样,最难的就是点火起飞阶段,一旦养成了良好的数学学习习惯和思维方式,在今后的学习中就会非常的轻松。

7.独立完成作业
现在很多学生用一些APP来帮助写作业,找个照片就有答案,或者是抄袭其他同学的作业,这可以分两种情况来说,一种是为了图快、求速度,如果经常这样会养成不良的审题习惯,容易走马观花、粗心大意。

还有一种是为了图方便,这会导致同学们养成“怕麻烦”的心理,一旦题目有些难度,自己就开始心烦意乱,思路模糊,因此,大家一定要养成良好的独立完成作业的习惯。

相关文档
最新文档