离心沉降速度与重力沉降速度的比较

合集下载

环境工程原理期末复习资料 河南工业大学

环境工程原理期末复习资料 河南工业大学

1、管路分为简单管路(①、通过各管路的质量流量不变;②、整个管路阻力损失等于各管路阻力损失之和。

)和复杂管路,复杂管路包括分支管路(①、总管流量等于各支管流量之和;②、主管段内各段流量不同,阻力损失需分段加以计算;③、机械能守恒。

)和并联管路(①、总流量等于各支管流量之和;②、各支管中阻力损失相等;③、各支管的流量依据阻力损失相同的原则进行分配。

)。

2、流量计包括测速管(毕托管)(测得的是点速度)、孔板流量计(固定安装,阻力损失较大)、文丘里流量计(比孔板流量计减少了机械能损失),转子流量计(必须垂直安装,流体自上而下流动)。

3、热量传递包括热传导、对流传热、辐射传热。

4、导热系数:①、气体导热系数很小,利于绝热保温,随温度和压强的升高而升高。

②、水的导热系数最大,常用做导热介质。

液体(除水和甘油外)导热系数随温度的升到而减小,压力影响不大。

③、固体:金属的λ选大于非金属的λ;金属有杂质,λ减小;纯金属λ随温度升高而减小,合金λ随温度升高增大;晶体λ随温度升高而减小,非晶体λ随温度升高而增大。

5、环境工程中常见的传质过程有:吸收、萃取、吸附、离子交换、膜分离。

6、重力沉降和离心沉降的比较:区别:①、重力沉降的动力是重力,沉降方向向下,沉降速度恒定,沉降的加速度为重力加速度;②、离心沉降的动力是离心力,沉降方向向外,沉降的速度与半径有关,是变化的,沉降的加速度为离心加速度。

联系:离心分离因数,是离心分离设备的重要指标,表示离心沉降速度较沉降速度可以提高的倍数。

7、过滤可以分为:表面过滤(滤饼过滤)和深层过滤。

8、表面过滤与深层过滤的比较:区别:①、表面过滤的条件是颗粒物浓度高,滤速慢,虑饼易形成,过滤的介质是织布或多孔固体,过滤介质的孔一般比颗粒物的粒径小,有效过滤介质主要是虑饼,实际应用于真空过滤机、板框式压滤机、慢滤池、袋滤器。

②、深层过滤的条件是颗粒物浓度底,滤速快,过滤介质是固体颗粒,过滤介质的空隙大于颗粒物粒径,有效的过滤介质是固体颗粒,实际应用于快滤池。

离心

离心

旋风分离器的型式
• 目前旋风分离器已定型化,如CLT, CLT/A,CLP/A,CLP/B,CLK型等。 一般型式的代号为:C — 除尘器, L — 离心,T — 筒式,P — 旁路式, T P K — 扩散式,A、B为产品代号。其 性能见表。
CLT/A型
• 这是具有倾斜螺旋面进口的 旋风分离器,结构如图。气 流进口管与水平面呈15°角, 并带有螺旋型导向顶盖,以 防止向上气流碰到顶盖时形 成上部涡流,从而使部分灰 尘被此气流夹带沿排气管外 壁下降时,由排气管排出, 其阻力系数ζ=5.0~5.5。
旋风分离器的性能
• (1)含尘气体处理量 含尘气体处理量:旋风分离器的处理量除 含尘气体处理量 与其进口宽度B和高度h有关外,主要由进口 气速ui来确定,气速过高过低均对分离效率不 利,一般在15~25m/s之间,故:VS=uiBh • (2)临界直径 C : 指理论上能够完全分离出来 临界直径d 临界直径 的最小颗粒直径,为判断旋风分离器分离效率 高低的重要依据之一。假设:气体在旋风分离 器中有规则地旋转Ne圈,旋转的平均半径为 Rm , 切 向 速 度 恒 等 于 进 口 气 速 , 即 uT=ui=VS/(hB);
• 主要结构参数为筒体直径D, 其它尺寸以D为标准。 • 旋风分离器一般用来除去气流 中粒径5µm以上的尘粒,对颗 粒含量高于200g/m3的气体, 由于颗粒的聚集作用,它甚至 能除去3 µm以下的颗粒。 3 µm • 对直径在200 µm以上的颗粒 最好先用重力沉降法除去,以 减小对器壁的磨损; • 对于直径5µm以下的颗粒,除 尘效率很低。
2 4d (ρS − ρ) u T 离心沉降速度:u r = 3ρζ R
分离因数:同一颗粒在同种介质中的离心沉降速度与重力沉 降速度的比值,以Kc表示:

颗粒与流体之间的相对运动

颗粒与流体之间的相对运动
——颗粒直径, ;
——颗粒密度, ;
——流体密度, ;
——重力加速度 ;
——阻力系数,无因次, ——球形度
综合实验结果,上式为表面光滑的球形颗粒在流体中的自由沉降公式。
滞留区 斯托克斯公式
过渡区 艾仑公式
湍流区 牛顿公式
该计算公式(自由沉降公式)有两个条件:
1.容器的尺寸要远远大于颗粒尺寸(譬如100倍以上)否则器壁会对颗粒的沉降有显著的阻滞作用,(自由沉降—是指任一颗粒的沉降不因流体中存在其他颗粒而受到干扰。自由沉降发生在流体中颗粒稀松的情况下,否则颗粒之间便会发生相互影响,使沉降的速度不同于自由沉降速度,这时的沉降称为干扰沉降。干扰沉降多发生在液态非均相系的沉降过程中。)
等浓度B区消失后,AC界面以逐渐变小的速度下降,直至C区消失,此时在清液区与沉聚区之间形成一层清晰的界面,即达到“临界沉降点”,此后便属于沉聚区的压紧过程。D区又称为压紧区,压紧过程所需时间往往占沉聚过程的绝大部分。
通过间歇沉降实验,可以获得表观沉降速度 与悬浮液浓度及沉渣浓度与压紧时间的二组对应关系数据,作为沉降槽设计的依据。
第三章颗粒与流体之间的相对运动
一、前言:(本章:本质上讲:属于流体流动过程,从方法或手段上讲:属于非均相分离过程,下册讲的蒸馏、吸收、萃取等单元操作都是均相分离过程)。
1、相:体系中具有相同组成,相同物理性质和相同化学性质的均匀物质。相与相之间有明确的界面。
例如:气、液、固称为三态,每一态又称为一相。再例如:空气(或溶液)虽是混合物,但由于内部完全均匀,所以是一个相。水和冰共存时,其组成虽同是 ,但因有不同的物理性质,所以是两个相;水、冰和蒸汽共存时是三个相。两块晶体相同的硫磺是一个相,两块晶体不同的硫磺(如斜方硫和单斜硫)是两个相。

离心沉降

离心沉降
• xi质量分率
ηo=Σxiηpi Σ
分割粒径
• • • • • 粒级效率等于50%的颗粒直径 分割粒径 分割粒径) 粒级效率等于 %的颗粒直径(分割粒径 对于标准旋风分离器 d50=0.27[µD/[ui(ρs-ρ)] µ ρ ρ 曲线。 ηP~d/d50曲线。 标准型旋风分离器,型号相同, 标准型旋风分离器,型号相同,结构尺 寸比例相同的旋风分离器可以用同一条 曲线。 曲线。
一、离心沉降速度 离心沉降速度
连续相运动方向
Fb Fd
Fu 颗粒沉降方向
• 假设,颗粒密度ρS , kg/m3, 颗粒直径d , m , 假设,颗粒密度ρ 颗粒直径d • 流体密度ρ 流体密度ρ , kg/m3 , • 颗粒在静止流体中流动。 颗粒在静止流体中流动。 惯性离心力作用下实现的沉降过程称为离心沉降。 颗粒受到三个力
旋风分离器类型 XLT/A型 XLP/B型 XLK型(扩散式)
旋液分离器 旋液分离器又称水力旋流器,是利用离心沉 降原理从悬浮液中分离固体颗粒的设备,它的结 构与操作原理和旋风分离器类似。
4、旋风分离器性能 旋风分离器性能
• 主要指标: 主要指标: • 尘粒从气流中的分离效果 • 气流经过旋风分离器的压强降
(1) 临界粒径
• 指旋风分离器能分离下来的最小粒径, 指旋风分离器能分离下来的最小粒径, 用于判断分离器的效率高低。 用于判断分离器的效率高低。 • 假设: 假设: • 在旋风分离器中,气流按螺旋路线等速 在旋风分离器中, 运动,其切向速度等于进口气速ui, 运动,其切向速度等于进口气速 , • 颗粒穿过整个气层厚度 ,到达器壁被分 颗粒穿过整个气层厚度B, 离, • 颗粒在滞流情况下作自由离心沉降
平衡时颗粒在径向上相对于流体的运动速 度ur便是它在此位置上的离心沉降速度:

离心沉降速度旋风分离器操作原理旋风分离器的

离心沉降速度旋风分离器操作原理旋风分离器的


8VS ' D2
9 D
dc
4
N S

8VS ' D2

D 3 32SVS 'dc2 0.695m 9
校核ΔP
ui

8VS ' D2

8 1.08 0.6952
17.9m /
s
或P者从 维u2持i 2指定8的.0 最0大.4允3许21压7.降9数2 值 5为5前0P提a ,求7得00每Pa台 旋
进气管截面积 AB D D D2 0.076m2 24 8
每个旋风分离器的气体处理量为:
VS' ABui 0.076 20.2 1.535m3 / s
含尘气体在操作状况下的总流量为:
VS

5500 273 500 7600 273

4.32m3
/s
所需为旋满风足分规离定器的的气台体数处为理:量n 、VV压SS'强降2.及8 分离效率三项指
个数。
步骤: a) 根据具体情况选择合适的型式,选型时应在高效率与
地阻力者之间作权衡,一般长、径比大且出入口截面小的设 备效率高且阻力大,反之,阻力小效率低。
b) 根据允许的压降确定气体在入口的流速ui c) 根据分离效率或除尘要求,求出临界粒径dC d) 根据ui和dc计算旋风分离器的直径D e) 根据ui与D计算旋风分离器的处理量,再根据气体流量 确定旋风分离器的数目。
标,需要直径不大于0.78m的标准分离器至少三台,为了 便于安排,现采用四台并联。 校核压力降与分离效率
四台并联时,每台旋风分离气分摊的气体处理量为:
Vs '
Vs 4
1.08m3 / s

化工原理习题第三章 过滤 习题3

化工原理习题第三章 过滤 习题3

三非均相物系分离沉降速度计算3.1 计算直径为1mm的雨滴在20℃空气中的自由沉降速度。

应用Stokes方程计算液体粘度3.2 将直径为6mm的钢球放入某液体中,下降距离位200mm时,所经历时间为7.32秒,此液体密度为1300[Kg/m3],钢球密度为7900[Kg/m3],求此液体粘度为多少厘泊?降沉室的计算,设计型3.3 欲用降尘室净化温度为20℃、流量为2500(m3/h)的常压空气,空气中所含灰尘的密度为1800(kg/m3),要求净化的空气不含有直径大于10μm的尘粒,试求所需沉降面积为多大?若降尘室的底面宽2m,长5m,室内需要设多少块隔板?3.4用一多层降沉室除去炉中的矿尘。

矿尘最小粒径为8μm,密度为4000[kg/m3 ]。

降尘室内长4.1m,宽1.8m,高4.2m。

气体温度为427℃,粘度为3.4×10 -5 [N·S/ m2 ],密度为0.5[kg/m3 ],若每小时的炉气量为2160标准m3 ,试确定降尘室内隔板的间距及层数? (沉降处于斯托克斯定律区)3.5 用一截面为矩形的沟槽从炼油厂的废水中分离其中油滴,拟回收直径为2mm以上的油滴,槽宽为4.5m,深度为0.8m;在出口端除油后的水可不断从下部排出,而汇聚成层的油则从顶部移出。

油的密度为870[Kg/m3],水温为20℃,每分钟处理废水为26m3,求所需槽的长度。

降沉室计算,操作型3.6 降沉室高2m、宽2m、长5m,用于矿石焙烧炉的降尘。

操作条件下气体的流量为25000[m3/h];密度为0.6[kg/m3],粘度为0.03cP,固体尘粒的密度为4500[kg/m3 ],求此降沉室能除去最小颗粒直径?并估计矿尘中直径为50μm的颗粒能被除去的百分率?3.7 气流中悬浮某种球形微粒,其中最小微粒为10μm,沉降处于斯托克斯区。

今用一多层隔板降尘室分离此气体悬浮物,已知降尘室长10m,宽5m,共21层,每层高100mm。

食品工程原理 2.

食品工程原理 2.

颗粒的特性
表述颗粒特性的主要参数为颗粒的形状、大小(体积)和 表面积。
单一颗粒特性 ➢ 球形颗粒——直径(粒径)
V d3
6
S d 2
6
d
➢ 非球形颗粒——当量直径、形状系数
1、体积当量直径(de)
6V
dev 3
2、形状系数(球形度)(φs)
s
S Sp
3、非球形颗粒的特性参数
➢ 滞流区(Ret<1)
24
=
Ret
➢ 过渡区(1<Ret<500)
18.5
= Re0t .6
➢ 湍流区(500<Ret < 2×105) = 0.44
➢ 滞流区或斯托克斯(stokes)定律区(Ret<1)
24 Ret
ut
d2
s 18
g
——斯托克斯公式
➢ 过渡区或艾伦定律区(Allen)(1<Ret<500)
非均相物系
分散相 分散物质
处于分散状态的物质 如:分散于流体中的固体颗粒、 液滴或气泡
连续相 分散相介质
包围着分散相物质且处于连续 状态的流体 如:气态非均相物系中的气体
液态非均相物系中的连续液体
在两相物系中,不论作为连续相处于静止还是作某 种运动,只要分散相的密度与连续相密度存在差异,那 么在重力场中,分散相与连续相将在重力方向上做相对运 动,在离心力场中,则在径向上相对运动。
沉降室长度: L=DHu/ut=0.45×0.5/0.136=1.65m 取L=1.8m,降尘室宽度:
B=qv/[(n+1)DHu]=1.23/(4×0.45×0.5)=1.37m 取B=1.4m。室内烟气实际流速:
u=qv/[(n+1)DHB]=1.23/(4×0.45×1.4)=0.488m/s 该降尘室能捕集的最小粒径:

环境工程原理

环境工程原理

1.简述土壤污染治理的技术体系。

2.简述废物资源化的技术体系3.简述沉降分离的原理、类型和各类型的主要特征。

原理:将含有颗粒物的流体(水或气体)置于某种力场(重力场、离心力场、电场或惯性场等)中,使颗粒物与连续相的流体之间发生相对运动,沉降到器壁、器底或其他沉积表面,从而实现颗粒物与流体的分离。

4.比较重力沉降和离心沉降的主要区别。

与重力沉降相比,离心沉降有如下特征:①沉降方向不是向下,而是向外,即背离旋转中心②由于离心力随旋转半径而变化,致使离心沉降速率也随颗粒所处的位置而变,所以颗粒的离心沉降速率不是恒定的,而重力沉降速率则是不变的。

③离心沉降速率在数值上远大于重力沉降速率,对于细小颗粒以及密度与流体相近的颗粒的分离,利用离心沉降要比重力沉降有效得多。

④离心沉降使用的是离心力而重力沉降利用的是重力5.表面过滤与深层过滤的主要区别是什么?各自的定义?表面过滤: ①过滤介质的孔一般要比待过滤流体中的固体颗粒的粒径小②过滤时固体颗粒被过滤介质截留,并在其表面逐渐积累成滤饼③此时沉积的滤饼亦起过滤作用,又称滤饼过滤④通常发生在过滤流体中颗粒物浓度较高或过滤速度较慢的情况。

深层过滤:①利用过滤介质间空隙进行过滤②通常发生在以固体颗粒为滤料的过滤操作中③滤料内部空隙大于悬浮颗粒粒径④悬浮颗粒随流体进入滤料内部,在拦截、惯性碰撞、扩散沉淀等作用下颗粒附着在滤料表面上而与处理技术利用的主要原理主要去除对象客土法隔离法清洗法(萃取法)吹脱法(通气法)热处理法电化学法焚烧法微生物净化法植物净化法稀释作用物理隔离(防止扩散)溶解作用挥发作用热分解作用、挥发作用电场作用(移动)燃烧反应生物降解作用植物转化、植物挥发、植物吸收/固定所有污染物所有污染物溶解性污染物挥发性有机物有机污染物离子或极性污染物有机污染物可降解性有机污染物重金属、有机污染物流体分开 区别:表面过滤通常发生在过滤流体中颗粒物浓度较高或过滤速度较慢的情况,过滤介质的孔一般要比待过滤流体中的固体颗粒的粒径小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表达式:重力沉降速度公式中的重力加速度改为离心加速度 数值:重力沉降速度基本上为定值
离心沉降速度为绝对速度在径向上的分量,随颗粒在
离心力场中的位置而变。
阻力同系一数颗:粒层在流同时一种 介质2R4中e 的u离r 心 沉d 2降1速8s度 与 重 u力Rt 2沉降速
1、气体处理量
旋风分离器的处理量由入口的气速决定,入口气体流
量是旋风分离器最主要的操作参数。一般入口气速ui在
15~25m/s。 旋风分离器的处理量
V ui B h
2、临界粒径 判断旋风分离器分离效率高低的重要依据是临界粒径。
临界粒径 : 理论上在旋风分离器中能完全分离下来的最小
颗粒直径。 1) 临界粒径的计算式 a) 进入旋风分离器的气流严格按照螺旋形路线作等速运 动,且切线速度恒定,等于进口气速ut=ui;
中折线obcd。
实测的粒级效率曲线,直径小于10μm的颗粒,也有可观的
分离效果,而直径大于dc的颗粒,还有部分未被分离下来 直径小于dc的颗粒中
有些在旋风分离器进口处已很靠近壁面,在停留时间内能够
达到壁面上
有些在器内聚结成了大的颗粒,因而具有较大的沉降速度 直径大于dc的颗粒
气体涡流的影响,可能没达到器壁。 即使沉到器壁也会被重新扬起
颗粒到达器壁所需要的时间:t
停留时间为: 2Rm N

B ur

18Rm B d 2 sui2
ui
对某尺寸的颗粒所需的沉降时间θt恰好等于停留时间θ
,该颗粒就是理论上能被完全分离下来的最小颗粒,用dc表
示这种颗粒的直径,即临界粒径 。
18Rm B dc2 sui2

2Rm N
ui
p c ui2
2
对型式不同或尺寸比例不同的设备ξc的值也不同,要通过 实验测定,对于标准旋风分离器ξc=8.0。 旋风分离器的压降一般在300~2000Pa内。
四、旋风分离器的选型与计算
1、旋风分离器的型式
旋风分离器的形式多种多样,主要是在对标准型式 的旋风分离器的改进设计出来的。
规则进的气旋口转:流为,了减保少证局高部速涡气流流与进死入角旋,风设分计离了起倾时斜形螺成旋较 进口,螺壳形进口、轴向进口等。
6
s
u
2 t
R
向心力=
d 3

u
2 t
6R
阻力= d 2 u2r
42
三力达到平衡,则:
d 3
6
s
u
2 t
R

d 3
6

u
2 t


d
2
R4
u
2 r
2
0
平衡时颗粒在径向上相对于流体的运动速度ur便是此位置 上的离心沉降速度。
ur
4d s ut2
3R
2、离心沉降速度与重力沉降速度的比较
b) 颗粒沉降过程中所穿过的气流厚度为进气口宽度B
c) 颗粒在滞流情况下做自由沉降,径向速度可用
ur

d
2
s
18



uT2 R

表示
∵ρ<<ρS,故ρ可略去,而旋转半径R可取平均值Rm,并
用进口速度ui代替ut。
气流中颗粒的离心沉降速度为:ur

d 2 sui2 18Rm
离 适于心分沉离降两:相依密靠度惯差性较离小心,力颗的粒作粒用度而较实细现的的非沉均降相过物程系。 惯性离心力场与重力场的区别
力场强度 方向 作用力
重力场
离心力场
重力加速度g
ut2/R
指向地心
沿旋转半径从中心指向外周
Fg=mg
FC

m
ut 2 R
一、离心沉降速度
1、离心沉降速度ur
惯性离心力=
d 3
度的比值为 : ur ut

uT 2 gR

Kc
比值Kc就是粒子所在位置上的惯性离心力场强度与重力 场强度之比称为离心分离因数。
例如;当旋转半径R=0.4m,切向速度ur=20m/s时,求分
离因数。
Kc

uT 2 gR
102
二、旋风分离器的操作原理
三、旋风分离器的性能
旋风分离器性能的主要操作参数为气体处理量, 分离效率和气体通过旋风分离器的压强降。
主体结构与各部分尺寸比例的优化: 根据流场与颗粒流动规律设计旋风分离器的结构,
一般细长的旋风分离器效率高,但超过一定限度,分离效 率的提高不明显,而压降却增加。
改进下灰口 : 防止已分离下来的粉尘重新扬起 。
目前,我国已定型了旋风分离器,制定了标准流型系列, 如CLT,CLT/A,CLP/A,CLP/B以及扩散式旋风分离器。
分离效率
0

C1 C2 C1
100%
粒级效率ηpi 进入旋风分离器的粒径为di的颗 粒被分离下来的质量分率
pi

C1i C2i C1i
100%
粒级效率ηpi与颗粒直径di 的对应关系可通过实测得到, 称为粒级效率曲线。
如图,临界粒径约为 10μm。理论上,凡直 径大于10μm的颗粒, 其粒级效率都应为100% 而小于10μm的颗粒, 粒级效率都应为零,图
dc
9B N sui
——临界粒径的表达式
2)临界粒径的影响因素
a) 由 dc
9B Nsui
,知
dc
B
即临界粒径随分离器尺寸的增大而增大。
分离效率随分离器尺寸的增大而减小。
b)入口气速ui愈大,dc愈小,效率愈高。
3、分离效率
总效率ηo 进入旋风分离器的全部粉尘中被分 离下来的粉尘的质量分率
b) 根据允许的压降确定气体在入口的流速ui c) 根据分离效率或除尘要求,求出临界粒径dC d) 根据ui和dc计算旋风分离器的直径D e) 根据ui与D计算旋风分离器的处理量,再根据气体流量 确定旋风分离器的数目。
f) 校核分离效率与压力降
有时也把旋风分离器的粒级效率标绘成d/d50的函数曲线, d50为粒级效率为50%的颗粒直径,称为分割粒径。
对于标准旋风分离器
d50 0.27
D ui 0
4、压强降
气体通过旋风分离器时,由于进气管、排气管及主体器壁 所引起的摩擦阻力,气体流动时的局部阻力以及气体旋转 所产生的动能损失造成了气体的压强降,
2、旋风分离器的设计计算
例如,已知气体流量VS(m3/s)、原始含尘量C1(g/m3)、粉 尘的粒度分布,除尘要求及气体通过旋风分离器允许的压强 降,要求选择旋风分离器的形式,确定旋风分离器的直径和
个数。Βιβλιοθήκη 步骤: a) 根据具体情况选择合适的型式,选型时应在高效率与
地阻力者之间作权衡,一般长、径比大且出入口截面小的设 备效率高且阻力大,反之,阻力小效率低。
相关文档
最新文档