常见异种金属焊接缺陷的产生原因和防止措施
金属焊接工艺常见的缺陷及其预防措施

金属焊接工艺常见的缺陷及其预防措施摘要:近年来,我国的科学制造技术的不断发展,给各行各业带来了新的发展,重点表现在制造加工行业。
制造加工产业涉及的范围广泛,而且制造产品零件数量多,加工过程繁琐,加工难度较大,现如今对于制造产品的质量要求也越来越高。
在实际的生产加工中,制造厂商为了节约成本,采用异种金属焊接来替代昂贵金属,实现效益最大化。
在进行异种金属焊接之前,工厂应该清楚明确金属的加工要求,合理规划焊接流程,采用合适的焊接加工工艺流程,对于可能出现的问题事先做好预防工作,尽可能减少焊接中的焊接误差,保证生产质量。
关键词:焊接工艺;缺陷;防治措施随着机械行业的飞速发展,大功率电机设备得到广泛使用。
通过创新焊接技术在一定程度上可以节省材料和生产成本。
在焊接过程中,通过采用堆焊过渡层,以及开应力释放槽的方法可以有效地解决裂纹问题。
先进的焊接工艺一方面确保了齿圈及轮毂的机械性能,另一方面节省了制造成本,缩短了生产周期。
在当前的工业生产中,焊接机器人得到推广性使用,提高了焊接质量。
为了进一步提高焊接质量,科研人员依然对焊接的本质进行研究,进而不断探索新的焊接工艺和方法。
一、焊接的分类1、压焊。
在固态条件下,通过对两工件进行加压,进而在一定程度上实现原子间的结合,这种焊接工艺被称为固态焊接。
对于压焊工艺来说,通常情况下比较常用的是电阻对焊。
将电流通过两工件的连接端,由于连接端的电阻较大,在电流通过时使得此处的温度升高,当温度升高到一定程度,连接端成为塑性状态时,在轴向压力的作用下,使得两工件连接成—体,进而完成焊接。
在工件进行焊接的过程中,通过向连接端施加压力,而不是向连接端填充材料,这是压焊工艺的共性所在。
通过压焊工艺对工件进行焊接,焊接过程得到了简化,进而在一定程度上提高了焊接的安全性。
2、熔焊。
在对工件进行焊接的过程中,通过对接口进行加热,使其达到熔化状态,这种焊接方法不需要施加任何的压力,因此被称为熔焊。
浅谈异种金属的焊接

浅谈异种金属的焊接随着人们对于金属材料需求的不断推进,金属材料的种类也变得多种多样,除了常见的铁、铝、铜等金属之外,异种金属的出现也逐渐增多,比如说钛合金、镍基合金、钨合金等。
然而,由于异种金属在性质上有着明显的差异,对于金属的连接也提出了挑战。
本文将就异种金属焊接这一话题进行讨论,让大家更好地了解异种金属的焊接技术以及影响焊接质量的参数。
一、异种金属焊接的难点一般情况下,在焊接过程中,想要较好地实现异种金属的连接,需要快速冷却过程中所产生的热应力精确掌握。
然而,异种金属的导热系数不同,这就导致了焊接中的材料温度差异过大,使得焊接材料在快速冷却的过程中产生了内应力,从而使焊接后的材料产生了部分或者全部的塑性损失。
此外,由于采用的焊接材料和基材不同,若没有采取合适的操作方法,则会出现焊缝溢铜、堆积、熔池不稳定等缺陷,从而导致焊接质量不达标。
二、异种金属焊接的方法1.钎焊法钎焊法是一种常用的异种金属焊接方法。
钎焊是通过钎料与金属接触,由于钎料的熔点较低,因此采用加热方法使钎料熔化,并在加热的同时,使得钎料与基材间有一定的接触。
在钎焊的过程中,钎料中液相沿着毛细作用向着焊缝两侧扩散,从而实现了金属的连接。
由于钎焊有着低热输入、宽焊缝等优点,因此也被广泛应用于异种金属的连接。
2.电弧焊法电弧焊法是一种通过电弧来完成金属连接的方法。
这种焊接方法通常适用于连接相对较厚的金属板材。
在焊接时,通过高压交流电形成一定的电弧,在钨极上集中高温点,然后将其焊接材料加热熔化,并实现异种金属的连接。
这种方法的优点是可焊接厚度大、连接牢固,而缺点则是加热温度高、变形容易,需要一定的技术经验和操作技巧才能操作。
3.激光焊法激光焊法是一种高能、高质量的焊接方法。
它通过聚焦激光束,实现异种金属的加热和熔化,从而完成焊接过程。
相比于其他一些焊接方法,激光焊法有着加热温度高、作业速度快、精度高的优点,因此在异种金属的焊接中,也有着广泛的应用。
2024年浅谈异种金属的焊接

2024年浅谈异种金属的焊接一、异种金属定义异种金属,顾名思义,指的是在化学成分、物理性能以及机械性能等方面存在显著差异的两种或多种金属。
在实际应用中,由于不同金属具有各自独特的优点,异种金属的连接需求应运而生。
这种连接不仅要求保持原有的金属特性,还需要确保连接处的强度和密封性,因此,异种金属的焊接成为一项重要技术。
二、焊接性评估在进行异种金属焊接之前,首先需要对两种金属的焊接性进行评估。
这包括对金属的化学成分、物理性能、机械性能以及热处理性能的全面分析。
通过对比两种金属在这些方面的差异,可以预测焊接过程中可能遇到的问题,并据此选择合适的焊接方法和材料。
三、焊接方法选择异种金属焊接的方法选择需要考虑多种因素,如金属的种类、厚度、结构形式以及焊接要求等。
常见的焊接方法包括电弧焊、激光焊、等离子焊等。
在选择焊接方法时,需要确保焊接过程中的热量输入、熔池形成和冷却速度等参数能够满足异种金属焊接的要求,以获得高质量的焊接接头。
四、焊接材料选用焊接材料的选择对于异种金属焊接的成功至关重要。
在选择焊接材料时,需要考虑母材的化学成分、力学性能以及焊接工艺要求。
通常情况下,焊接材料的成分应介于两种母材之间,以确保焊接接头在性能上能够与母材相协调。
此外,焊接材料的熔点和热膨胀系数等特性也需要与母材相匹配,以避免产生焊接缺陷。
五、焊接工艺参数焊接工艺参数的选择直接影响到焊接接头的质量和性能。
在异种金属焊接中,需要特别关注焊接电流、电压、焊接速度、预热温度等参数的设置。
这些参数的选择需要综合考虑金属的种类、厚度、热导率以及热膨胀系数等因素。
通过合理的工艺参数设置,可以获得良好的焊缝成形和焊接接头性能。
六、焊接接头设计焊接接头的设计对于异种金属焊接同样重要。
在接头设计时,需要充分考虑应力分布、热传递以及变形等因素。
合理的接头设计可以减少焊接过程中的应力集中和变形,提高焊接接头的强度和密封性。
同时,还需要考虑接头的可维修性和可检查性,以便在必要时进行修复或更换。
关于钢和钛合金的异种焊接

钛合金焊接1钛的特性对钛焊接的影响1)氧和氮的影响。
氧和氮间隙固熔于钛中,使钛晶格畸变,变形抗力增加,强度和硬度增加,塑性和韧性却降低,焊缝中含焊氧、氮是不利的,应设法避免。
2)氢的影响。
氢的增加会使钛的焊缝金属冲击韧性急剧下降,而塑性下降少许,氢化物会引起接头的脆性。
3)碳的影响。
常温下,碳以间隙形式固溶于钛中,使强度增加,塑性下降,但不如氧、氮明显,碳量超过溶解度时生成硬而脆的TiC,呈网状分布,易产生裂纹,国标规定钛其钛合金中碳含量不得超过0.1%,焊接时,工件及焊丝的油污能增加碳含量,因此焊接时需清理干净。
2钛及钛合金的焊接性1)气孔的产生。
钛及钛合金焊接时最常见的缺陷是气孔,主要产生在熔合线附近。
氢是形成气孔的重要原因,在焊接时由于钛吸收氢的能力很强,而随着温度的下降氢的溶解度显著下降,所以溶解于液态金属中的氢往往来不及逸出形成气孔。
2)接头的脆化问题。
在常温下,钛与氧反应生成致密的氧化膜,从而使其具有高的化学稳定性与耐腐蚀性。
在施焊过程中,焊接温度高达5000~10000℃,钛及其合金与氧、氢和氮发生快速反应。
据试验,钛合金在施焊过程中,温度在300℃以上时能快速吸氢,4 50℃以上时能快速吸氧,600℃以上时能快速吸氮。
而当熔池中侵入这些有害气体后,焊接接头的塑性和韧性都会发生明显的变化,特别是在882℃以上,接头晶粒严重粗大化,冷却时形成马氏体组织,使接头强度、硬度、塑性和韧性下降,过热倾向严重,接头严重脆化。
因此,在进行钛合金焊接时,对熔池、熔滴及高温区,不管是正面还是反面都应进行全面可靠的气体保护。
这是保证钛及其合金焊接质量的关键。
延迟裂纹的产生在焊后一段时间内,钛及其合金的近缝区很容易产生裂纹,这是由氢从高温熔池向低温热影响区的扩散引起的。
随着氢含量的增加,析出的钛氢化合物增加,热影响区脆性增大,再加上析出的氢化物体积膨胀时产生的组织应力,导致裂纹的产生。
3钛及钛合金焊接工艺选择1、焊前准备焊件和钛焊丝表面质量对焊接接头的力学性能有很大影响因此必须严格清理。
异种钢焊接性能分析与研究

异种钢焊接性能分析与研究奥氏体型不锈钢与低合金钢有很大的差异,不论从化学成分上来说还是物理性能方面,区别都很大。
对于中厚板的异种钢的焊接很难得到一个满意的焊接接头,主要是因为中厚板的异种钢焊接约束力太大,冷冽倾向也很大,所以很难令焊接效果尽如人意。
要想获得一个比较满意的焊接接头,就必须对两种钢的不同特性进行一定的分析,对焊接接头可能出现的问题进行一次比对解析,最后才能够确定适合的焊接工艺。
1 异种钢焊接主要存在的问题1.1 熔点的差异如果相焊的两种金属熔点相差很大,接头性能难以得到保证,16MnR熔点1430℃,00Cr19Ni10熔点1398℃~1420℃,两种金属熔点相差不是很大,一般能获得一个满意的焊接接头。
温度是焊接的一个重要因素,控制好焊接时的温度,能够有助于焊接的效果,对于不同的金属进行焊接,温度是不相同,这也是长期工作以来的一种积累,对工作多多总结有助于提升焊接技术。
1.2 线膨胀系数差异金属受热的涨幅程度,金属本身的延展性,金属的熔点,都是在焊接过程中必须注意、考虑的要素,金属的这些特点在焊接过程中尤为重要,如果对金属的特性认知不够清楚,很容易出现焊接裂纹。
由于低合金钢与奥氏体型不锈钢两种金属线膨胀系数相差很大,产生的应力容易使焊缝热影响区产生裂纹。
1.3 热导率的差异热导率是金属本身的特性,不相同的金属热导率一般不会相同,这就导致了焊接上的一个难点。
通常解决这种问题的方法,一般采用的都是提前预热,将导热较低的金属先进行一个提前预热已达到两种金属同时融化,这样有助于金属的焊接。
但是,这要求操作者必须对各种金属的导热率极为熟悉。
一般低合金钢的热导率为0.288~0.504W/cm·℃,不锈钢的热导率为0.168~0.336W/cm·℃,低合金钢随温度的增加,热导率是下降的,不锈钢随温度的增加,热导率是上升的,所以热导率的不同可使被焊材料熔化不同步,导致金属之间结合不良。
异种钢焊接不利的原因

异种钢焊接不利的原因一、异种钢的特点异种钢是指由不同种类的钢材组成的焊接材料。
它们可能具有不同的化学成分、冶金结构和力学性能,这使得对它们进行焊接时面临着一些困难。
异种钢焊接不利的原因有很多,我们需要从化学成分、冶金结构、力学性能等多个方面来进行探讨。
二、化学成分的差异异种钢的不同种类之间,其化学成分往往存在较大的差异。
这种差异主要体现在元素含量和含氧量上。
由于异种钢的化学成分不同,焊接时产生的熔池和焊缝中的元素分布也不同,这将导致焊缝的化学成分与母材存在差异。
三、冶金结构的差异异种钢的冶金结构也可能存在差异。
冶金结构是指由晶粒、晶界和相组成的材料的组织结构。
不同种类的钢材往往具有不同的晶粒大小、晶界分布和相组成,这使得焊接时冶金结构的调控变得更加复杂。
四、热影响区的形成焊接过程中,热源会导致焊接区域的温度升高,从而影响焊缝附近的材料组织。
特别是在异种钢焊接中,焊缝周围的材料往往被加热到接近或超过其临界温度,使得原有的冶金结构发生相变、晶粒长大和晶界迁移等现象。
五、应力的积累和释放异种钢焊接时,由于差异化的冶金结构和化学成分,焊缝及其周边区域会产生应力集中的现象。
焊接过程中,熔池会产生热应力和冷却应力,而焊缝周围的材料也会受到局部的热应力、塑性应力和残余应力的影响。
这些应力的积累和释放可能会导致焊接接头的变形、开裂和疲劳失效等问题。
六、焊接参数的选择焊接参数的选择对异种钢焊接的结果有着重要影响。
不同种类的钢材具有不同的熔化温度、热导率和热膨胀系数,因此,在选择焊接参数时需要考虑到其熔化行为、热传导性能和热应力的影响。
合理选择焊接参数可以减少焊接过程中的不利因素,并提高焊接接头的质量。
七、异种钢焊接的控制策略为了克服异种钢焊接的不利因素,我们可以采取一系列的控制策略。
1. 优化焊接材料的选择选择合适的焊接材料可以减少焊接过程中的不利因素。
合金元素的添加可以改善焊接接头的力学性能和耐腐蚀性能,并提高焊接接头的可靠性。
异种金属焊接问题及焊接工艺分析

异种金属焊接问题及焊接工艺分析摘要:随着新材料、新工艺、新设备的不断出现,对各类工程构件的性能提出了更高的要求,但是在工程技术中任何一种材料都不可能完全满足使用性能的要求。
由不同材料组成的结构不仅能充分利用各组成材料的优异性能,达到工程中的使用上的要求,而且还能节约贵重金属,降低结构整体成本,提高经济效益,在某些情况下异种材料结构的综合性能甚至超过单一金属结构。
因此异种金属焊接在各行业中得到越来越多的运用和受到人们的重视。
但近年来,国内外多次发生异种金属焊接结构的早期失效事故。
因此,如何保证异种金属焊接接头的可靠性就成为保证结构安全运行的关键。
所以,研究异种金属之间的焊接具有重要的工程实用意义。
关键词:异种金属焊接;问题;焊接工艺1异种金属焊接的特点焊接接头熔合区:是性能最差的区域,异种金属焊接结构的破坏多半发生在熔合区。
在靠近熔合区金属区域还形成性能不好的,成分变化的过渡层。
焊接接头的裂纹:(1)冷裂纹:在金属淬硬倾向和氢的作用及焊接应力的共同作用下产生。
(2)热裂纹:这是高合金钢焊缝,特别是纯奥氏体组织的焊缝最易出现在焊缝中的裂纹。
因焊缝中还存在未结晶低熔点共晶体液膜,在相应的应力作用条件下生成了裂纹。
碳迁移现象:会造成接头高温机械性能降低,高温下失效断裂增加,影响高温使用寿命的主要原因之一。
影响碳迁移的因素是温度和时间和化学成分。
2异种金属相溶性问题两者不同的金属是否能进行焊接,取决于这两种金属在焊接的时候,它们的合金的元素之间相互作用。
在两种不同金属元素不需要在液态环境下,也就是在固态条件下就可以发生互相熔解,并形成一种新的状态即固溶体,那么就可以说这两种金属元素符合冶金学概念上的“相溶性”定义。
那么这两种异性金属在原则上就可以进行焊接操作。
合金元素发生相溶必须满足一定的条件,首先,这两种金属的晶格类型一定要匹配,比如被要求焊接的两种异性金属都是立方晶格的样式;其次,被焊接的异性金属的原子半径一定要接近;最后还要求这两种元素在元素周期表中的位置相互临近,这表明了金属的电化学性质差异较小。
常见焊接缺陷类型产生原因与避免方法

常见焊接缺点类型产生缘故与避免方法1)焊缝尺寸不符合要求角焊缝的K值不等—一样发生在角平焊,也称偏下。
偏下或焊缝没有圆滑过渡会引发应力集中,容易产生焊接裂纹。
焊条角度问题,应该考虑铁水瘦重力阻碍问题。
许多教授在编写教材注重理论性而忽略有效性。
焊条角度适当上抬,48/42度适合。
另外,在K值要求较大时,尽可能采纳斜圆圈型运条方式。
焊缝宽窄不一致:一是运条速度不均匀,忽快忽慢所致;二是坡口宽度不均匀,焊接时没有进行调整。
三是在熔池边缘停留时刻不均匀。
因此焊接时焊接速度均匀、考虑坡口宽度、熔池边缘停留时刻适合。
焊缝高低不一致:与焊接速度不均匀有关外,与弧长转变有关。
因此采纳均匀的焊接速度、维持必然的弧长,是避免焊缝高低不一致的有效方法。
弧坑:息弧时过快。
与焊接电流过大、收弧方式不妥有关。
平焊缝能够采纳多种收弧方式,例如回焊法、画圈法、反复息弧法。
立对接、立角焊采纳反复息弧法,减小焊接电流法。
焊缝尺寸不符合要求,在凸起时应力集中,产生裂纹;在焊缝尺寸不足时,降低承载能力;因此在焊接前尽可能预防,在焊接中尽可能避免,在焊接以后及时修补,保证焊缝尺寸符合施工图纸要求。
2)夹渣夹渣是非金属化合物在焊接熔池冷却没有及时上浮而被封锁在焊缝内,因此与清渣不够、打底层、填充层的成型太差、焊条角度没有进行调整而及时对准坡口两个死角,焊接速度过快、焊接电流过小、非正规的运条方式,没有分清铁水与熔渣,维持熔池的净化气氛。
平对接采纳适合推渣动作,分清铁水与熔池,焊条角度专门重要。
最容易产生夹渣的部位是:平对接各层、填充层与打底层结合部的两个死角,横对接打底层、填充层的最上部的夹角,仰对接的坡口边缘。
实际确实是焊缝成型没有实现略凹、或平,而专门容易形成过凸的成型所致。
夹渣降低焊缝有效截面利用性能,容易产生裂纹等其他缺点,阻碍焊缝的致密性。
3)未焊透与未熔合未焊透一样产生在坡口根部,与埋弧焊偏丝、焊接电流过小、焊接速度快、坡口角度过小、反面清根不完全。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
清理接头表面,预热、缓冷,采用夹具,选用
扩散焊时焊接温度、压力不合适
铸铁-侧变形严重
惰性气体保护焊、电子束焊、扩散焊
金属+陶瓷
扩散焊
线膨胀系数相差太大,升温过 选择合适的工艺参数,焊接室中的真空度要合
产生裂纹或剥离 快,冷速太快,压力过大,加热 适
时间过长
金属+半导体材料
扩散焊
Hale Waihona Puke 错位、尺寸不合要 夹具结构不正确,接头安放位置 选择线膨胀系数相近的两种材料,升温、冷却
焊透,结合强度差 时间短,接头装配不当
配合理
铜+钨
电弧焊
不易焊合,产生气 极易氧化,生成低熔点共晶,合 接头及填充材料严格清理,焊前预热、退火,
孔、裂纹,接头成 金元素烧损、蒸发、流失,高温 焊后缓冷,提高操作技术,采用扩散焊
分不均匀 吸气能力强
钢+钛
手工电弧焊
吸氢能力强、生成共晶体及氢化
产生气孔、裂纹、
选用合适的焊接材料,制定正确的焊接工艺,
扩散焊
物,线膨胀系数差别大,形成金
接头力学性能低
预热、缓冷,采用扩散焊、氩弧焊等方法
氩弧焊
属间化合物
碳素钢+钛
电弧焊
焊缝产生裂纹、氧 焊缝中形成金属间化合物,氧化
合理选用填充材料 、焊接方法及焊接工艺
化
性强
铝+钛
手工电弧焊 焊缝氧化、脆化、
氧化性强,高温吸气能力强,形 控制焊接温度,严格清理接头表面、预热、缓
MIG
面硬化
材料受潮,碳的迁移
纯度要高,填充材料要烘干,采用过渡层
Cr-Mo 钢+碳素钢 手工电弧焊 熔合区产生裂纹 回火温度不合适
焊前预热,填充材料塑性要好,焊后热处理温 度要合适
镍合金+碳素钢
焊缝内产气孔、裂 焊缝焊镍高,晶粒粗大,低熔点 通过填充材料向异质焊缝加入变质剂 Mn、CR,
TIG
纹
共晶集聚,冷却速度快
氩弧焊 气孔,合金元素烧
成金属间化合物,熔点差别大 冷,采用氩弧焊、电子束焊、摩擦焊
电子束焊等
损、蒸发
锆+钛
电弧焊 电子束焊 扩散焊
焊缝氧化、裂纹、 对杂质敏感性大,生成氧化膜,清理接头表面,预热、缓冷,采用夹具,选用
塑性下降 产生焊接变形
惰性气体保护焊、电子束焊、摩擦焊
青铜+铸铁
扩散焊
青钢-侧产生裂纹,
控制冷却速度,把接头清理干净
铜+铝
电弧焊 冷压焊 扩散焊
与氧亲和力大,氢的富集产生压
产生氧化、气孔、
接头及填充材料严格清理并烘干,最好选用低
力,生成低熔点共晶,高温吸气
裂纹
温摩擦焊、冷压焊、扩散焊
能力强
焊接温度过高,压力过大,保温
接头严重变形
焊接温度、压力及保温时间应合理
时间过长
铜+钢
扩散焊
钢母材金属-侧未 焊接温度不够,压力不够,焊接 提高焊接温度、压力,延长焊接时间,接头装
常见异种金属焊接缺陷的产生原因和防止措施
异种金属组合
焊接方法
焊接缺陷
产生原因
防止措施
0Crl8Ni9+2.25Cr1Mo 手工电弧焊 熔合区产生裂纹 产生马氏体组织
控制母材金属熔合比,采用过渡层、过渡段
奥氏体不锈钢+碳素 钢
焊缝产生气孔,表 保护气体不纯,母材金属、填充 焊前母材金属,填充材料清理干净,保护气体
求
不对,工件振动
应均匀,压力适当,焊接温度和保温时间适当