大一高等数学期末论文范文

合集下载

大学数学论文(5篇)

大学数学论文(5篇)

大学数学论文(5篇)高校数学论文(5篇)高校数学论文范文第1篇参与全国高校生数学竞赛除了上述的必要条件之外,还需具备四个充分条件:如何稳固参与预赛的人数、制定合理有效的培训内容、师资队伍的建设以及经费来源等。

首先,如何有效地组织高校生参与竞赛,可谓是四个条件中最重要的一项,也是下一节笔者所讨论的重点;另外,作为数学竞赛的主要内容:《高等数学》是工科类同学必修的基础理论课,《数学分析》、《高等代数》、《解析几何》等课程是数学专业的专业基础课。

这些是数学竞赛得以顺当开展的基础。

第三,调动部分高校专任的数学老师组成竞赛培训团队也是一项重要的环节,笔者将会在第三节做具体的讨论。

最终是竞赛活动经费,笔者认为可以从以下三个方面获得:第一方面,每所高校都会有专项的创新活经费,可以从今项经费中申请一部分;其次方面,各赛区的主办方会拔给每个学校一些经费;第三方面,适当地向参与培训的同学收取(或变相地收取)一部分。

这些经费主要用于:参与竞赛的同学报名费、培训老师的课时费和同学竞赛时的考试相关费用等。

基于上述分析,在一般高校开展数学竞赛培训以及组织同学参与全国高校生数学竞赛是完全可行的并具有实际意义的。

2一般高校同学现状分析为了吸引、鼓舞更多的同学参加数学竞赛活动,必需先了解现在一般高校本科生的生源现状及其学习状态。

不得不承认,全国高校自扩招以来,一般高校高校生的质量普遍下降。

主要缘由有两个:一是高校的教育已由精英式转为大众式;二是随着扩招的进行,大多数优质生源进入了985或211这样的重点高校,这样就导致一般高校中的优质生源比例相对削减。

限于优质生源比例小的问题,再加上数学理论繁杂与浅显,学习起来困难重重,多数同学在学习数学时会产生犯难心情从而心生畏惧。

还有小部分的同学在进校时数学基础就比较差,(或由此产生的)学习数学的乐观性很低。

还有一部分同学认为数学无实际用途,从主观上学习数学的爱好消极。

基于以上几点缘由加上一些来自一般高校教学条件的限制,许多高校生的实际数学水平较低,所引发的直接结果就是学习成果下降、考试分数偏低、补考人数增多,更有甚者一些同学由于数学不及格而无法毕业。

大一下高数论文(1)

大一下高数论文(1)

大一下高数论文大一下学期,我们主要学了微分方程,微分方程是数学的重要分支.在这里我重点介绍了几个利用微分方程常来解决的问题的例子,从中我们可以了解到微分方程用的广泛性以及解决具体问题时常采用的一般步骤. 应用微分方程解决具体问题的主要步骤:(1)分析问题,将实际问题抽象,设出未知函数,建立微分方程,并给出合理的解; (2)求解微分方程的通解及满足定解条件的特解,或由方程讨论解的性质; (3)由所求得的解或解的性质,回到实际问题,解释该实际问题,得出客观规律. 微分方程的应用举例 几何问题 1.等角轨线我们来求这样的曲线或曲线族,使得它与某已知曲线族的每一条曲线相交成给定的角度.这样的曲线轨线已知曲线的等角轨线.当所给定的角为直角时,等角轨线就轨线正交轨线.等角轨线在很多学科(如天文,气象等)中都有应用.下面就来介绍等角轨线的方法.首先把问题进一步提明确一些.设在(x,y )平面上,给定一个单参数曲线族(C ):()0,,=c y x ϕ求这样的曲线l ,使得l 与(C)中每一条曲线的交角都是定角α.设l 的方程为1y =)(1x y .为了求)(1x y ,我们先来求出)(1x y 所对应满足的微分方程,也就是要求先求得x ,1y ,'1y 的关系式.条件告诉我们l 与(C )的曲线相交成定角α,于是,可以想象,1y 和'1y 必然应当与(C )中的曲线y =)(x y 及其切线的斜率'y 有一个关系.事实上,当α≠2π时,有 k y y y y ==+-αtan 1'1'''1 或1'1'1'+-=ky k y y当α=2π时,有 '1'1y y -=又因为在交点处,)(x y =)(1x y ,于是,如果我们能求得x , 1y ,'1y 的关系()0,,'=y y x F采用分析法.设y =)(x y 为(C )中任一条曲线,于是存在相应的C,使得()()0,,≡c x y x ϕ因为要求x ,y,'1y 的关系,将上式对x 求导,得()()()()()0,,,,'''≡+x y c x y x c x y x y xϕϕ 这样,将上两式联立,即由()()()⎩⎨⎧=+=0,,,,0,,'''y c y x c y x c y x y x ϕϕϕ 消去C,就得到()()x y x y x ',,所应当满足的关系()0,,'=y y x F这个关系称为曲线族(C )的微分方程. 于是,等角轨线(α≠2π)的微分方程就是 01,,'1'11=⎥⎦⎤⎢⎣⎡+-ky k y yx F 而正交轨线的微分方程为01,,'11=⎥⎦⎤⎢⎣⎡-y y x F为了避免符号的繁琐,以上两个方程可以不用1y ,而仍用y,只要我们明确它是所求的等角轨线的方程就行了.为了求得等角轨线或正交轨线,我们只需求上述两个方程即可. 例1 求直线束cx y =的等角轨线和正交轨线.解 首先求直线束cx y =的微分方程.将cx y =对x 求导,得'y=C,由⎩⎨⎧==cy cx y '消去C,就得到cx y =的微分方程xy dx dy =当α≠2π时,由(2.16)知道,等角轨线的微分方程为 x y dxdy kkdx dy =+-1 或kydx xdy ydy xdx -=+及22221y x ydx xdy k y x ydy xdx +-⋅=++即22211⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛⋅=++x y xy d k y x ydy xdx积分后得到()c xyk y x ln arctan 1ln 2122+=+ 或xycey x arctan 2122=+如果α=2π,由(2.17)可知,正交轨线的微分方程为 x y dxdy =-1 即yx dx dy -= 或 0=+ydy xdx故正交轨线为同心圆族222c y x =+.例2 抛物线的光学问题在中学平面解析几何中已经指出,汽车前灯和探照灯的反射镜面都取为旋转抛物面,就是将抛物线绕对称轴旋转一周所形成的曲面.将光源安置在抛物线的焦点处,光线经镜面反射,就成为平行光线了.这个问题在平面解析几何中已经作了证明,现在来说明具有前述性质的曲线只有抛物线,由于对称性,只有考虑在过旋转轴的一个平面上的轮廓线l,如图,以旋转轴为Ox 轴,光源放在原点O(0,0).设l的方程为y=y(x,y).由O 点发出的光线经镜面反射后平行于Ox 轴.设M(x,y)为l 上任一点,光线OM 经反射后为MR.MT 为l 在M 点的切线,MN 为l在M 点的法线,根据光线的反射定律,有∠OMN=∠NMR从而tan ∠OMN=tan ∠NMR因为MT 的斜率为'y ,MN 的斜率为-'1y ,所以由正切公式,有tan ∠OMN='1'1xy yx yy ---, tan ∠NMR='1y从而'1y =-yxy yy x -+''即得到微分方程2'yy +2x 'y -y=0由这方程中解出'y ,得到齐次方程'y =-1)(2+±yxyx 令xy =u,即y=xu,有dxdy =u+dx du x代入上式得到dx du x=uu u 221)1(+±+-分离变量后得=+±+221)1(u u uduxdx -令1+22t u=上式变为xdxt dt -=±1.积分后得ln xC t ln 1=+或112±=+xcu .两端平方得 2211⎪⎭⎫⎝⎛+=+x c u化简后得x c x c u 2222+=以222c cx y xyu+==代入,得.这是一族以原点为焦点的抛物线. 2.动力学问题动力学是微分方程最早期的源泉之一.我们都知道动力学的基本定律是牛顿第二定律ma f =这也是用微分方程来解决动力学的基本关系式.它的右端明显地含有加速度a,a 是位移对时间的二阶导数.列出微分方程的关键就在于找到外力f 和位移对时间的导数-速度的关系.只要找到这个关系,就可以由ma f =列出微分方程了.在求解动力学问题时,要特别注意力学问题中的定解条件,如初值条件等.例:物体由高空下落,除受重力作用外,还受到空气阻力的作用,在速度不太大的情况下,空气阻力可看做与速度的平方成正比试证明在这种情况下,落体存在极限速度1v .解 设物体质量为m,空气阻力系数为k,又设在时刻t 物体下落的速度为v,于是在时刻t 物体所受的合外力为2kv mg f -=(重力-空气阻力)从而,根据牛顿第二定律可得出微分方程2kv mg dtdvm-= 因为是自由落体,所以有()00=v⎰⎰=-t vdt kvmg mdv002 积分得t kvmg kv mg mg m=-+ln 21 或mkgtkvmg kv mg 2ln=-+解出v,得⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=1122m kg t m kg t e k e mg v当∞→t 时,有1lim v kmg v t ==+∞→据测定,s k αρ=,其中 为与物体形状有关的常数,为介质密度,s 为物体在地面上的投影面积.人们正是根据公式1lim v kmgv t ==+∞→ ,来为跳伞者设计保证安全的降落伞的直径大小的.在落地速度1v ,m, α,与一定时,可定出s 来.例: 某厂房容积为45m ×15m ×6m,经测定,空气中含有0.2﹪的2CO .开通通风设备,以360s m3的速度输入含有0.05﹪的2CO 的新鲜空气,同时又排出同等数量的室内空气.问30min 后室内所含2CO 的百分比.解 设在时刻t,车间内2CO 的百分比为x(t) ﹪,当时间经过dt 后,室内2CO 的该变量为45×15×6×dx ﹪=360×0.05﹪×dt-360×x ﹪×dt于是有关系式4050dx=360(0.05-x)dt或()dt x dx -=05.0454初值条件为x(0)=0.2.将方程分离变量并积分,初值解满足dt x dx t x⎰⎰=-02.045405.0 求出x,有X=0.05+0.15t e454-以t=30min=1800s 代入,得x ≈0.05.即开动通风设备30min 后,室内的2CO 含量接近0.05﹪,基本上已是新鲜空气了.4.变化率问题若某未知函数的变化率的表达式为已知,那么据此列出的方程常常是一阶微分方程.例:在某一个人群中推广技术是通过其中已掌握新技术的人进行的,设该人群的总人数为N,在t=0时刻已掌握新技术的人数为0x ,在任意时刻t 已掌握新技术的人数为x(t)(将x(t)视为连续可微变量),其变化率与已掌握新技术人数和未掌握新技术人数之积成正比,比例系数k >0,求x(t).解 由题意立即有()()00,x x x N kx dtdx=-= 按分离变量法解之,()kdt x N x dx=-,即kNdt dx x N x =⎪⎭⎫ ⎝⎛-+11积分并化简的通解kNtkNt ce Nce x +=1 由初值条件得特解kNt kNt ex x N e Nx x 000+-= 通过以上几个简单的例子,我们发现用微分方程解决一些实际问题其实很方便,也很普遍,所以在以后的学习中,除了学习必须的理论与方法外,更应该加强理论与实际的联系,将学习的知识更好的用于解决实际问题中.通过大一下学期的高数学习,让我的知识更进了一步。

大一高等数学论文2200字_大一高等数学毕业论文范文模板

大一高等数学论文2200字_大一高等数学毕业论文范文模板

大一高等数学论文2200字_大一高等数学毕业论文范文模板大一高等数学论文2200字(一):浅析大一新生心理特点及其在高等数学教学中的运用论文【摘要】在当今经济以及科技不断发展的过程中,大学的教学模式也实现了不断的改革。

因此,大一新生的心理特点在高等数学的教学过程中也受到了进一步的注重。

【关键词】大一新生;心理特点;高等数学;教学;运用大一对于学生而言是一个十分关键的时期,大一的高等数学教育也至关重要。

本文就是对大一新生的心理特点及其在高等数学教学过程中的运用进行分析。

一、大一新生的心理特点1.有着较强的自豪感以及优越感高校的大一新生在刚刚走进校园的时候都有着较强的自豪感以及优越感,因为他们在高中的学习之中受到老师的关注,并且在高考中也取得了较为满意的成绩。

所以,这份优越感以及自豪感使得他们觉得自己即使是在大学之中也应该是佼佼者。

2.对大学生活的幻想由于高校的大一新生刚刚经历了一段漫长的学习历程,经历了紧张的高考,因此进入大学之后,会有一种梦想已经实现了的幻想。

同时,在他们进入大学之前,就听很多人说大学就是天堂,不需要紧张地学习,有很多社团活动,考试也不需要太紧张等。

这就使得很多大一新生对自己的大学生活产生了不切合实际的幻想,进而对自己的行为过于放纵,导致其在大学学习的过程中很难取得满意的成绩。

3.有着较强的自尊心和较差的心理承受能力因为目前的高校大学生大多都是家里的独生子女,因为家长的娇惯,导致其有着唯我独尊的心理。

同时,高校的学生在中学时期也是学习成绩优越的学生,在中学时期受到老师以及同学的关注,让他们觉得自己只可以比别人更强。

因此这样的学生也就有着强烈的自尊心,在大学学习的过程中,为了使自己不丢面子,就可能会使用一些不光彩的手段,同时,这样的学生在受到打击的情况下会产生自卑的心理,甚至会有一些极端的行为出现。

4.学习的态度不稳定很多大一新生在刚走进大学校园时,都会有着很大的雄心,对自己的未来更是进行着近乎完美的规划。

大一数学论文大学生范文精选

大一数学论文大学生范文精选

大一数学论文大学生范文精选大学数学是大学生必修的课程之一,由于大一是过渡期,在大一开设数学这门课程对于教学质量有着重要的作用。

下面是店铺为大家整理的大一数学论文,供大家参考。

大一数学论文范文篇一:《数学学科德育教育渗透思考》摘要:结合数学学科的特点教师对学生进行道德教育,数学教师要善于在学科教学中渗透德育教育,培养学生尊重事实的科学态度,正确的学习目的,理性思考的精神和科学的态度,培养学生辩证唯物主义世界观,增强学生喜爱数学的兴趣,培养学生高尚的人格特征和思想道德修养。

关键词:数学学科;渗透;德育教育我国教育部印发《中等职业学校德育大纲》指出,学校要充分发挥主导作用,与家庭、社会密切配合,拓宽德育途径,实现全员、全程、全方位育人。

上至教育部下至学校都越来越意识到在学生中进行德育教育的重要性,那么在学校怎么能更好地开展德育教育呢?学科德育就是进行德育教育的重要阵地之一。

现今各个国家都把德育教育作为一项非常重要的工作,并且都在积极探讨在学科教学中如何渗透德育教育。

因此,我们职业学校的每个教师都应该努力探索德育教育的本质和特点,充分发挥德育的主渠道作用。

数学学科作为学校学科教育的重要组成部分,有其独特的风格和特点,也应承担着德育教育的任务。

第一,数学是一门研究客观物质世界的数量关系及空间形式科学,具有严密的符号体系、独特的公式结构和图像语言,其显著的特点有:高度的抽象性、严密的逻辑性、应用的广泛性和内涵的辩证性。

第二,数学学科学习的目的是掌握一定的数学基础知识,形成一定的数学素养,是对学生一生受用的方法和能力。

这些数学能力包括:空间想象能力、逻辑思维能力、基础运算能力和数学建模能力等。

第三,数学课作为职业学校文化基础课之一,所用资源少,易开展教学活动。

结合数学学科的特点,笔者认为可以从以下几点进行德育教育。

1根据中职学校数学学科的特点和数学课的现状,教师的人格品行和良好的师生关系是进行德育教育的关键数学学科的特点给人的感觉是枯燥、无味,对于职业学校的学生更是如此。

大学高等数学论文范文

大学高等数学论文范文

大学高等数学论文范文推荐文章浅谈高等数学论文范文格式模板热度:高等数学相关论文范文热度:有关大学教育论文范文热度:高等教育学论文相关范文热度:高等院校会计专业论文热度:大学高等数学教育是促进学生发展全面性的一门基础性学科,其在学生思维、思辨能力的培养过程中扮演着十分重要的角色。

下面是店铺为大家整理的大学高等数学论文范,供大家参考。

大学高等数学论文范范文一:数学史教育高等数学论文一、在高等数学的教学中融入数学史的必要性(一)在教学过程中插入数学史教育在教学过程中,涉及一些数学相关知识的人物、历史时,可以利用课堂上的3~5分钟向学生介绍一下,提高学生学习高等数学的兴趣,将高等数学中繁杂的数学符号、计算公式和有趣的数学历史相融合,鼓励学生积极、主动参与到高等数学学习中。

著名数学家陈省身说:“了解历史的变化是了解这门科学的一个步骤。

将数学发展的历史真实地展现给学生,是数学这一学科应该毫不犹豫地担起的职责。

”高职院校高等数学教师提高自身数学素养,将数学史内容融入到高等数学教学教学中,势在必行。

高职院校学生相对于本科学生基础弱,底子薄,在高等数学的学习中会遇到许多问题,自然影响学生的学习效果。

在课堂教学过程中融入数学史的内容,从数学家们发现、发明解决问题的思路出发,引导学生思考解决问题,可以帮助学生更好地理解高等数学中的公理、公式,解决数学学习中出现的各种困难,树立学习信心,改变高等数学枯燥乏味、一味证明的课堂教学模式。

(二)将数学史蕴涵的思想、方法融入到高等数学教学中弗赖登塔尔在《作为教学任务的数学》中指出,数学概念、公理及数学语言符号等,包括数学问题解决,不应机械地灌输给学生,或仅是由结果出发,推导出其他数学知识的方式,这种颠倒的教学法掩盖了创造性思维过程,即学生的数学学习不应该重复人类的学习过程,而应该进行“再创造”。

数学史烙印着数学家处理数学问题的痕迹,其中蕴藏着数学家处理相关问题的思想和方法,比如归纳推理、概况分析、类比猜想等逻辑思维方法及跳跃性的直觉思维方法,这些恰是数学教学中学生所必须具备的。

大一高等数学论文范文

大一高等数学论文范文

大一高等数学论文范文高等数学是大学重要的基础课程,是理、工、农、医等高等教育中涉及学生最多、对学生的影响最远的课程之一.作为一门基础科学,高等数学具有高度的抽象性、严密的逻辑性和广泛的应用性等特点。

下面是小编为大家整理的大一高等数学论文,供大家参考。

大一高等数学论文范文一:高等数学学习心得通过对高等数学一年的学习,在这里很荣幸和大家分享一下高数的学习心得。

首先,我想说一下高数在大学的重要性,看过教学计划的同学就会知道,高数的学分是你大学四年里最高的,可以毫不夸张的说如果你高数的学分拿不到,你的学位证书也就不用想了。

一般来说,如果你大一高数挂了,要想重修过还是很痛苦的。

所以希望大家无论如何,一定要把高数考好。

记得开学时有位老师告诉我,专业课可以挂,但高数一定不能。

说这句话,并不是说专业课不重要,只是为了说明考好高数的重要性。

其实,学号高数并不难,但大家需要注意一点,到了大学,你仍然不能放松,你心里还是需要绷紧一根弦(注意)。

可能之前会听到家长或者老师会说,到了大学就可以好好玩了。

不错,但一切都应该有个度,所有的玩都必须建立在学习上没有问题的前提下,同学们万万不能因为玩而耽误了学业。

而且,大学其实并不比高中轻松(这句话大家一定注意)。

下面我来介绍一下,大学高数的一些学习方法:第一,还是老生常谈,那就是课前预习,而且,我觉得在大学课前预习显得比以前任何时候都重要。

因为,大学课程的进程可不是一般的快。

希望大家能保持课时比老师快两节,练习比老师快一节。

最低限度,是不能落下(其实,这个要求也不低,但希望大家一定不能落下)。

第二,要好好利用课堂时间,对于预习中不明白的地方,注意听讲,而对于自己觉得简单的地方,大家就可以做些相关练习了。

有一点大家需要注意,不明白的问题一定不要积压,要及时的问同学或者老师(建议是老师,但前提是你对这道题目要有一定的思考),经常问老师题目对你的好处是很大的,因为考试的题目一般都是你们的老师出的,所以老师在给你讲题的时候会不知不觉的给你透漏考试的一些信息,同时,万一考试时你出了状况,结果考了个五十几分,如果老师对你有不错的印象,她是可以把你送过的。

大一第二学期高数论文

大一第二学期高数论文

姓名:某某某学院:某某学院班级:某某***班当・**********【摘要】又经过一个学期的学习,我对高数的认识又有不同了,大一上学期的学习主要是对高数的基础进行认识,而大二的学习就是更深入延伸和拓展,在原有学习的基础上更深入的了解其精髓,重点学习了高数中的导数、微分和积分的扩充,对于我们更深刻的掌握高数这门学科有很大的好处。

这一学期里我们,即从对一元函数的求导到对多元函数的求导,求偏导和求全微分,从一重积分扩充到二重积分和三重积分,但是之前的一重积分主要是运算,但是重积分则更加注重在其运用上,积分也从之前的对某一个区域积分延伸到对曲线积分和曲面积分上。

另外,这学期也新引入了无穷级数和微分方程。

学习高数我们应该有严谨的态度,在努力的基础上加上认真,才能更好的学习。

【关键词】导数微分重积分级数一、对高数的认识已经经过两个学期的学习,我对高数的认识已然不同,高数是最最有用的课程之一,后面的好多课程都会用到高数的知识。

高数是公共基础课,对工科学生尤为重要,后续课程都会用到,比如,接下来的复变函数、积分变换是高数的延续,而大学物理、电路、电子技术等都需要高数的知识进行解题。

是进一步进修不可或缺的考研等都要考数学。

总之高数是理工科基础的基础。

就像你小学学的加减法是你继续学习的基础一样。

数学培养的是我的思维,是分析问题、解决问题的思维方式。

许多实际问题都需要建立数学模型来解决,而我建立模型地基础就是我怎样把实际问题转化为数学问题。

而很多时候数学的学习是有很多趣味的,像重积分,二重积分,哪怕是三重积分,那些变化,通过立体模型的解题过程是多么的好玩,多么的妙趣横生。

二、如何学习(1)课前预习从小到大,经过这么多年的学习,当然发现适当的预习是必要的,在上课前对所学知识的先行认识,相应地复习与之相关内容。

如果能够做到这些,那么学习就会变得比较主动、深入,会取得比较好的效果。

(3)课后复习复习不是简单的重复,应当用自己的表达方式再现所学的知识,例如对某个定理的复习,不是再读一遍书或课堂笔记,而是离开书本和笔记,回忆有关内容,不清楚之处再对照教材或笔记。

大一高等数学论文大学数学论文 (1)

大一高等数学论文大学数学论文 (1)

大一高等数学论文大学数学论文经济类高等数学分层教学的实践研究摘要:高等数学是经济类本科生一门重要的基础课程,对掌握好其专业课程知识和从事本专业更高层次的研究起着关键作用。

为使该专业学生学好这门课程,我校对高等数学的教学试行了分层教学的教学模式。

本文从分层的必要性、分层方式以及取得的效果等方面分析阐述了实行分层教学的优势。

关键词:高等数学;分层教学;因材施教一、分层教学实施的必要性高等数学是大学本科经济类专业学生的一门重要的基础课程,其重要性体现在学好这门课程不仅是学好其专业课的基本保障,更是提高思维素质的方式和进行更高层次研究的不可缺少的工具。

因此,一般的本科院校对经济类的学生从一年级开学就开始开设高等数学课程。

然而,高等学校扩大招生后,我国的高等教育已经从精英教育发展到大众教育阶段,使得高校各专业入学人数在激增的同时,生源质量下降已是不争的事实。

而且学生来自全国各个省市地区,入学的数学成绩、水平参差不齐;不同学生的兴趣、爱好及发展方向各不相同。

而相同专业所使用的教材、教学计划、教学大纲都是一样的,学生和教师基本没有选择的余地。

这种统一的教学模式严重阻碍了高等数学教学质量的进一步提高。

目前,这一课程的教学面临的最大问题是学生的学习兴趣和学习成绩的下降。

而造成这一问题的因素是多方面的,其中一个重要的原因是忽视学生对教学方法、教学内容的不同需求。

因此,根据学生的数学成绩、兴趣爱好、发展志向在适当尊重个人意愿的前提下对学生实施不同要求,不同方式的教学方式,就势在必行。

本文以科学理论为基础,结合本校的教学实践,分析论述了分层教学的实施方法和取得的成果。

二、分层教学的理论基础分层教学的理论基础是美国心理学、教育学家布鲁姆(B.S.Bloom)“掌握学习”理论。

布鲁姆认为:“只要在提供恰当的材料和进行教学的同时,给每个学生提供适度的帮助和充分的时间,几乎所有的学生都能完成学习任务或达到规定的学习目标。

”“掌握学习”理论要求教师的教学“应根据学生的实际发展水平、学习方式和个性特点来进行”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大一高等数学期末论文范文通过对高等数学一年的学习,在这里很荣幸和大家分享一下高数的学习心得。

首先,我想说一下高数在大学的重要性,看过教学计划的同学就会知道,高数的学分是你大学四年里最高的,可以毫不夸张的说如果你高数的学分拿不到,你的学位证书也就不用想了。

一般来说,如果你大一高数挂了,要想重修过还是很痛苦的。

所以希望大家无论如何,一定要把高数考好。

记得开学时有位老师告诉我,专业课可以挂,但高数一定不能。

说这句话,并不是说专业课不重要,只是为了说明考好高数的重要性。

其实,学号高数并不难,但大家需要注意一点,到了大学,你仍然不能放松,你心里还是需要绷紧一根弦注意!!!。

可能之前会听到家长或者老师会说,到了大学就可以好好玩了。

不错,但一切都应该有个度,所有的玩都必须建立在学习上没有问题的前提下,同学们万万不能因为玩而耽误了学业。

而且,大学其实并不比高中轻松这句话大家一定注意。

下面我来介绍一下,大学高数的一些学习方法:第一,还是老生常谈,那就是课前预习,而且,我觉得在大学课前预习显得比以前任何时候都重要。

因为,大学课程的进程可不是一般的快。

希望大家能保持课时比老师快两节,练习比老师快一节。

最低限度,是不能落下其实,这个要求也不低,但希望大家一定不能落下。

第二,要好好利用课堂时间,对于预习中不明白的地方,注意听讲,而对于自己觉得简单的地方,大家就可以做些相关练习了。

有一点大家需要注意,不明白的问题一定不要积压,要及时的问同学或者老师建议是老师,但前提是你对这道题目要有一定的思考,经常问老师题目对你的好处是很大的,因为考试的题目一般都是你们的老师出的,所以老师在给你讲题的时候会不知不觉的给你透漏考试的一些信息,同时,万一考试时你出了状况,结果考了个五十几分,如果老师对你有不错的印象,她是可以把你送过的。

第三,就是你所需要做的题目,可以说只要你能把课本习题和老师上课讲的所有的题都弄会,考试是完全没有问题的,其他的题目就完全没有必要了,这里就不像高中要做大量的其他习题,但大家要注意,课本的题是有一定难度的。

希望大家认真对待,不要气馁,不懂就问。

这里的最低限度就是课本例题、练习册,一定不能再少了。

想拿高分的同学,一定要多做题范围也就是课本和老师讲的题,特别是向拿奖学金的同学。

第四,希望大家把学习时间一定要给足了,只靠考前突击,高数是没办法过的,除非你是天才。

强烈建议大家去自习室,养成晚自习的习惯。

宿舍的学习环境并不好,如果就想在宿舍学习,那么你必须先把桌子收拾干净,这样可以很好的提高你的注意力,原因大家应该体会的到。

好了,说的不少了,希望大家能有所收获,预祝大家取得优异的成绩。

大一高等数学学习心得转眼之间大一已经过去了一半,高数的学习也有了一学期,仔细一想,高数也不是传说中的那么可怕,当然也没有那么容易,前提是的自己真的用心了。

记得刚开学的时候,我对高数还是很害怕的,我虽然上课认真听讲,但我还是不大明白,当然那是由于刚开始的课程确实是很抽象的,很难以高中时的解题思维理解,但后来学的就不是那么的吃力了,再加上我的勤奋看书。

对于高数的学习大多数人都认为应该课前预习、上课认真听讲、课后复习。

但那只能是理想的状态下,事实是不允许我们那样做的。

由于我的数学还算有点功底,一直以来,我只做到了其中的一点半,而且成绩还算过得去,因此,我认为对于高数的学习,我们应该上课认真听讲,时课后复习。

我们主要应该在课堂上认真听讲,理解解题方法,我们现在所需要的是方法,是思维,而不仅仅是例题本身的答案,我们学习高数不是为了将来能计算算术,而是为了获得一种思想,为了提高我们的思维能力,为了能够用于解决现实问题。

在课后复习时,再根据例题好好体会解体的方法,一定要琢磨透。

至于您的方法我觉得还不错,容易的快速过,困难的花点时间耐心讲解。

只是我们每学期都要放弃后边的一部分内容,是否可以考虑相对放弃一些前面简单的,而加快进度讲完后面的一些内容。

高等数学课程是高等理工科院校普遍开设的一门基础课程,是众多专业的学生进一步学习基础课程和专业课程的基础。

但由于高等数学本身具有高度的抽象性和深奥性使教师在授课时出现了诸多不尽人意之处。

如何活跃课堂气氛,提高教学质量是高校教育者们值得深思的问题。

一、高等数学教学的现状1、高等数学课时缩减当前我国高等教育正逐步正由精英教育逐渐转为大众化教育,为了加强实践教学,高等数学[1]的教学内容有所变动,授课学时在1996年前是220学时左右缩减到现在的160学时左右。

虽然减少了应用方面的内容,但每章节数学知识点的体系保持不变。

在缩减课时的情况下,教师上课往往出现“向前赶”的现象,使得课堂讲解不够细致,学生学起来囫囵吞枣,不求甚解。

2、学生数学基础功参差不齐,增加了教学难度现今高校录取新生的政策,对大多数专业来说基本是看高考全科的总分数,没有顾及数学成绩对学习后续专业课程的影响,因此往往出现同一专业的学生数学成绩功悬殊较大。

针对学生数学基础功参差不齐的情况,如何因人施教,是高校教学工作者值得深思的问题。

3、学习态度和兴趣问题兴趣是最好的老师,激发学生学习高等数学的兴趣无疑会对教学产生良好的效果。

在新环境下对刚入学的大学一年级新生而言,心理和学习方法上都有一个适应过程,高等数学本身所具有的高度抽象性、严谨的逻辑性的特点,往往使初学者望而生畏。

再加上校园风气及网络、手机等因素的影响,导致部分学生出现学习目的不明确,态度不端正等现象。

4、教学方法、教学道具有待改进传统的高等数学教学往往是按照定义-定理-推论-习题的逻辑顺序展开,课堂上只讲“是什么”,很少讲“为什么”,形式化演绎,不是提出问题,而是直接下定义,对于数学问题多半是技能训练性的,通过题海战术,欲使学生掌握题目类型和解题技巧。

授课方式一般是一教师、一黑板、一粉笔的枯燥教学,教学方法多是一贯的“满堂灌”,学生在学习过程中往往处于被动的状态,师生之间的交流比较少,使得课堂气氛通常不够活跃。

二、高等数学课程教学模式改革的举措1、小班制分层次教学我国著名的教育学家陶行知曾经说过:培养教育人和种花木一样,首先要认识花木的特点,区别不同情况给以施肥、浇水和培养教育,这叫“因材施教”。

从小学到大学,数学学习经历了一个较长的过程,在这个过程中由于教育资源、学习习惯、个人素质和兴趣等使得大学新生的数学成绩有所差距。

对教授大一新生的高等数学教师来说,非常有必要了解学生成绩背后的原因。

根据学生专业需求、兴趣不同、基础功强弱等因素,对学生分班级、分层次、分群体选择不同的教师、教学目标和教学方法,实施不同的教学方式,让每个学生都能有所学,有所获。

[2]分层次的方式很多。

比如对学生高考成绩进行摸底,通过多元统计软件进行成绩聚类分析,由此将学生大致分成优异、良好、合格三种小班级。

成绩优异的学生通常基础功较强,数学思维活跃、善于分析解决问题。

在授课时对这类学生要制定较高的教学目标,使学生不仅计算能力有所提高,还要培养高等数学中抽象理论的认知和理解能力。

在情况允许的情况下,还可以开展讨论班,抽取教材中理论概念型的题目及和讲授章节相应的考研题目,让同学们讨论,练笔;对成绩合格的同学,在授课时可以相应的减少抽象理论的讲解,首先注重教材中具体计算题目的讲解,使学生能按葫芦画瓢似的解出题目,经过学习上的不断积累,学生必然敢于动手下笔解决问题,进而引起学生的学习兴趣。

在就近如同寝室,同专业的原则下,还可以实施帮扶政策,即让成绩优异的同学帮扶成绩一般的同学。

这样一方面锻炼了成绩优异同学的讲解能力,提高成绩一般同学的学习进度和程度,又能促进同学间的交流,易于形成良好的学习氛围。

2、改进教学方法和教学手段学习数学必须讲究思想方法。

通过以思想方法的分析来带动具体数学知识内容的教学,我们即可真正地做到把数学课“讲活”,讲懂”和“讲深”。

[3]所以教师要更新教育观念,积极主动地采取一些应对政策,优化教学方法和教学手段,使学生由“厌学”到“愿学”,成为想学、爱学、会学的人。

除了传统的讲授式教学,教师在课堂教学中还可以用研究式、讨论式、自学指导式等启发教学方法。

同时,教师在授课时应注重师生互动。

学生对教师提出的问题要有响应,教师和学生之间要有对话和交流。

为此在课前教师需要熟悉教学内容,精心设计一些能够启发学生思考的问题,给出一些事例和问题的情境,引导学生通过观察、思考、讨论等途径发现问题解决问题。

[4]有时对部分内容教师还可以设计陷阱教学,一步步将学生引向错误结论方向,当出现矛盾陷入僵局时,教师再因势利导带领学生讨论问题的症结所在。

这无疑能引起学生兴趣,调动学生深入思考和独立钻研的积极性,活跃了课堂气氛,甚至能达到举一反三的课堂效果。

另一方面,在教学中要突破黑板二维空间的局限,逐步引入现代化教学手段,课堂教学运用多媒体和数学软件,满足课程在计算机图形、数值计算、数学建模等方面的需求,开发学生的空间想象能力和计算机软件操作运用能力。

[5]在课时缩减的情况下,运用互联网进行辅助教学,指导学生正确适宜地运用网络搜查高等数学的相关资料,自我解惑,提高学生自学能力。

还可以建立班级学习交流群,学生可以在群里畅谈对高等数学课程教学的想法和建议,以便教师做出相应的指导和调整。

对同学提出的问题,教师可以先鼓励同学间你问他答,锻炼学生自我解惑的能力,再选择性地进行答疑和总结。

互联网的运用无疑为课堂教学、课后学习和答疑提供了便利之处。

3、引进师资力量,加强教师交流培训教师是学习的领路人,只有教师在教书过程中发挥主导作用,引导学生,与学生产生共鸣,才生调动学生的学习积极性。

为保证教学质量,引进教师高学历人才和学科带头人,形成一个高学历、教学经验丰富的教师团体。

加强教师对内交流。

在数学教研室,定期开展高等数学教学课堂体会和经验交流会,使教师间取长补短,提升教学质量;对新教师实行助教制,通过跟班听取老教师上课、批改作业和辅导学生答疑等,使新教师熟悉教材内容,掌握一定的教学方法和规律。

鼓励在职教师继续深造,提供更多机会让教师走出校门,参加学校间的教学研讨会,参加各级教育部门和学术部门举办的各类师资培训班,学习国内外的教学思想、教学方法和教学技术。

4、完善教学考核评价体系高等数学教学评价一般仅仅局限在一个学期一次期终考试的考核上,这种考核方法造成了学生临时抱佛脚的“突击式”学习现状,往往不能完全放映出学生的学习态度和真实掌握知识的程度来。

加强平时考核力度,变期末一次终结性考试为全过程的行程性考核,实现教学的步步为营,逐步扎实推进,避免学生以一次期末考试决定胜败的情况,为此有必要对考核评价体系做出一些调整。

[6]平时作业和课堂测试能反映出学生对每个章节知识掌握的程度。

教师通过审阅,能察觉出学生学习态度、学习习惯、数学悟性等各方面的表现。

相关文档
最新文档