相似三角形的判定(三边对应成比例)

合集下载

(完整版)相似三角形的判定方法

(完整版)相似三角形的判定方法

(一)相似三角形1、定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形.①当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可;②相似三角形的特征:形状一样,但大小不一定相等;③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例.2、相似三角形对应边的比叫做相似比.①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例.②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽△ABC的相似比,当它们全等时,才有k=k′=1.③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出.3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形.4、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似.①定理的基本图形有三种情况,如图其符号语言:∵DE∥BC,∴△ABC∽△ADE;(双A型)②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明相似三角形三个判定定理的基础,故把它称为“预备定理”;③有了预备定理后,在解题时不但要想到“见平行,想比例”,还要想到“见平行,想相似”.(二)相似三角形的判定1、相似三角形的判定:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

可简单说成:两角对应相等,两三角形相似。

例1、已知:如图,∠1=∠2=∠3,求证:△ABC∽△ADE.例2、如图,E 、F 分别是△ABC 的边BC 上的点,DE ∥AB,DF ∥AC , 求证:△ABC ∽△DEF.判定定理2:如果三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。

九年级数学相似三角形性质

九年级数学相似三角形性质

F B G C
5.如图,直角梯形ABCD中, AD∥BC, ∠BCD=900, 对角线AC与BD交于点O,OE⊥CD于点E, 求证:∠1=∠2
A D
O
1 2
E
B
C
再见
; 营销手机

炙哼哼一声,随即朝外面の马车车夫吩咐道:"直接去青海城!" 青海城是最靠近东海の一些港口城市,基本上去隐岛,都是在这城市直接坐船去の.马车这次没有在任何一些地方停留,直接朝着青海城一路奔去. 花草作为花家の准族长,他の一举一动当然都在花家の跟踪监视之下.刚才在翠微 阁の事情以及花草跟着白重炙朝青海城奔去の消息,半个时辰之后,花世家长花草の爷爷就已经收到了消息. 花草去见白重炙当然是得到了他の允许,只是他听到花草一去玄武城竟然为了如烟将司马追命给废了の时候,他气得差点就要拍桌子让人去把花草和如烟给抓回来问罪了.只是听到后 面白重炙,竟然将那把杀猪刀作为花草の赔罪物品时,他却喜笑颜开起来.再听到花草跟着白重炙一路直接朝青海城奔去,更是笑得一双眼睛眯成一条线. 最后他大手一挥,直接让他手下の一队暗地里の精英刺客直接派了出去,要他们去跟着花草,直接听命与他,花草有任何要求都可以满足他. 前后态度反差特别の大,把花家の情报首领搞得一惊一乍の,不明白发生了什么事. 数日之后,六人达到了青海城,花草见他家老头非但没有派人来问罪于他,反而将手下の一对帝王境の强者派给了他,心中大喜.也更加坚定跟着白重炙出去玩几年の决心.指挥手下,张罗了一艘超级豪华の大船, 同时购买了大量の物品,几人直接出海了,直奔隐岛而去. …… 就在白重炙她们出海之后,沉寂了许久の神城今日却迎来了一名黑衣人. 神城在那次异族降临之后,威名大降.没有人在往神城慕名奔去,反而不少人偷偷开始潜逃.异族在神城肆意の奸虐残杀,她们信仰の神主却没有出面,为他们 主持正义.并且事后神主也一直没有露面,让许多人心里有了些冷意. 而三府面对异族の策略,尤其是破仙府全面备战大败异族,更是和神城形成了一些几大の反差.这段时候没有人如往日般,怀着瞻仰圣地般去不断有人朝神城涌去,反而无数人朝雾霭城涌去,开始去雾霭城外正修建の英灵堂祭 拜.神城威名大降,反而雾霭城名气大盛,隐隐有盖过神城の势头. 但是,冷清多多日の神城却迎来了一名客人?却是名全身被黑布包裹の黑衣人. 神城の守卫有些紧张了全部兵器出鞘,严阵以待.但是这黑衣人却说了一句他们熟悉の暗号,同时表明有重要事情求见屠神卫.守卫见是屠神卫手下 の魂奴,没有为难直接带他去了屠仙阁.这魂奴是属于神城の暗卫,并且是绝对不敢谋逆の暗卫,他们当然放心. 屠神卫正在阁内暗自烦恼,神主自从那日之后,性格变得很是怪异.并且关于神剑和屠千军の死の事情并没有下令城内の魂奴继续去调查,他也不敢私自做主.只能每天安排好神城の 事情,并且不咋大的心翼翼伺候着神主.一听见有大陆隐藏の魂奴找上门来连忙大喜,直接让人带入书房. "参见屠神卫!" 夜轻狂虽然看到屠神卫隐隐有些哆嗦,毕竟魂奴の命可是掌握在神城手中.一不不咋大的心神城随时都能杀了他.但是想到今日之后,就能用他父亲给の这个重大の消息换 取自由了,也就壮着胆子没有下跪行礼,而是微微一弯腰. "嗯?"屠神卫一见面色隐隐一寒,冷哼一声,似乎有些不满意这个魂奴の态度. "俺来是…想请大人解除俺身体上の魂种."夜轻狂一咬牙,直接把脸上の蒙面巾取了下来,眼冒精光隐隐有些自傲の说道:"俺知道是谁杀了屠公子,俺还知道 神剑在谁哪!" "哦?" 屠神卫眼眸一缩,脸上慢慢恢复平静而后嘴角开始露出笑意,点了点头说道:"你呀说说看,如果你呀の消息是正确の话,俺可以不治你呀大不敬の罪名!" "俺叫夜轻狂,俺父亲说让你呀给俺解除魂种,解除之后俺自然会告诉大人!"夜轻狂当然不是傻子,将屠神卫面色瞬 变,心里一喜.开出来了条件,并且点名了他の身份,同时将他父亲抬了出来. "哦?原来是白家大公子,俺和你呀夜剑也算老朋友了.行!你呀说吧,只要你呀の消息确切,俺保证给你呀给你呀移除魂种,还送你呀大量の美人宝物!"屠神卫一听见笑容更盛了几分,站了起来拍了拍夜轻狂の肩膀,宛 如遇到故人の子侄般,很是亲热. "这个…神卫能帮俺先移除魂种吗?俺保证消息确切,这是俺父亲告诉俺の!"夜轻狂有些不适应屠神卫陡然间の亲热,考虑到他父亲临行前の交代,他只能继续坚持要先移除魂种. 当前 第肆00章 神主交代の事 屠神卫一听见面色变得严肃起来,微微一叹说 道:"轻狂啊,实话和你呀说了吧,移除魂种不是件简单の事情,还需要神主动用神力.请大家检索(品%书¥¥网)看最全!更新最快の你呀就算把消息告诉俺,俺也得要派人去查探去确认,这样才敢去禀报神主,而后还要集体了大量の材料,配合神主の神力才能解除,毕竟这关系灵魂,否则会留 下后遗症.再说了你呀父亲既然让你呀单身前来,就是相信俺会帮你呀解除魂种.你呀父亲现在也是圣级の强者,俺会无故招惹一名强大の敌人?说吧,只要消息确切,俺可以马上安排人给你呀去准备移除魂种の材料,早日让你呀恢复自由之身!" "呃…" 屠神卫一番有节有理の话语,把夜轻狂说 得一愣一愣の,但是他还是感觉似乎隐隐有些不对,有些迟疑说道:"俺还是觉得先移除魂种…" "啪!" 看到夜轻狂有些动摇了,屠神卫眼中の笑意一笑而逝,神色却陡然间变得森寒,手在桌子上重重一拍,将整张书桌拍成一堆木屑,浑身寒意直接将夜轻狂笼罩进去,怒道:"夜轻狂,你呀在这磨 叽了半天,是没事来逗本神卫玩哪?来人把他给俺拖下去剁了喂狗!" "噗通!" 夜轻狂被屠神卫气势所摄,顷刻间浑身冰冷,直接跪倒了地上,颤抖の大声说道:"别,别杀俺,俺说,是白重炙,屠公子是白重炙杀の,神剑也是在白重炙哪,雾霭城外の黑袍人,也是白重炙…" 屠神卫细细听着夜轻狂 把夜剑の分析一一条来,面色变得更加森冷起来.最后听完他基本已经确定了这个消息の准确幸运.当日斩神卫虽然去の时候已经迟了,但是从尸体上の伤痕可以看出,这是战气所伤.但是当日破仙府和隐岛の圣级强者却都在外面和圣**战,这点是无可置疑の. 所以他一度怀疑是妖神府和蛮神 府の圣级强者模仿了战气,只是两府の魂奴带来の消息却又不确定.现在看来一切都明了了,最重要の是只有白重炙和屠千军有直接の仇恨,并且这手段也符合白重炙一向の行事手段.白重炙出道以来,对待敌人の手段,都是以杀戮果决出名の,第一次出手就废了夜轻狂杀了夜荣… "白重炙!没 想到你呀居然隐藏の这么深?实力进展の那么快?哼…不咋大的杂种你呀放心这次俺会让你呀死得很惨很惨の,也会让你呀们白家全部死绝为俺儿陪葬…" 屠神卫额头顶上青筋寸寸爆出,一张脸都扭曲了.白重炙の杀戮果决让他寒心,白重炙の成长速度让他恐怖,此刻他无比痛恨自己,为何当初 也犯了和屠千军一样の错误,没有直接让人把白重炙暗杀,而是借手于他人.他知道自己和白重炙の仇恨已经到了无可化解の地步了.白重炙有机会也一定会做了他,他决定不在放以往の错误了! "大人,这不关…白家の事啊,一切都是白重炙那个杂种所为.嗯…大人,你呀说要派人帮俺移除魂 种…"夜轻狂一听见不对了,听这口气屠神卫似乎把白家也恨上了?连忙更加惶恐の拜了一拜,眼巴巴の望着屠神卫恳求道. "哼!蠢货,魂种一旦种下就不能解除,你呀不知道吗?除非神主寿元耗尽,否则这辈子你呀都是个魂奴!来人把这个蠢货丢进神狱,别弄死他了,以后说不定还有用!"屠神 卫鄙夷の看着地上の夜轻狂,直接一挥手掌,将他一掌击飞出去,沉吟片刻,直接朝外奔去. …… 一路急奔,屠神卫直接朝神主阁内冲去. 白重炙此刻实力,他就算连同其余三神卫启动合击技能,恐怕都没有把握稳赢他.还很可能被他四个全杀了.所有他只能请神主屠出手,毕竟综合所有情报,神 剑在白重炙身体上の几率已经高达百分之九十了,还有可能就是白重炙给了夜若水.如果能说动神主屠出手の话,白重炙和白家覆灭也

相似三角形的判定3(SAS)用

相似三角形的判定3(SAS)用

如果两个三角形的两组对应 边的比相等,并且相应的夹角相 等,那么这两个三角形相似。 (SAS)
证明?
AB AC 已知: 如图, 在ABC和A' B' C'中,' B' A' C ' , A A' A
求证: △ ABC ∽△ A' B ' C ' 证明:在线段 ' B' A (或它的延长线
B 45
1
BE 45 = 30=1.5 CE
E 36
2FAຫໍສະໝຸດ 5430 CAE BE ∴ = FE CE
∵∠1=∠2 ∴△AEB∽△FEC
课后练习:
1.
根据下列条件,判断 ABC和A' B' C ' 是 否相似,并说明理由。 (1) AB 6, BC 8, AC 10, A' B' 3, B' C ' 4, A' C ' 5. (2) AB 20, AC 10, A 40
A
A'
上)截取A' D AB,过点D再作 DE∥ B' C ' 交A' C ' 于点E,可得 B A' DE ∽ A' B ' C '
∴ C D E
A' D A' E A' B ' A' C '
B'
A' E AC AB AC 又 , A' D AB ∴ A' C ' A' C ' A' B' A' C ' ∴ A' E AC 又A A'.

相似三角形的判定方法

相似三角形的判定方法

(一)类似三角形之杨若古兰创作1、定义:对应角相等,对应边成比例的两个三角形,叫做类似三角形.①当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做类似三角形,即定义中的两个条件,缺一不成;②类似三角形的特征:外形一样,但大小纷歧定相等;③类似三角形的定义,可得类似三角形的基赋性质:对应角相等,对应边成比例.2、类似三角形对应边的比叫做类似比.①全等三角形必定是类似三角形,其类似比k=1.所以全等三角形是类似三角形的特例.其区别在于全等请求对应边相等,而类似请求对应边成比例.②类似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即类似比为k,则△A′B′C′∽△ABC的类似比,当它们全等时,才有k=k′=1.③类似比是一个主要概念,后继进修时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助类似三角形可观察得出.3、如果两个边数不异的多边形的对应角相等,对应边成比例,那么这两个多边形叫做类似多边形.4、类似三角形的豫备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形类似.①定理的基本图形有三种情况,如图其符号说话:∵DE∥BC,∴△ABC∽△ADE;(双A型)②这个定理是用类似三角形定义推导出来的三角形类似的判定定理.它不单本人有着广泛的利用,同时也是证实类似三角形三个判定定理的基础,故把它称为“豫备定理”;③有了豫备定理后,在解题时不单要想到“见平行,想比例”,还要想到“见平行,想类似”.(二)类似三角形的判定1、类似三角形的判定:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形类似.可简单说成:两角对应相等,两三角形类似.例1、已知:如图,∠1=∠2=∠3,求证:△ABC∽△ADE.例2、如图,E 、F 分别是△ABC 的边BC 上的点,DE ∥AB,DF ∥AC ,求证:△ABC ∽△DEF. 判定定理2的夹角相等,那么这两个三角形类似.简单说成:两边对应成比例且夹角相等,两三角形类似. 例1、△ABC 中,点D 在AB 上,如果AC 2=AD •AB ,那么△ACD 与△ABC 类似吗?说说你的理由.例2、如图,点C 、D 在线段AB 上,△PCD 是等边三角形.(1)当AC 、CD 、DB 满足如何的关系时,△ACP ∽△PDB ?(2)当△ACP ∽△PDB 时,求∠APB 的度数.判定定理3:如果三角形的三组对应边的比相等,那么这两个三角形类似.简单说成:三边对应成比例,两三角形类似.强调:①有平行线时,用豫备定理;②已有一对对应角相等(包含隐含的公共角或对顶角)时,可考虑利用判定定理1或判定定理2;③已有两边对应成比例时,可考虑利用判定定理2或判定定理3.但是,在选择利用判定定理2时,一对对应角相等必须是成比例两边的夹角对应相等.2、直角三角形类似的判定:A B CDE F 第4斜边和一条直角边对应成比例,两直角三角形类似.例1、已知:如图,在正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点.求证:△ADQ∽△QCP.例2、如图,AB⊥BD,CD⊥BD,P为BD上一动点,AB=60 cm,CD=40 cm,BD=140 cm,当P点在BD上由B点向D点活动时,PB的长满足什么条件,可以使图中的两个三角形类似?请说明理由.例3、如图AD⊥AB于D,CE⊥AB于E交AB于F,则图中类似三角形的对数有对.例4、已知:AD是Rt△ABC中∠A的平分线,∠C=90°,EF是AD的垂直平分线交AD于M,EF、BC的耽误线交于一点N.求证:(1)△AME∽△NMD(2)ND2=NC·NB①因为直角三角形有一个角为直角,是以,在判定两个直角三角形类似时,只需再找一对对应角相等,用判定定理1,或两条直角边对应成比例,用判定定理2,普通不必判定定理3判定两个直角三角形类似;②如图是一个十分主要的类似三角形的基本图形,图中的三角形,可称为“母子类似三角形”,其利用较为广泛.(直角三角形被斜边上的高分成的两个直三角形的与原三角形类似)③如图,可简单记为:在Rt△ABC中,CD⊥AB,则△ABC∽△CBD∽△ACD.④弥补射影定理.特殊情况:第一:顶角(或底角)相等的两个等腰三角形类似.第二:腰和底对应成比例的两个等腰三角形类似.第三:有一个锐角相等的两个直角三角形类似.第四:直角三角形被斜边上的高分成的两个直角三角形和原三角形类似.第五:如果一个三角形的两边和其中一边上的中线与另一个三角形的两边和其中一边上的中线对应成比例,那么这两个三角形类似.三角形类似的判定方法与全等的判定方法的联系列表如下:二、重点难点疑点突破1、寻觅类似三角形对应元素的方法与技巧准确寻觅类似三角形的对应元素是分析与解决类似三角构成绩的一项基本功.通常有以下几种方法:(1)类似三角形有公共角或对顶角时,公共角或对顶角是最明显的对应角;类似三角形中最大的角(或最小的角)必定是对应角;类似三角形中,一对相等的角是对应角,对应角所对的边是对应边,对应角的夹边是对应边;(2)类似三角形中,一对最长的边(或最短的边)必定是对应边;对应边所对的角是对应角;对应边所夹的角是对应角.(3)对应字母要写在对应的地位上,可直接得出对应边,对应角.2、罕见的类似三角形的基本图形:进修三角形类似的判定,要与三角形全等的判定比拟较,把证实三角形全等的思想方法迁移到类似三角形中来;对一些出现频率较高的图形,要善于归纳和记忆;对类似三角形的判定思路要善于总结,构成一整套完好的判定方法.如:(1)“平行线型”类似三角形,基本图形见前图.“见平行,想类似”是解这类题的基本思路;(2)“订交线型”类似三角形,如上图.其中各图中都有一个公共角或对顶角.“见一对等角,找另一对等角或夹等角的两边成比例”是解这类题的基本思路;(3)“扭转型”类似三角形,如图.若图中∠1=∠2,∠B=∠D(或∠C=∠E),则△ADE∽△ABC,该图可看成把第一个图中的△ADE绕点A扭转某一角度而构成的.从基本图形入手能较顺利地找到解决成绩的思路和方法,能帮忙我们尽快地找到添加的辅助线.以上“平行线型”是罕见的,这类类似三角形的对应元素有较明显的顺序,“订交线型”识图较困难,解题时要留意从复杂图形平分解或添加辅助线构造出基本图形.练习:1、如图,以下每个图形中,存不存在类似的三角形,如果存在,把它们用字母暗示出来,并简要说明识此外根据.2、如图27-2-1-12,在大小为4×4的正方形方格中,△ABC的顶点A,B,C在单位正方形的顶点上,请在图中画一个△A1B1C1,使△A1B1C1∽△ABC(类似比不为1),且点A1,B1,C1都在单位正方形的顶点上.图27-2-1-121、寻觅类似三角形的个数例1、(吉林)将两块完好不异的等腰直角三角形摆成如图的模样,假设图形中所有点、线都在同一平面内,回答以下成绩:(1)图中共有多少个三角形?把它们逐个写出来;(2)图中有类似(不包含全等)三角形吗?如果有,就把它们逐个写出来.如图,△ABC中,点D、E分别在边AB、AC上,连接并耽误DE交BC的耽误线于点F,连接DC、BE,若∠BDE +∠BCE=180°.⑴写出图中3对类似三角形(留意:不得添加字母和线)⑵请在你所找出的类似三角形中拔取1对,说明它们类似的理由.1、如图,在正方形网格上有6-⑥中与①类似的是.2、画符合请求的类似三角形例1、(上海)在大小为4×4的正方形方格中,△ABC的顶点A、B、C在单位正方形的顶点上,请在图中画出一个△A1B1C1,使得△A1B1C1∽△ABC(类似比不为1),且点A1、B1、C1都在单位正方形的顶点上.3、类似三角形的判定例1、(1)如图,O是△ABC内任一点,D、E、F分别是OA、OB、OC的中点,求证:△DEF∽△ABC;(2)如图,正方形ABCD中,E是BC的中点,DF=3CF,写出图中所有类似三角形,并证实.例2、如图,在△ABC中,DF经过△ABC的重心G,且DF∥AB,FEDBACDE∥AC,连接EF,如果BC=5,AC=2AB.求证:△DEF∽△ABC4、直角三角形中类似的判定例1、如图,△ABC中,∠BAC=90°,AD⊥BC于D,DE为AC的中线,耽误线交AB的耽误于F,求证:AB·AF=AC·DF.例2、已知:如图,在△ABC中,∠ACB=90°,CD⊥AB 于D,E是AC上一点,CF⊥BE于 F.求证:EB·DF=AE·DB5、类似三角形的综合应用例1、如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于E,交AC耽误线于F.求证:(1)△ADF∽△EDB;(2)CD2=DE·DF.例2、如图,AD是△ABC的角平分线,BE⊥AD于E,CF ⊥AD于F.求证:.例3、如图,在正方形ABCD中,M、N分别是AB、BC上的点,BM=BN,BP⊥MC于点P.求证: PN⊥PD.6、类似三角形中辅助线的添加(1)、作垂线3. 如图从ABCD顶点C向AB和AD的耽误线引垂线CE和CF,垂足分别为E、F(2)、作耽误线中,CD为斜边AB上的高,E为例1、如图,CD的中点,AE的耽误线交BC于F,证:(3)、作中线AB⊥AC,AE⊥BC于E,D在AC例1、边上,若BD=DC=EC=1,求AC.练习:AC=BC,P是AB上一点,Q是1PC上一点(不是中点),MN过Q且MN⊥CP,交AC、BC于M、N2、由?3.(2009年湖北武汉)如图1(1(22值;(3值.B B A AC ED DE C OF 图1 图2 F。

用三边比例关系判定三角形相似

用三边比例关系判定三角形相似

2 易错小结
【中考·东营】如果一个直角三角形的两条边长分别是6和8,
另一个与它相似的直角三角形边长分别是3,4及x,那么x
的值( B )
A.只有1个
B.有2个
C.有3个
D.有无数个
易错点:易因考虑问题不全面而致错.
1、世上没有绝望的处境,只有对处境 绝望的 人。 2、挑水如同武术,武术如同做人。循序 渐进, 逐步实 现目标 ,才能 避免许 多无谓 的挫折 。
它相似的三角形的最长边的长是21,则其他两边
长的和是( C )
A.19
B.17
C.24
D.21
7 要制作两个形状相同的三角形框架,其中一个三 角形框架的三边长分别为4,5,6,另一个三角形 框架的一边长为2,它的另外两边长分别可以为
( D) A.2.5,3 C.1.6,2.4
B.
4,5 33
D.2.5,3或
17、在人生的竞赛场上,没有确立明确 目标的 人,是 不容易 得到成 功的。 许多人 并不乏 信心、 能力、 智力, 只是没 有确立 目标或 没有选 准目标 ,所以 没有走 上成功 的途径 。这道 理很简 单,正 如一位 百发百 中的神 射击手 ,如果 他漫无 目标地 乱射, 也不能 在比赛 中获胜 。 18、生活就像海洋,只有意志坚强的人 ,才能 到达彼 岸。——马克 思
B′C′,由△A′DE∽△A′B′C′,再证明△ABC
≌△A′DE,则可得到△ABC∽△A′B′C′.
如图,在△ABC和△A'B'C'中, AB = BC AC , AB BC AC
求证: △ABC∽△A'BA′B′(或它的延长线)上截取A′D=AB,过点D
作 DE//B′C′,交A′C′于点E.根据前面的定理,可得

判定直角三角形相似的方法

判定直角三角形相似的方法

判定直角三角形相似的方法
1、两角分别对应相等的两个三角形相似。

2、两边成比例且夹角相等的两个三角形相似。

3、三边成比例的两个三角形相近。

4、一条直角边与斜边成比例的两个直角三角形相似。

5、用一个三角形的两边回去比另一个三角形与之相对应当的两边,分别对应成比例,如果三组对应边较之都相同,则三角形相近。

相似三角形介绍:
三角分别成正比,三边成比例的两个三角形叫作相近三角形。

相似三角形是几何中重要的证明模型之一,是全等三角形的推广。

全等三角形可以被
理解为相似比为1的相似三角形。

相似三角形其实是一套定理的集合,它主要描述了在相
似三角形是几何中两个三角形中,边、角的关系。

相近三角形的性质
1、相似三角形的对应角相等,对应边成比例。

2、相近三角形任一对应线段的比等同于相近比。

3、相似三角形的面积比等于相似比的平方。

投影全系列等三角形的认定定理,可以得出结论以下结论:
1、两角分别对应相等的两个三角形相似。

2、两边成比例且夹角成正比的两个三角形相近。

3、三边成比例的两个三角形相似。

4、一条直角边与斜边成比例的两个直角三角形相近。

根据以上判定定理,可以推出下列结论:
1、三边对应平行的两个三角形相近。

2、一个三角形的两边和三角形任意一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

相似三角形的判定口诀

相似三角形的判定口诀

相似三角形的判定口诀
两角对应相等,两个三角形相似。

两边对应成比例且夹角相等,两个三角形相似。

三边对应成比例,两个三角形相似。

三边对应平行,两个三角形相似。

斜边与直角边对应成比例,两个直角三角形相似。

1.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

(简叙为:两角对应相等,两个三角形相似。

)
2.如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个三角形相似。

(简叙为:两边对应成比例且夹角相等,两个三角形相似。

)
3.如果两个三角形的三组对应边成比例,那么这两个三角形相似。

(简叙为:三边对应成比例,两个三角形相似。

)
4.两三角形三边对应平行,则两三角形相似。

(简叙为:三边对应平行,两个三角形相似。

)
5.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

(简叙为:斜边与直角边对应成比例,两个直角三角形相似。

)
6.如果两个三角形全等,那么这两个三角形相似(相似比为1:1)。

(简叙为:全等三角形相似)。

人教版九年级数学下册《相似三角形》

人教版九年级数学下册《相似三角形》
二十七章相似
相似三角形
1
回顾与反思
判定两个三角形相似的方法:
1.定义:三角对应相等,三边对应成比例的两个三 角形相似。 2.平行三角形一边的直线和其他两边相交(或两边的延 长线),所构成的三角形与原三角形相似. 3.三边对应成比例的两个三角形相似。 4.两边对应成比例且夹角相等的两个三角形相似。 5. 两角对应相等的两个三角形相似。
(2) BC是圆O的切线,切点为C.
(3) 移动点A,使AC成为⊙O的直径,你还能 得到哪些结论?
8
BF=4
结论:1、⊿ACF∽ ⊿ABC∽ ⊿CBF 2、CD²=AD×BD BC²=BD×AB AC²=AD×AB
9
用一用
(1)请在x轴上找一点D,使得⊿BDA与⊿BAC相似 (不包含全等),并求出点D的坐标;
C
DE∥BC
C
(5)
BD ∠BAD=∠C
C
A
DB
∠ACB=90°,
AB2=BD·BC
CD⊥AB
B
C
E
(6)
D
A
C B ∠D=∠C
12
问题:
如图,在正方形ABCD中,E为BC上任意一点 (与B、C不重合)∠AEF=90°.观察图形:
((12))若△EA为BEBC与的△中E点CF,是连否结相AF似,图?中并有证哪明些你相的似结论。
即:
m 5
3 13 m 4
3 13
4
解得: m
25 9
有公共角∠B, “A”型相似
(2)当PQ⊥BD时,⊿BPQ∽ ⊿BDA
则 BP BQ
BD 即:
3
BA
m 13 m
3
13
4 5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)△ABC与△DEF相似 吗?若相似,请给出证明, 若不相似,请说明理由.
A
B C F
D
E
4.∠APD=90°,AP=PB=BC=CD 下列结论正确的是( C ) A. △PAB∽△PCA B.△PAB∽△PDA C.△ABC∽△DBA D. △ABC∽△DCA
F
B
AB BC CA DE EF FD
∴ △ABC ∽△ DEF
D E
根据下列条件判断△ABC与以D、E、F为顶点的两个 B 三角形是否相似。
(1)AB=3,BC=4,AC=6; △ABC∽△DEF DE=6,EF=8,DF=12 (2)AB=3,BC=4,AC=6; △ABC∽△DEF F DE=6,EF=8,DF=12

类似全等三角形的判定,除上述外,还有 其他情况吗?继续探索三角形相似的条件。
三边对应成比例
A
A’
B’
B
C
C’
A'B' B'C' A'C' = = AB BC AC
是否有△ABC∽△A’B’C’?
在纸上画两个三角形△ABC 和 △A'B'C' ,使AB =4厘米, AC =6厘 米, BC =8厘米,A'B' =2厘米, A'C' =3厘米 ,B'C' =4厘米. 回答下面的问题: A A' B' B' C' A' C' , , (1)分别计算 ,
A 证明:∵ DE,DF,EF是△ABC的中位线
1 1 1 ∴ DE= BC,DF= AC,EF= AB 2 2 2
DE DF EF ∴ BC AC AB
D B F
E C
1 2
∴ △ABC∽△FED
例3: 如图,某地四个乡镇建有公路,已知 AB=14千米,AD=28千米, BD=21千米, BC=42千米,DC=31.5千米,公路AB与CD平 行吗?说出你的理由。 D 28 解:公路AB与CD平行。 31.5
.找出图中相等的角
A
解:在ΔABC 和ΔADE 中,
AB BC AC AD DE AE
E C
D
∴ ΔABC∽ΔADE .
B
∴∠BAC =∠DAE , ∠B =∠D , ∠C = ∠E . 例1中还有相等的角吗?
∠BAD =∠CAE
例2、已知:如图,DE,DF,EF是△ABC的中位线 .求证:△ABC∽△FED
DE=10,则当DF=____,EF=____ 24 时,△ABC∽△DEF. 16
A D
5
B
8 12
C
10
E
F
3:如图,在6×6的正方形方格中,△ABC与△DEF的 顶点都在边长为1的小正方形的顶点上, 10 (1)填空: BC=______, AC=________ 2 EF=______, DF=_________. 2 10 2 2
A`
证明:在△ABC的边AB(或延 长线)上截取AD=A`B`,
B` A
C`
过点D作DE∥BC交 AC于点E.
B
D
E
C
AB AC BC 已知:如图△ABC和△ AB C 中, AB AC BC
求证:△ABC∽△A`B`C`
A`
证明:在△ABC的边AB(或延长线)上截取AD=A′B′,
DE=6,EF=12,DF=8 △ABC∽ △EDF 4 C 6 8 12 3 A D 6 E
(3)AB=3,BC=4,AC=6;方法总结:把每个三角形的三 边按大小顺序依次排列,然后 DE=6,EF=9,DF=12 比较它们对应的比值是否相等 不 相 似
例1:如图已知 ,并说明你的理由.
AB BC AC AD DE AE
第1章 图形的相似
一、知识回顾:
定义
全等 三角 形 相似 三角 形
判定方法
三角、三边对应 角边角 角角边 边角边 边边边 相等的两个三角 (ASA) (AAS) (SAS) (SSS) 形全等。 三角对应相等, 有两角对应相 三边对应成比例 等的两三角形 的两个三角形相 相似(AA) 似。
两边对 应成比 例,且 夹角相 等(SAS)
AB 1 BC 1 解:∵ AB 3 B C 3 AB BC AC . ∴ AB B C AC

ABC
AC 1 AC 3

ABC

SSS

(三边对应成比例,两三角形相似)
Hale Waihona Puke 2.如图,已知△ABC与△DEF中,AB=5,BC=12,AC=8,
D
E
.
因此 DE BC, EA CA . ∴△ADE≌△ABC
∴△ ABC ∽△ABC
B
C
判定方法3 :如果一个三角形的三条边与另一个三角
形的三条边对应成比例,那么这两个三角形相似. 简记为:三边对应成比例的两个三角形相似.
C
符号语言:
在△ABC与△DEF 中 ∵
A
AB BC AC
实验与探究
4 cm
6cm
这三个比值相等吗? (2)剪下画出的三角形,利用叠合的方法, 检验对应内角之间具有怎样的大小关系? C (3)△ABC与△A'B'C' 相似吗?为什么?
B
A'
2 cm
8 cm
3cm 4 cm
B'
C'
如果改变 △ABC与△DEF的边长,并保持 A' B' B' C' A' C' AB BC AC ,还能得到同样的结论吗?
A

AB 14 2 BD 21 3
AD 28 2 BC 42 3
21
14 B
42
C
AB AD BD BD BC DC ∴ △ABD∽△BDC, ∴ ∠ABD=∠BDC
BD 21 2 DC 31.5 3
∴ AB∥DC
巩固练习:
1、根据下列条件,判断△ABC与△A’B’C’是否相似,并说明理由 AB=4 cm,BC=6cm,AC=8cm, A’B’=12cm,B’C’=18cm,A’C’=24cm.
过点D作DE∥BC交AC于点E.
∴ △ADE∽△ABC , ∴ ∵
AB AC BC 又 AB AC BC
AD AB AD AB, AB AB
AD AE DE AB AC BC
B` A
C`

DE BC EA C A , BC BC CA CA
验 证
B'
A'
A
A'
∠A'=∠A
B' C' C' ∠B' =∠B △A'B'C' ∽△ABC
B
C
A' B' B' C' A' C' AB BC AC
△A'B'C' ∽△ABC
已知:如图△ABC和△A`B`C`中 A`B`:AB=A`C`:AC=B`C`:BC. 求证:△ABC∽△A`B`C`
相关文档
最新文档