概率论与数理统计第一单元随机事件与概率测试
概率论与数理统计第一章测试题

第一章 随机事件和概率一、选择题1. 设A, B, C 为任意三个事件, 则与A 一定互不相容的事件为(A )C B A ⋃⋃ (B )C A B A ⋃ (C ) ABC (D ))(C B A ⋃2.对于任意二事件A 和B, 与 不等价的是(A )B A ⊂ (B )A ⊂B (C )φ=B A (D )φ=B A3. 设 、 是任意两个事件, , , 则下列不等式中成立的是( ).A ()()P A P A B < .B ()()P A P A B ≤.C ()()P A P A B > .D ()()P A P A B ≥4. 设 , , , 则( ).A 事件A 与B 互不相容 .B 事件A 与B 相互独立.C 事件A 与B 相互对立 .D 事件A 与B 互不独立5. 设随机事件 与 互不相容, 且 , 则 与 中恰有一个发生的概率等于( ).A p q + .B p q pq +-.C ()()11p q -- .D ()()11p q q p -+-6. 对于任意两事件 与 , ( ).A ()()P A P B - .B ()()()P A P B P AB -+.C ()()P A P AB - .D ()()()P A P A P AB +- 7. 若 、 互斥, 且 , 则下列式子成立的是( ).A ()()P A B P A = .B ()0P B A >.C ()()()P AB P A P B = .D ()0P B A =8. 设 , 则下列结论中正确的是( ).A 事件A 、B 互不相容 .B 事件A 、B 互逆.C 事件A 、B 相互独立 .D A B ⊃9. 设 、 互不相容, , 则下列结论肯定正确的是( ).A A 与B 互不相容 .B ()0P B A >.C ()()()P AB P A P B = .D ()()P A B P A -=10. 设 、 、 为三个事件, 已知 , 则 ( ).A 0.3 .B 0.24 .C 0.5 .D 0.2111. 设A, B 是两个随机事件, 且0<P(A)<1, P(B)>0, , 则必有(A ))|()|(B A P B A P = (B ))|()|(B A P B A P ≠(C ))()()(B P A P AB P = (D ))()()(B P A P AB P ≠12. 随机事件A, B, 满足 和 , 则有(A )Ω=⋃B A (B )φ=AB (C ) 1)(=⋃B A P (D )0)(=-B A P13. 设随机事件A 与B 互不相容, , , 则下面结论一定成立的是(A )A, B 为对立事件 (B ) , 互不相容 (C ) A, B 不独立 (D )A, B 独立14.对于事件A 和B, 设 , P(B)>0, 则下列各式正确的是(A ))()|(B P A B P = (B ))()|(A P B A P = (C ) )()(B P B A P =+ (D ))()(A P B A P =+15. 设事件A 与B 同时发生时, 事件C 必发生, 则(A )1)()()(-+≤B P A P C P (B )1)()()(-+≥B P A P C P(C ) )()(AB P C P = (D ))()(B A P C P ⋃=16. 设A,B,C 是三个相互独立的随机事件, 且0<P(C)<1。
概率论与数理统计第一章到第七章答案

概率论与数理统计练习题系 专业 班 姓名 学号第一章 随机事件及其概率(一)一.选择题1.对掷一粒骰子的试验,在概率论中将“出现奇数点”称为 [ C ](A )不可能事件 (B )必然事件 (C )随机事件 (D )样本事件2.下面各组事件中,互为对立事件的有[ B ](A )1A ={抽到的三个产品全是合格品} 2A ={抽到的三个产品全是废品}(B )1B ={抽到的三个产品全是合格品} 2B ={抽到的三个产品中至少有一个废品} (C )1C ={抽到的三个产品中合格品不少于2个} 2C ={抽到的三个产品中废品不多于2个}(D )1D ={抽到的三个产品中有2个合格品} 2D ={抽到的三个产品中有2个废品}3.下列事件与事件A B -不等价的是[ C ] (A )A AB - (B )()A B B ⋃- (C )A B (D )A B4.甲、乙两人进行射击,A 、B 分别表示甲、乙射中目标,则A B ⋃表示 [ C](A )二人都没射中 (B )二人都射中(C )二人没有都射着 (D )至少一个射中5.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对应事件A 为.[ D](A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”;(C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销6.设{|},{|02},{|13}x x A x x B x x Ω=-∞<<+∞=≤<=≤<,则AB 表示[ A](A ){|01}x x ≤< (B ){|01}x x <<(C ){|12}x x ≤< (D ){|0}{|1}x x x x -∞<<⋃≤<+∞7.在事件A ,B ,C 中,A 和B 至少有一个发生而C 不发生的事件可表示为 [ A] (A )C A Y C B ; (B )C AB ;(C )C AB Y C B A Y BC A ; (D )A Y B Y C .8、设随机事件,A B 满足()0P AB =,则[ D ](A ),A B 互为对立事件 (B) ,A B 互不相容(C) AB 一定为不可能事件 (D) AB 不一定为不可能事件二、填空题1.若事件A ,B 满足AB φ=,则称A 与B 互不相容或互斥 。
概率论与数理统计 第一部分随机事件及其概率题库及答案

1第一部分 随机事件及其概率一、填空题1.设,,A B C 为三个事件,用,,A B C 的运算关系表示下列各事件:(1),,A B C 都不发生 ;(2)A 与B 都发生,而C 不发生 ;(3)A 与B 都不发生,而C 发生 ;(4),,A B C 中最多二个发生表示为 ;(5),,A B C 中至少二个发生表示为 ;(6),,A B C 中不多于一个发生表示为 ;(7),,A B C 中至少一个发生表示为 ;(8),,A B C 恰有一个发生表示为 。
2.(1)掷一颗骰子,A :出现奇数点,则A = ;B :数点大于2,则B = ;(2)一枚硬币连抛2次,A :第一次出现正面,则A = ;B :两次出现同一面,则B = ; C :至少有一次出现正面,则C = 。
3.设{|05},{|13},{|24}x x A x x B x x Ω=≤≤=<≤=≤<,则(1)A B += ;(2)AB = ;(3)AB = ;(4)A B +=______________;(5) A B =______________。
4.化简下列事件运算:(1)()()A B A B +--= ;(2)()()A B A B -+= ;(3)()()AB C AC = ;(4)AB AB AB AB AB +++-= 。
5.随机投掷甲乙两个质地均匀的骰子,甲出现点数大于乙出现点数的概率为 。
6.三台机器相互独立运转, 设第一, 第二, 第三台机器不发生故障的概率依次为0.9, 0.8, 0.7, 则这三台机器中至少有一台发生故障的概率 。
7.设,,A B C 构成完备事件组,()0.5,()0.7P A P B ==,则()P C = ,()P AB =___。
8.有5条线段,其长度分别为1,3,5,7,9,从这5条线段中任取3条,所取的3条线段能拼成三角形的概率为__________。
9.将C,C,E,E,I,N,S 等7个字母随机的排成一行,那么恰好排成英文单词SCIENCE 的概率为 。
考研概率论与数理统计章节训练题

第一章 随机事件与概率一、选择题。
1、设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有( ) (A )()()P A B P A > (B )()()P A B P B > (C )()()P AB P A = (D )()()P A B P B =2、将一枚硬币独立地掷两次,引进事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面}3A ={正、反面各出现一次}, 4A ={正面出现两次},则事件有( )(A )123,,A A A 相互独立 (B )234,,A A A 相互独立 (C )123,,A A A 两两独立 (D )234,,A A A 两两独立 3、对于任意二事件A 和B ,则( )(A )若AB ≠Φ,则,A B 一定独立 (B )若AB ≠Φ,则,A B 有可能独立 (C )若AB =Φ,则,A B 一定独立 (D )若AB =Φ,则,A B 一定不独立 4、A ,B 是两随机事件,当A ,B 发生时事件C 发生,则以下正确的是( )A )、)()(C P AB P ≥ B )、)()()(AB PC P AB C P -=- C )、)()(C P B A P ≤⋃D )、)()(C P B A P ≥⋃5、A ,B ,C 是三个随机事件,其中1)(),(),(0<<C P B P A P ,且已知)|()|()|(C B P C A P C B A P +=⋃,则以下正确的是( )A )、)|()|()|(CB PC A P C B A P +=⋃ B )、)()()(AB P AC P AB AC P +=⋃ C )、)()()(B P A P B A P +=⋃D )、)|()()|()()(B C P B P A C P A P C P += 6、A ,B ,C 是三个随机事件,设以下条件概率均有意义,则以下不正确的是( )A )、)|(1)|(C A P C A P -=B )、1)|()|(=+C A P C A P C )、)|()|()|()|(C AB P C B P C A P C B A P -+=⋃D )、)|()|()|()|()|(C B A P C B P BC A P C B P C A P +=7、A ,B 是两个随机事件,其中0)(,0)(≠≠B P A P ,则以下正确的是( )A )、φ≠AB ,A ,B 一定独立 B )、φ≠AB ,A ,B 不一定独立C )、φ=AB ,A ,B 一定独立D )、φ=AB ,A ,B 不一定独立8、甲袋中有2个白球3个黑球,乙袋中全是白球,今从甲袋中任取2球,从乙袋中任取1球混合后,从中任取1球为白球的概率()A 15 ()B 25()C35()D459、10台洗衣机中有3台二等品,现已售出1台,在余下的9台中任取2台发现均为一等品,则原先售出1台为二等品的概率为()A 310()B28 ()C 210()D3810、若A,B 为任意两个随机事件,则 ( )(A) ()()()P AB P A P B ≤ (B) ()()()PAB P A P B ≥(C) ()()()2P A P B P AB +≤ (D) ()()()2P A P B P AB +≥11、某人向同一目标独立重复射击,每次射击命中目标的概率为,则此人第4次射击恰好第2次命中目标的概率为 ( )(A)(B)(C)(D)12、设是两个随机事件,且则必有( )(A)(B) (C) (D)二、填空题1、A ,B 是两随机事件,5.0)(=A P ,7.0)(=B P ,则 ≤≤)(AB P 。
概率论与数理统计试题

第一章 随机事件与概率
一.选择题:
1. (95)假设事件 A 和 B 满足 P(B⎪A) = 1,则(
)
(A)A 是必然事件. (B) P(B | A) = 0 . (C)A ⊃ B.
(D)A ⊂ B.
2. (96)设 A, B 为任意两个事件且 A ⊂ B,P (B ) > 0,则下列选项必然成立的是(
.
4. (05)从数 1, 2, 3, 4 中任取一个数,记为 X,再从 1, …, X 中任取一个数,记为 Y,则 P{Y = 2} = .
三.解答题:
1. (98)设有来自三个地区的各 10 名、15 名和 25 名考生的报名表,其中女生的报名表分别为 3 份、7
份和 5 份,随机地取一个地区的报名表,从中先后抽出两份.
(D) 1 . 10
8. (01)对于任意二事件 A 和 B,与 A∪B = B 不.等.价.的是(
)
(A)A ⊂ B.
(B) B ⊂ A .
9. (03)对于任意二事件 A 和 B,(
)
(C) AB = ∅.
(D) AB = ∅.
(A)若 AB ≠ ∅,则 A, B 一定独立.
(B)若 AB ≠ ∅,则 A, B 有可能独立.
2
2
则下列各式中成立的是(
)
(A) P{X = Y} = 1 . (B)P{X = Y } = 1. (C) P{X + Y = 0} = 1 . (D) P{XY = 1} = 1 .
2
4
4
2.
(99)设随机变量 X i
~
⎜⎛ ⎜⎝
−1 1 4
0 1 2
1 1 4
【免费下载】概率论与数理统计 第一章 随机事件和概率 例题

1.写出下列随机试验的样本空间:(1)汽车通过三个十字路口,遇到红灯的次数(2)10件产品中有两件次品,逐个取出不放回直到第二个次品取出,抽出的次数(3)产生某产品直到得到第5个正品,产品的个数(4)将单位长的线段分成三段,观察每一段长度A12.从0,1,…,9则10个数中任取3个,求下列事件的概率,表示这三个数中不含0和A2A35,表示这三个数中不含0或5,表示这三个数中不含0但含有5。
3.袋中有N-1个黑球,1个白球(N>1),从中取出任取一个不放回,再加入一个黑球,如此反复,求第k次取到黑球的概率。
4.将10本书随机地放在书架上,求指定的5本书放在一起的概率。
5.某年级5个班进行单循环比赛,求甲班前三场比赛出场两次的概率。
α1α2α3β1=α1+aα2β2=α2+bα3,β3=‒α1+4α36.设,,线性无关,,,其中β1β2,β3a,b是将一枚轂子独立地掷两次分别出现的点数,求,线性无关的概率。
7.从1,2,…,10这10个数中任取3个,求:(1)最大数为5的概率(2)最小数为5的概率8.某城市有N辆车,编号从1~N,某人将其看到的n辆车(可以重复)的号码记下,求:(1)记下的最大号码为k(1≤k≤N)的概率(2)记下的最小号码为k(1≤k≤N)的概率9.有5把把外形一样的钥匙,其中1把可以打开门,随机取一把,如果打不开不放回,再取一把开门,求不超过三次打开门的概率。
10.甲乙两人独立地对同一目标时击一次命中率分别0.6,0.5。
已知目标被命中,求目标是甲命中的概率。
11.设10件产品中有4件次品,从中先后任取2件,求(1)在已知有一件是次品的情况下,另一件也是次品的概率。
12.有两批产品,其中一批全为正品,另一批有1/4的次品,现任取一批,从中任取一件经检验为正品,将其放回原处,再从该批中任取一件求取到这一件为次品的概率。
13.独立地掷一枚均匀硬币三次,在已知有一次是正面的情况下,求至少有一次反面的概率。
《概率论与数理统计》1.1 随机试验与随机事件
i点 5, 6
}
在一起所构成的事件)
复合事件
事件 B = { 掷出奇数点 }
五. 随机事件间的关系及其运算
设试验 E 的样本空间为 S, A, B, Ak (k 1, 2, ) 是 S 的子集.
1. 事件的包含:如( A果中事的件每A个发样生本必点然都导包致含事在件BB中发)生.
注 ▲
则称 事件 B 包含事件 A 或 A 含于事 件 B 。记作:B A或 A B
从观察试验开始 研究随机现象,首先要对 研究对象进行观察或试验.
这里的试验指的是随机试验.
第一节 随机试验与随机事件
一. 试 验 : 为了研究随机现象,就要对客观事物进行 观察,观察的过程称之为试验。记为 E。
例1 E1:掷一枚硬币观察正面,反面出现的情况。 E2:记录一小时内,到某保险公司投保的户数 E3:射手射击一个目标,直到射中为止,观察 其射击的次数。 E4:从一批产品中抽取十件,观察其次品数。 E5:抛一颗骰子,观察其出现的点数。
A
B
为 A 与 B 的和 (并), 记作:
A B 或 A B x xA 或 xB
AB
注
▲ 它是由事件 A 和 B 所有样本点构成的集合 n
▲ 称 Ak 为 n 个事件 A1 , A2 , , An 的和事件
k1
k 1 Ak 为可列个事件 A1 , A2 ,
的和事件
4. 事件的积(交): 若 “两个事件A与 B 同时发生” 也是一个事件,
样本空间元素 是由试验目的 所确定的,不 同的试验目的 其样本空间也 是不一样的。
S
.e
样本点e
例 3.若试验 E是将一枚硬币抛掷两次. 试写出该试验 E 的样本空间.
概率论第一章随机事件及其概率答案
概率论与数理统计练习题系 专业 班 姓名 学号第一章 随机事件及其概率(一)一.选择题1.对掷一粒骰子的试验,在概率论中将“出现奇数点”称为 [ C ](A )不可能事件 (B )必然事件 (C )随机事件 (D )样本事件2.下面各组事件中,互为对立事件的有 [ B ](A )1A ={抽到的三个产品全是合格品} 2A ={抽到的三个产品全是废品}(B )1B ={抽到的三个产品全是合格品} 2B ={抽到的三个产品中至少有一个废品}(C )1C ={抽到的三个产品中合格品不少于2个} 2C ={抽到的三个产品中废品不多于2个}(D )1D ={抽到的三个产品中有2个合格品} 2D ={抽到的三个产品中有2个废品}3.下列事件与事件A B -不等价的是 [ C ](A )A AB - (B )()A B B ⋃- (C )A B (D )A B4.甲、乙两人进行射击,A 、B 分别表示甲、乙射中目标,则A B ⋃表示 [ C ](A )二人都没射中 (B )二人都射中(C )二人没有都射着 (D )至少一个射中5.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对应事件A 为. [ D ](A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”;(C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销6.设{|},{|02},{|13}x x A x x B x x Ω=-∞<<+∞=≤<=≤<,则AB 表示 [ A ](A ){|01}x x ≤< (B ){|01}x x <<(C ){|12}x x ≤< (D ){|0}{|1}x x x x -∞<<⋃≤<+∞7.在事件A ,B ,C 中,A 和B 至少有一个发生而C 不发生的事件可表示为 [ A ](A )C A Y C B ; (B )C AB ;(C )C AB Y C B A Y BC A ; (D )A Y B Y C .8、设随机事件,A B 满足()0P AB =,则 [ D ](A ),A B 互为对立事件 (B) ,A B 互不相容(C) AB 一定为不可能事件 (D) AB 不一定为不可能事件二、填空题1.若事件A ,B 满足AB φ=,则称A 与B 互斥或互不相容 。
概率论与数理统计第一章习题参考答案
概率论与数理统计第一章习题参考答案第一章随机事件及其概率1.解决方案:(1)s??2,3,4,5,67? (2) s??2,3,4,?? (3) s??h、 th,tth,??(4)s??hh,ht,t1,t2,t3,t4,t5,t6?2.解:?p(a)?14,p(b)?12,p(ab)?1814? 12? 18? 58? p(a?b)?p(a)?p(b)?p(ab)?p(ab)?p(b)?p(ab)=?p(ab)?1?p(ab)?1?1812??7818?38p[(a?b)(ab)]?p[(a?b)?(ab)]p(ab)p(ab)(abab)5818123.解决方案:使用a表示事件“获得的三位数不包含数字1”P(a)?C8C9C990011?8.9? 9900? 一千八百二十五4、解:用a表示事件“取到的三位数是奇数”,用b表示事件“取到的三位数大于330”(1)p(a)?c3c4c4ca121525111?3?4?45?5?41=0.482) p(b)?c2a5?c2c4c5a5121?2.5.4.1.2.45? 5.4=0.485、解:用a表示事件“4只中恰有2只白球,1只红球,1只黑球”,用b表示事件“4只中至少有2只红球”,用c表示事件“4只中没有只白球”(1)p(a)?c5c4c3c12132114=1204954=833(2) p(b)?1.c4c8?c8c412=202195?67165或p(b)?c4c8?c4c8?c4c41222314?67165一(3)p(c)?c7c4412?35495?7996.解决方案:使用a表示事件“在特定销售点获得的K提单”P(a)?cn(m?1)mnkn?K7、解:用a表示事件“3只球至少有1只配对”,用b表示事件“没有配对”(1)p(a)?(2)p(b)?3?13?2?12?1?13?2?1??2313或p(a)?1?2.1.13? 2.1.238、解p(a)?0.5,p(b)?0.3,p(ab)?0.1p(ab)p(b)p(ab)p(a)(1)p(ab)??0.10.30.10.5? 1315,p(ba)p(a?b)?p(a)?p(b)?p(ab)?0.5? 0.3? 0.1? 零点七p[a(a?b)]p(a?b)p(a?ab)p(a?b)p(ab)p(a?b)p(aa?b)p(ab)p(a?b)0.10.717?0.50.7?57 p(aba?b)?p[(ab)(a?b)]p(a?b)p(ab)p(ab)p(aab)?p[a(ab)]p(ab)??1(2)设定人工智能??第一次拿到白球?我1,2,3,4则p(a1a2a3a4)?p(a1)p(a2a1)p(a3a1a2)p(a4a1a2a3)?611?712?513?412?84020592?0.04089.解决方案:用a表示“两个球中至少有一个红球”,用B表示“两个都是红球”。
概率论与数理统计 第一章随机事件及其概率 练习题
第一章 随机事件及其概率(概率论与数理统计)练习题1.写出下列随机试验的样本空间及表示下列事件的样本点集合:(1) 10件产品中有1件是不合格品,从中任取2件得1件不合格品;(2) 一个口袋中有2个白球,3个黑球,4个红球,从中任取一球:①得白球;②得红球.2.化简事件算式:)()()()(B A B A B A AB ⋅ .3.就下列情况分别说明事件A ,B ,C 之间的关系:(1) A C B A =++;(2) A ABC =.4.试判断事件“A ,B 至少发生一个”与“A ,B 最多发生一个”是否是对立事件.5.下列各式说明A 与B 之间具有何种包含关系?(1) AB =A , (2)A B A = .6.掷一枚骰子的试验,观察其出现的点数,事件A =“偶数点”,B =“奇数点”,C =“点数小于5”,D =“小于5的偶数点”,讨论上述各事件间的关系.7.将下列事件用A ,B ,C 的运算表示出来:(1) A 发生;(2) 只有A 发生;(3) 三个事件中恰好有一个发生;8.设某工人连续生产了4个零件,用i A 表示他生产的第i 个零件是正品(i =1,2,3,4).试用事件的运算表示下列各事件:(1) 没有一个是次品;(2) 至少有一个是次品;(3) 只有一个是次品;(4) 至少有三个不是次品;(5) 恰好有三个是次品;(6) 至多有一个是次品.9.事件i A 表示某个生产单位第i 车间完成生产任务(i =1,2,3),B 表示至少有两个车间完成生产任务,C 表示最多只有两个车间完成生产任务.说明事件C B B -与的含义,并且用i A (i =1,2,3)表示出来.10.设A ,B 为事件,问下列各事件表示什么意思? (1)B A ; (2)B A ; (3)B A ⋅.11.如图,事件A ,B ,C 都相容,即φ≠ABC ,把事件A +B ,A +B +C ,AC +B ,C -AB 用一些互不相容事件的和表示出来.12.两个事件互不相容与两个事件对立的区别何在,举例说明.13.将1套4册的文集按任意顺序放到书架上去,问各册自右向左或自左向右恰成1,2,3,4的顺序的概率是多少?14. 袋内装有5个白球,3个黑球,从中一次任取两个,求取到的两个球颜色不同的概率.15.10把钥匙中有3把能打开一个门锁,今任取两把,求能打开门锁的概率.16.抛掷一枚硬币,连续3次,求既有正面又有反面出现的概率.17.有一元币、五角币、一角币、五分币、二分币、一分币各一枚,试求由它们所组成的所有可能的不同币值中,其币值不足一元的概率.18.一楼房共14层,假设电梯在一楼起动时有10名乘客,且乘客在各层下电梯是等可能的.试求下列事件的概率:1A ={10人在同一层下}; 2A ={10人在不同楼层下};3A ={10人都在第14层下}; 4A ={10人中恰有4人在第8层下}.19.将S N I E E C C , , , , , ,等7个字母随意排成一行,求恰好排成SCIENCE 的概率.20.一副扑克牌有52张,不放回抽样,每次一张,连续抽取4张,计算下列事件的概率:(1) 四张花色各异; (2) 四张中只有两种花色.21.袋中有红、白、黑色球各一个,每次任取一球,有放回地抽取三次,求下列事件的概率:A =“全红”,B =“全白”,C =“全黑”,D =“无红”,E =“无白”,F =“无黑”,G =“颜色全相同”,H =“颜色全不相同”,I =“颜色不全相同”.22.一间宿舍内住有6位同学,求他们中有4人的生日在同一个月份的概率.23.一个教室中有100名学生,求其中至少有一人的生日是在元旦的概率(设一年以365天计算).24.从4双不同的鞋子中任取4只,求下列事件的概率:(1) 4只恰成2双;(2) 4只中恰有一双;(3) 4只中没有成双的.25.掷三颗骰子,得3个点数能排成公差为1的等差数列的概率为多少?26.将4个男生与4个女生任意地分成两组,每组4人,求每组各有2个男生的概率.27.设O 为线段AB 的中点,在AB 上任取一点C ,求AC 、CB 、AO 三条线段能构成一个三角形的概率.28.在A B C ∆中任取一点P ,证明:ABP ∆与ABC ∆的面积之比大于nn 1-的概率为21n. 29.设c AB P b B P a A P ===)( ,)( ,)(,用a ,b ,c 表示下列事件的概率: (1) )(B A P , (2) )(B A P , (3) )(B A P , (4) )(B A P ⋅.30.设)( ,6.0)( ,3.0)( ,4.0)(B A P B A P B P A P 求=== .31.设7.0)( ,4.0)(=+=B A P A P ,(1) 若A 与B 互斥,求()B P ;(2) 若A 与B 独立,求()B P .32.已知61)()(,0)(,41)()()(======BC P AC P AB P C P B P A P ,求A ,B ,C 全不发生的概率.33.事件A 与B 互不相容,计算)(B A P +.34.设事件A B ⊃,求证:)()(A P B P ≥.35.设事件B A ,的概率都大于0,比较概率)(A P ,)()(),(B P A P B A P ++, )(AB P 的大小(用不等号把它们连结起来).36.已知a B A P a b ab b B P a A P 7.0)( ),3.0 ,0( ,)( ,)(=->≠==,求: )(A B P +, )(A B P -, )(A B P +.37.设21,A A 为两个随机事件,证明: (1))()()(1)(212121A A P A P A P A A P ⋅+--=; (2))()(121A P A P --)()()()(212121A P A P A A P A A P +≤≤≤ .38.一间宿舍中有4位同学的眼镜都放在书架上,去上课时,每人任取一副眼镜,求每个人都没有拿到自己眼镜的概率.39.在1000名技术员中调查性别、婚姻状况及学历,得如下数据:(1) 813个男性;(2) 875个已婚;(3) 752个大专毕业生;(4) 632个男大专毕业生;(5) 572个已婚男性;(6) 654个已婚大专毕业生;(7) 420个已婚男大专毕业生.试说明这些数据中有错误.40.在某城市中发行3种报纸A ,B ,C .经调查,在居民中按户订阅A 报的占%45,订阅B 报的占%35,订阅C 报的占%30,同时订阅A 报和B 报的占%10,同时订阅A 报和C 报的占%8,同时订阅B 报和C 报的占%5,同时订阅这3种报纸的占%3,试求下列事件的概率:(1) 只订B 报的;(2) 只订A 报和B 报两种的;(3) 只订1种报纸的;(4) 恰好订2种报纸的;(5) 至少订阅2种报纸的;(6) 至少订1种报纸的;(7) 不订报纸的;(8) 至多订阅1种报纸的.41.某单位有%92的职工订阅报纸,%93的人订阅杂志,在不订阅报纸的人中仍有%85的职工订阅杂志,从单位中任找一名职工,求下列事件的概率:(1) 该职工至少订阅一种报纸或杂志;(2) 该职工不订阅杂志,但订阅报纸.42.某地区气象资料表明,邻近的甲、乙两城市中的甲市全年雨天比例为%12,乙市全年雨天的比例为%9,甲乙两市至少有一市为雨天的比例为16.8%.试求下列事件的概率:(1) 甲、乙两市同为雨天;(2) 在甲市雨天的条件下乙市亦为雨天;(3) 在乙市无雨的条件下甲市亦无雨.43.分析学生们的数学与外语两科考试成绩,抽查一名学生,事件A 表示数学成绩优秀,B 表示外语成绩优秀,若28.0)(,4.0)()(===AB P B P A P ,求:)|(B A P , )|(A B P , )(B A P +.44.设A 与B 独立, )(A P =0.4, )(B A P +=0.7,求概率)(B P .45.设甲、乙两人各投篮1次,其中甲投中的概率为0.8,乙投中的概率为0.7,并假定二者相互独立,求:(1) 2人都投中的概率;(2) 甲中乙不中的概率;(3) 甲投不中乙投中的概率;(4) 至少有一个投中的概率.46.甲、乙、丙三人进行投篮练习,每人一次,如果他们的命中率分别为0.8,0.7,0.6,计算下列事件的概率:(1) 只有一人投中;(2) 最多有一人投中;(3) 最少有一人投中.47.甲乙两人轮流投篮,甲先开始,假定他们的命中率分别为0.4及0.5,问谁先投中的概率较大,为什么?48.加工一产品需要4道工序,其中第1、第2、第3、第4道工序出废品的概率分别为0.1,0.2,0.2,0.3,各道工序相互独立,若某一道工序出废品即认为该产品为废品,求产品的废品率.49.加工某种零件,需经过三道工序,假定第一、二、三道工序的废品率分别为0.3,0.2,0.2,并且任何一道工序是否出废品与其他各道工序无关,求零件的合格率.50.求下列系统(如图所示)的可靠度.假设元件i 的可靠度为i p ,各元件正常工作或失效相互独立.51.某单位电话总机的占线率为0.4,其中某车间分机的占线率为0.3,假定二者独立,现在从外部打电话给该车间,求一次能打通的概率;第二次才能打通的概率以及第m 次才能打通的概率(m 为任何正整数).52.设事件n A A A ,,,21 相互独立,且i i p A P =)( ),,2,1(n i =,11=∑=ni i p ,试求:(1) 这些事件至少有一件不发生的概率;(2) 这些事件均不发生的概率;(3) 这些事件恰好发生一件的概率.53.设有两门高射炮,每一门击中飞机的概率都是0.6.求同时发射一枚炮弹而击中飞机的概率是多少? 又若有一架敌机入侵领空,欲以%99以上的概率击中它,问至少需要多少门高射炮?54.甲、乙、丙三人在同一时间分别破译某一密码,设甲译出的概率为0.8,乙译出的概率为0.7,丙译出的概率为0.6,求该密码能被译出的概率.55.上题中如改为n 个人组成的小组,在同一时间内分别破译某密码.并假定每人能译出的概率均为0.7,若要以%9999.99的把握能够译出,问至少需要几个人?56.对于三事件A 、B 、C ,若)|()|()|((C B P C A P C B A P = 成立,则称A 与B 关于条件C 独立.若已知A 与B 关于条件C 、C 均独立,且==)|(,5.0)(C A P C P 0.9,=)|(C B P 0.9,2.0)|(=C A P ,1.0)|(=C B P .试求)(,)(,)(B A P B P A P ,并证明A 与B 不独立.57.一个人的血型为O ,A ,B ,AB 型的概率分别为0.46,0.40,0.11,0.03,现在任意挑选5人,求下列事件的概率:(1) 2个人的血型为O 型,其他3人的血型分别为其他3种血型;(2) 3个人的血型为O 型,2个人为A 型;(3) 没有一个人的血型为AB 型.58.设1)(0<<B P ,证明:A 与B 独立的充要条件是=)|(B A P )|(B A P .59.设A ,B ,C 相互独立.证明:A 与C B 独立,A 与B -C 也独立.60.某厂有甲、乙、丙三条流水线生产同一种产品,每条流水线的产量分别占该厂生产产品总量的%25,%35,%40,各条流水线的废品率分别是%5,%4,%2,求在总产品中任取一个产品是废品的概率.61.假定某工厂甲、乙、丙3个车间生产同一种螺钉,产量依次占全厂的%45,%35,%20.如果各车间的次品率依次为%4,%2,%5.现在从待出厂产品中检查出1个次品,试判断它是由甲车间生产的概率.62.某种同样规格的产品共10箱,其中甲厂生产的共7箱,乙厂生产的共3箱,甲厂产品的次品率为101,乙厂产品的次品率为152,现从这10箱产品中任取1件产品,问:(1) 取出的这件产品是次品的概率;(2) 若取出的是次品,分别求出次品是甲、乙两厂生产的概率.63.设玻璃杯整箱出售,每箱20只,各箱含0,1,2只次品的概率分别为0.8,0.1,0.1,一顾客欲购买一箱玻璃杯,由营业员任取一箱,经顾客开箱随机察看4只,若无次品,则买此箱玻璃杯,否则不买.求:(1) 顾客买下此箱玻璃杯的概率α;(2) 在顾客买下的此箱玻璃杯中,确实没有次品的概率β.64.一道选择题有4个答案,其中仅1个正确.假设一个学生知道正确答案及不知道而乱猜的概率都是1/2(乱猜就是任选一个答案).如果已知学生答对了,问他确实知道正确答案的概率是多少?65.某工厂的车床、钻床、磨床、刨床的台数之比为9:3:2:1,它们在一定的时间内需要修理的概率之比为1:2:3:1.当有一台机床需要修理时,问这台机床是车床的概率是多少?66.A 地为甲种疾病多发区,该地区共有南、北、中三个行政小区,其人口比为9:7:4,据统计资料,甲种疾病在该地三个行政小区内的发病率依次为4‟,2‟,5‟,求A 地的甲种疾病的发病率.67.盒子里有12个乒乓球,其中有9个是新的,第一次比赛时从其中任取3个来用,比赛后仍放回盒子,第二次比赛时再从盒子中任取3个,求第二次取出的球都是新球的概率;若已知第二次取出的球都是新球,求第一次取出的球都是新球的概率.68.已知100件产品中有10件绝对可靠的正品,每次使用这些正品时肯定不会发生故障,而在每次使用非正品时发生故障的可能性均为0.1.现从这100件产品中随机抽取一件,若使用了n 次均未发生故障,问n 为多大时,才能有%70的把握认为所抽取的产品为正品.69.在4次独立重复试验中事件A 至少出现1次的概率为0.59,试问在1次试验中A 出现的概率是多少?70.按某种要求检查规则,随机抽取4个梨,如果4个梨全是熟的,则所有梨都将在餐厅做饭后食用.一批梨仅有%80是熟的,问能做餐用的概率是多少?答案1.(1) 记9件合格品分别为:正1,正2,…,正9,不合格品为次,则 {=Ω(正1,正2),(正1,正3),…,(正1,正9),(正1,次), (正2,正3),…,(正2,正9),(正2,次),…………………………,(正8,正9),(正8,次),(正9,次)},{=A (正1,次),(正2,次),(正3,次),……,(正9,次)}(2) 记2个白球分别为21,ωω,3个黑球分别为321,,b b b ,4个红球分别为4321,,,r r r r .则 {=Ω,,21ωω321,,b b b ,4321,,,r r r r },① {=A 21,ωω}; ② {=B 4321,,,r r r r }2.Ω3.A +B +C =A 表明B +C A ⊂.但B ,C 可以互斥、相容或包含; ABC =A 表明A BC ⊂.但B ,C 的交必须是非不可能事件4.不是对立事件5.(1) 因为“AB =A ”与“AB A A AB ⊂⊂且”是等价的, 由A ⊂A B 可以推出A ⊂A 且A ⊂B ,因此有A ⊂B(2) 因为“A B A = ”与“B A A A B A ⊂⊂且”是等价的, 由A B A = 可以推出A ⊂A 且B ⊂A ,因此有B ⊂A 6.A 与B 为对立事件,B 与D 互不相容,A ⊃D ,C ⊃D .7.(1) A ; (2) C B A ; (3) C B A C B A C B A .8.(1) 4321A A A A ; (2) 4321A A A A ;(3) 4321432143214321A A A A A A A A A A A A A A A A ;(4) 43214321432143214321A A A A A A A A A A A A A A A A A A A A ;(5) 4321432143214321A A A A A A A A A A A A A A A A ;(6) 43214321432143214321A A A A A A A A A A A A A A A A A A A A 9.323121A A A A A A B ++=表示至少有两个车间没完成任务; B -C =321A A A 表示三个车间均完成生产任务10.(1) AB B A = 表示A 、B 不都发生;(2) AB B B A B A -=-Ω=)(表示B 发生而AB 不发生;(3) B A 表示A 、B 都不发生11.AB B A B A A B A B A A B A ++=-+=+=+)(;C B A B A A C B A ++=++;A C +B =C B A B +; BC A C B A C B A AB C ++⋅=-12.对立一定互不相容(φ=A A );互不相容不一定对立(Ω=+=B A AB 未必,φ)例如,E :掷骰子.事件{=A 出现点数为1,2},事件{=B 出现点数为3,4},{=C 出现点数为3,4,5,6},则A 与B 互不相容,A 与C 对立.13.121 14.2815 15.158 16.43 17.0.492118.1111043.9)(-⨯=A P ; 721024.1)(-⨯=A P ;1231025.7)(-⨯=A P ; 341055.4)(-⨯=A P19.七个字母的全排列总共有7!=5040种不同排法,将七个字母编号S N I E E C C1 2 3 4 5 6 7在全部的5040种可能排列中,恰好排成SCIENCE 的有如下四种情形(7154623),(7153624),(7254613),(7253614), 于是≈=50404p 0.000794 20.(1) 105.0452113113113113==C C C C C p ;(2) 30.04523131132421321324=+=C C C P C C C p 21.27131)()()(3====C P B P A P , 27832)()()(33====F P E P D P , 91271271271)(=++=G P , 9227123)(=⋅⋅=H P , 98)(1)(=-=G P I P 22.0.007323.24.03653641100100=- 24.从4双即8只鞋中任取4只,故基本事件数为48C ,(1) “4只恰成2双”相当于“从4双里选2双”,故有利事件数为C 24,其概率为4824C C =353. (2)为使4只中恰有1双,可设想为先从4双中取出1双,再从余下的3双中取出2双,然后从这2双中各取1只.因此,有利事件数为222314⋅⋅⋅C C ,其概率为352422482314=⋅⋅⋅C C C . (3)“4只中没有成双的”相当于“从4双中各取1只”.因此,有利事件数为162222=⋅⋅⋅,其概率为3581648=C 25.每颗骰子有6个点,因此基本事件总共有216666=⋅⋅个,只要掷出的三个点由1,2,3或2,3,4或3,4,5或4,5,6组成,不论它们出现的次序怎么样,都是有利事件.因此欲求之概率为91216!34=⨯. 26.3518 27.不妨设AB =1, AC =x ,则CB =1-x , AO =21, AC ,CB , AO 能构成一个三角形必须且只需同时满足 x x x x >-+->+121,121, 即4341<<x . 将AB 等分成四小段,第二及第三小段组成有利事件,因此欲求之概率为2142= 28.(如图)截取CD nD C 1=',当且仅当点P 落入△B A C ''之内时,△ABP 与△A B C 的面积之比大于nn 1-,故所求概率为 22222211nCD CD n CD D C ABC C B A p =='=∆''∆=的面积的面积.29.(1) 1-c ; (2) b -c ; (3) 1-a +c ; (4) 1-a -b +c30.0.331.0.3;0.532.127 33.134.略35.)()()()()(B P A P B A P A P AB P +≤+≤≤36.b +0.7a ; b -0.3a ; 1-0.3a37.(1) )(1)()(212121A A P A A P A A P -===1-[)()()(2121A A P A P A P ⋅-+]=1-)()()(2121A A P A P A P ⋅+-(2) 由(1)和0)(21≥⋅A A P 得第一个不等式,而)()(2121A A P A A P ≤ )()(21A P A P +≤38.0.37539.设从1000名技术员中任意地抽取一人.以A 记事件:“抽取男性”,B 记事件:“抽取已婚者”,C 记事件:“抽取大专毕业生”.按所给数据应有,752.0)(,875.0)(,813.0)(===C P B P A P420.0)(,632.0)(,654.0)(,572.0)(====ABC P AC P BC P AB P 于是)(C B A P ++)()()(C P B P A P ++=)()()()(ABC P AC P BC P AB P +---=0.813+0.875+0.752-0.572-0.654-0.632+0.420=1.002>1.得出矛盾,因此所给数据有错误40.(1) 0.23; (2) 0.07; (3) 0.73; (4) 0.14; (5) 0.17; (6) 0.90;(7) 0.10; (8) 0.8341.(1) 0.988; (2)0.05842.(1)0.042; (2) 0.35; (3)0.914343.0.7; 0.7; 0.5244.5.045.(1) 0.56; (2) 0.24; (3) 0.14; (4) 0.9446.(1) 0.188; (2) 0.212; (3) 0.97647.甲先投中的概率大48.0.649.0.448.50.(1) 这个系统由三个相同的子系统并联而成,每个子系统又由三个元件串联而成.因此每个子系统的可靠度为321p p p ,整个系统的可靠度为3321)1(1p p p --.(2) 这个系统由三个子系统串联而成,第一、第三个子系统只由一个元件组成,第二个子系统由三个相同的元件并联而成.因此,三个子系统的可靠度分别为1321,)1(1,p p p --,整个系统的可靠度为])1(1[3221p p --.(3) 这个系统由两个子系统并联而成,第一个子系统由两个二级子系统串联而成,而第一个二级子系统又由两个元件并联而成.因此,第一个子系统的可靠度为])1(1[212p p --,整个系统的可靠度为1-[))1(1(1212p p ---])1(3p -]=1-)1(3p -[)2(1121p p p --]=)2()2(13213121p p p p p p p p --+-=33121)1)(2(p p p p p +--51.0.42; 0.58×0.42; 0.581-m ×0.4252.(1) )(1}{2121n n A A A P A A A P -==-=)()()(121n A P A P A P 1-n p p p 21(2) )()()(}{2121n n A P A P A P A A A P =⋅=∏=-ni i p 1)1( (3) }{121321321n n n n A A A A A A A A A A A A P -⋅⋃⋅=+---+---)1()1()1()1()1)(1(321321n n p p p p p p p pn n p p p p )1()1)(1(121----+=∑∏=≠=-n i nj i i j i p p 11])1([.53.用k A 表示“第k 门高射炮发射一枚炮弹击中飞机”, ,2,1=k ,B 表示“击中飞机”.则 ,2,1,6.0)(==k A P k , (1) 84.04.01)()(1)(1)(2212121=-=-=⋅-=A P A P A A P A A P , (2) 99.04.01)(1)(1)(1121>-=-=-=∏==n nk k n k k n A P A P A A A P , 即6,026.54.0lg 01.0lg ,01.099.014.0=≈>=-<n n n 取, 故至少需要6门高射炮,同时发射一枚炮弹,可保证%99的概率击中飞机54.0.97655.1256.55.0)2.09.0(21)|()()|()()(=+=+=C A P C P C A P C P A P ,50.0)1.09.0(21)|()()|()()(=+=+=C B P C P C B P C P B P , )|()()|()()(C AB P C P C AB P C P B A P +=)|()|()()|()|()(C B P C A P C P C B P C A P C P +=,由A ,B 条件独立得415.0)1.02.09.0(21)(2=⨯+=B A P , 由于)()(5.055.0415.0)(B P A P B A P =⨯≠= ,所以A ,B 不独立57.(1) 从5个人任选2人为O 型,共有25C 种可能,在其余的3人中任选一人为A 型,共有3种可能,在余下的2人中任选1人为B 型,共有2种可能,另1人为A B 型,因此所要求的概率为0168.013.011.040.046.023225≈⋅⋅⋅⋅⋅⋅=C p ;(2) 1557.040.046.02335≈⋅⋅=C p ;(3) 8587.0)03.01(5≈-=p58.必要性 因为A 与B 独立,则)|()()|(B A P A P B A P ==. 充分性 因为)()()()(B P B A P B P AB P =, [][])()()()(1)(B P AB P A P B P AB P -=-,)()()(B P A P AB P =,所以A 与B 独立.59.)()())((C B A P AB P C B A P += =)()()()()(C P B P A P B P A P + =)]()()[(C B P B P A P +=)()(C B P A P即A 与C B 独立,同理可证A 与B -C 也独立.)()())((ABC P AB P C B A P -=-=)()()()(BC P A P B P A P -=)()(BC B P A P -)()(C B P A P -=.60.0.034561.0.51462.(1) 0.11; (2) 0.6364; 0.363663.记A :顾客买下所察看的一箱玻璃杯,i B :箱中有i 件次品(2,1,0=i ),由题设知,8.0)(0=B P ,=)(1B P 1.0)(2=B P ,所以1)|(0=B A P ,54)|(4204191==C C B A P ,1912)|(4204182==C C B A P , (1)由全概率公式知∑==++===2094.0)191254(8.0)/()()(i i i B A P B P A P α, (2)由贝叶斯公式知85.094.08.0)()/()()/(000====A P B A P B P A B P β 64.以A 记事件:“学生知道正确答案”,则A 表示事件:“学生在乱猜”以B 记事件:“学生答对了”.易见B A ⊂.因此有1)|(,21)()(===A B P A P AB P , 此外,按题意有41)|(=A B P ,由全概率公式得 85412121)|()()|()()(=⋅+=+=A B P A P A B P A P B P , 故所求的条件概率为54)()()|(==B P AB P B A P 65.以1A 表示“任取一台机床是车床”;2A 表示“任取一台机床是钻床”;3A 表示“任取一台机床是磨床”;4A 表示“任取一台机床是刨床”;B 表示“任取一台机床,它需要修理”.由题设知15912399)(1=+++=A P ,153)(2=A P ,152)(3=A P ,151)(4=A P , k k A B P 711321)|(1=+++=,k A B P 72)|(2=,k A B P 73)|(3=, k A B P 71)|(4=,其中k 为比例常数.由Bayes 公式得 ∑==41111)|()()|()()|(i i i A B P A P A B P A P B A P =2297115173152721537115971159=⨯+⨯+⨯+⨯⨯k k k k k 66.3.5‟67.设{=i A 第一次取出的3个球中有i 个新球})3,2,1,0(=i ,{=B 第二次取出的球全是新球},则∑==30)|()()(i i i A B P A P B P =146.0)(3023*******=∑=--i i i i C C C C , )()|()()|(333B P A B P A P B A P ==24.0146.0)(2312360339=C C C C68.设{=A 取出正品},{=B 使用n 次均无故障},已知10010)(=A P ,按题目要求应有70.0)|(≥B A P ,而)|()()|()()|()()|(A B P A P A B P A P A B P A P B A P +==n )9.0(9.011.011.0⨯+⨯⨯, 所以应是11)9.0(043.0,7.0)9.0(1.01.0++≥≥+n n ,由此得29≥n . 69.设在1次试验中A 出现的概率为p ,则在4次独立试验中A 不出现的概率为4)1(p -,从而A 至少出现一次的概率为A P (至少出现一次)=1-4)1(p -=0.59即4)1(p -=0.41,所以p =0.270.设A =“随机抽取一个梨是熟的”.则取出4个梨相当于做了4次贝努里试验,且)(A P =548.0=,设B =“4个梨都是熟的”,则 4096.0625256)8.0()(444===C B P , 即此批梨能作餐用的概率为4096.0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计第一单元测试
学号______班级______姓名________成绩______
一、选择题(每小题3分,共30分)
1.某人连续抛掷一枚均匀的硬币240000次,则正面向上的次数在下列数据中最可能是( ) A.120120 B.110120 C.130000 D.140000 2.对于事件 A,B, 下列命题正确的是 ( ) A .如果A,B 互斥,那么A ,B 也互斥; B .如果A,B 不互斥,那么A ,B 也不互斥;
C .如果A,B 互斥,且P(A),P(B) 均大于0,则A,B 互相独立;
D .如果A,B 互相独立, 那么A ,B 也互相独立.
3.一批零件共100个,其中有95件合格品,5件次品,每次任取1个零件装配机器,若2
次取到合格品的概率是2p ,第3次取到合格品的概率是3p ,则 ( )
A .
2p >3p
B .
2p =3p
C .
2p <3p
D .不能确定
4.商场开展促销抽奖活动,摇奖器摇出的一组中奖号码是6,5,2,9,0,4.参抽奖的每位顾客从0,1…,9这十个号码中抽出六个组成一组.如果顾客抽出的六个号码中至少有5个与摇奖器摇出的号码相同(不计顺序)就可以得奖,某位顾客可能获奖的概率为( )
A .42
1
B .30
1
C .35
4
D .42
5
5.进入世界前8名的乒乓球女子单打选手中有4名中国选手,抽签后平均分成甲、乙两组进行比赛,则四名中国选手不都分在同一组的概率为 ( )
A .
35
33
B .
1817 C .35
34 D .
9
8
6.一个口袋有10张大小相同的票,其号数分别为9,,2,1,0 ,从中任取2张,其号数至少
有一个为偶数的概率是 ( )
A .
185 B .187 C .95 D .9
7 7.一个袋中有5个红球,2个白球,从中任意摸出3个,下列事件中是不可能事件的是( ). A.3个都是红球 B.至少1个是红球 C.3个都是白球 D.至多1个是白球
8.从一副混合后的扑克牌(52张,去掉大、小王)中随机抽取1张,事件A 为“抽得红桃K ”,事件B 为“抽得为黑桃”,则概率P(A ∪B)的值是 ( )
5.
27A 6B.27 7.52C 5.52
D 9.100件产品中有5件次品,不放回地抽取两次,每次抽1件,已知第一次抽出的是次品,则第2次抽出正品的概率为________. 19.
20A 95.99B 5.99C 5.100
D 10.某人提出一个问题,甲先答,答对的概率为0.4,如果甲答错,由乙答,答对的概率为0.5,则问题由乙答对的概率为________.
A.0.1
B.0.2
C.0.3
D.0.4 二、填空题(本大题共5小题,每小题5分,共25分)
11.从装有两个白球、两个黑球的袋中任意取出两个球,取出一个白球一个黑球的概率为 .
12.某国际科研合作项目成员由11个美国人、4个法国人和5个中国人组成.现从中随机选
出两位作为成果发布人,则此两人不属于同一个国家的概率为 .(结果用分数表示)
13.一个家庭中有两个小孩.假定生男、生女是等可能的,已知这个家庭有一个是女孩,则
这时另一个小孩是男孩的概率是________.
14.从1~100这100个整数中,任取一数,已知取出的一数是不大于50的数,则它是2或3的倍数的概率为________.
15.从一筐苹果中任取一个,质量小于250g 概率为0 .25, 质量不小于350g 的概率为0.22, 则
质量位于
[)g 350,g 250范围内的概率是 .
三、解答题(共计45分) 16.(10分)盒中有25个球,其中10个白的、5个黄的、10个黑的,从盒子中任意取出一个球,已知它不是黑球,试求它是黄球的概率.
17(10分) 袋中有红、白两种颜色的球,作无放回的抽样试验,连抽3次,每次抽一球。
设i A =“第i 次抽到红球”,(i =1, 2, 3)。
试用i A 及i A 表示下列事件:
(1)前2次都抽到红球; (2)至少有一次抽到红球; (3)到第2次才抽到白球; (4)恰有两次抽到红球;
(5)后两次中至少有一次抽到红球. 18.(12分)设一台机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作,
一周5个工作日里无故障可获利润10万元,发生一次故障可获利5万元,发生两次故障没有利润,发生三次或三次以上故障就亏损2万元,求一周内平均获利多少? 19.(13分)有一电路如图,共有1号、2号、3号、4号、5号、6号六个开关,若每个开
关闭合的概率都是
3
2
,且互相独立,求电路被接通的概率?
2 3
1 6
4
5
参考答案
一、选择题
1.A 2.D 3.B 4.D 5.C 6.D 7.C 8.B 9.A 10.C 二、填空题
11.解:从该4个球中任取两球的等可能情况有6
C 24=种。
从两个白球、两个黑球中取得一个白球一个黑球的等可能情况有4C C 1
212=⨯种。
故取得一个白球一个黑球的概率为.
3
2 12. 解:190119.
13. 解:
1
2
一个家庭的两个小孩只有3种可能:{两个都是男孩},{一个是女孩,另一个是男孩},{两个都是女孩},由题目假定可知这3个基本事件的发生是等可能的.
14. 解: [答案]
33
50
根据题意可知取出的一个数是不大于50的数,则这样的数共有50个,其中是2或3的倍数共有33个,故所求概率为33
50
.
15.解:0.53 质量位于[)g 350,g 250范围内的概率为 1-0.25-0.22=0.53.
三、解答题
16. 解:设“取出的是白球”为事件A ,“取出的是黄球”为事件B ,“取出的是黑球”为
事件C ,则P (C )=1025=25,∴P (C )=1-25=35,P (B C )=P (B )=525=1
5∴P (B |C )=P (B C )P (C )
=
13
. 17.解:(1)3213
21A A A A A A ; (2)
“1A 2A 3A ”的对立事件;
(3)321A A A +321A A A ; (4)21A A
3A +321A A A +1A 32A A ;
(5)“321A A A +1A 2A 3
A ” 的对立事件.
18.解:P 5(0)×10+P 5(1)×5+P 5(2)×0+[P 5(3)+P 5(4)+ P 5(5)]×(-2)=5.20896万元. 19.解:法一:1号、2号、3号……6号开关开的事件设为ABCDEF .
设I 号 6号开关都开的事件为G ,P (G )=P (AF )=P (A )P (F )=
9
4
2号、3号开关都开的事件为 H ,P (H )=
9
4
4号、5号开关至少有一个开的事件为i ,P (i )=P (D ·E )+P (D ·E )+P (D ·E )=
9
8 P=P (G )[P (H ·i )+P (H ·i )十P (H ·i )]=729
304
解二:设1一6号开关开的事件为ABCD .EF 1号6号都开的事件G .P (G )=9
4
2号3号至少有一个不开的事件为 H ,P (H )=95
4号、5号都不开的事件为i. P (I )=9
1
P =[l 一P (H )P (i )]·P (G )= 729
304。