第二章 PN结

合集下载

第2章 PN结

第2章 PN结

T 300K
对于锗PN结,通常可取VD=0.3—0.4V
对于硅PN结,通常可取 VD=0.6—0.7V
23
2.1.2 PN结的形成过程
扩散法制造PN结过程
N P
N-Si P-Si
杂 质 浓 度
ND -NA
PN结两边的杂质浓度是非均匀的 常按照一定的函数规律而变化。
xj
x
在一块N型硅片上用化学方法涂敷一层含有Al2O3的乙醇 溶液,在红外线灯下干燥后,置于1250℃的扩散炉中进行高 温处理若干小时,然后缓慢降温。 24
35
2.1.3平衡PN结的载流子浓度分布
平衡PN结势垒区两侧载流子浓度 Eip Ein qVD nn 0 exp P区电子浓度 n p 0 nn 0 exp kT kT

qVD N区空穴浓度 pn 0 p p 0 exp kT

空间电荷不能移动,也不能传导电流。
10
一、空间电荷区的形成
2.1.1 平衡PN结能带图
内建电场E内: 空间电荷所产生的电场, 此电场不是由外部因素引起的,而是由PN结内部 载流子运动形成的,由N区指向P区。
PN结的内建电势(接触电势)VD 由内建电场所导致的N区和P区的电位差。
11
平衡PN结能带图
ND N A
杂 质 浓 度
2.1.2 PN结的形成过程
杂 质 浓 度
ND -NA
xj
x
0
x
xj
dN ( x) a j dx
x x j
ND N A a j x x j
x
26
缓变结
A.线性缓变结近似

第二章 PN结

第二章 PN结

半导体特征长度,德拜长度
LD =
(19)
ε s kT
q NB
2
=
qN B β
εs
能有效屏蔽外场的电 荷分布范围宽度
(20)
Si的德拜长度与掺杂浓度的关系
Si单边突变结耗尽层宽度和单位面积耗尽层电容 与掺杂浓度的关系。
W =
2ε s (Vbi ± V ) qN B
(21)
6) 耗尽层电容: 单位面积的耗尽层电容定义为: 单边突变结,单位面积电容:
5) 能带,载流子浓度: 内建势与载流子浓度间的关系:
qVbi = E g − (qVn + qV p )
NC NV N C NV ) − [kT ln( ) + kT ln( )] = kT ln( 2 nn 0 Pp 0 ni nn0 p p0 N AND = kT ln( ) ≈ kT ln( ) 2 2 ni ni
x V ( x) = Em ( x − ) 2W
2
0 ≤ x ≤ xn
内建势
V bi = V ( x n ) − V ( − x p )
电场对应的面积 (1)
1 1 Vbi = E mW ≡ E m ( x n + x p ) 2 2
| E m |=
(16)
qN D x n
εs
=
qN A x p
εs
C ≡ dQ / dV
εs d (qN BW ) = C ≡ dQ / dV = 2 d [(qN B / 2ε s )W ] W
= qε s N B (Vbi ± V − 2kT / q ) −1 / 2 2
1/C2~V 直线, 斜率:衬底杂质浓度, 1/C2=0时截距:内建势。

第2章_PN结

第2章_PN结

kT dn 由爱因斯坦关系 可得 Edx q n
kT 上式在整个势垒区积分 Edx xp q
xn
E
dV dx
n xn kT kT nn 0 V xn V x p ln ln q np0 n xp q
V xn V x p VD N D nn 0 N A p p0
第2章 PN 结
1
第2章 PN 结

PN 结是构成各种半导体器件的基本单元。 PN结中的载流子既有漂移运动,又有扩散运动; 既有产生,又有复合,这些性质集中反映在半导体 的导电特性中。
P区 NA
N区 ND
2
第2章 PN 结
1、PN 结的形成
在同一块N型(或P型)半导体单晶上,用特定 的工艺方法把P型(或N型)杂质掺入其中,使这块 单晶相连的二个不同区域分别具有N型区和P型区的 导电类型,在二者交界面以及交界面两侧的过渡区 即称为PN结。
40
(4)玻尔兹曼边界条件
即在势垒区两端,载流子分布满足玻尔兹曼分布。
(5)忽略半导体表面对电流的影响。
(6)只考虑一维情况。
41
理想PN结的伏安特性
正向偏压V>0时,P区边界-xp处的非平衡少子浓度
qV qVD qV n p x p n p 0 exp nn 0 exp kT kT P区边界 x x p 处的过剩载流子浓度
(1)小注入条件
满足下列条件的PN结)
即注入的非平衡少子浓度比平衡多子浓度小得多;
(2)耗尽层近似
即外加电压都降落在耗尽层(势垒区)上,耗尽层 以外的半导体是电中性的,因此注入的少子在 P区 和N区只作扩散运动;

002第二章 PN结

002第二章 PN结

2-1.P N +结空间电荷区边界分别为p x -和n x ,利用2TVV i np n e =导出)(n n x p 表达式。

给出N 区空穴为小注入和大注入两种情况下的)(n n x p 表达式。

解:在x x =处 ()()⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-=KT E E n x n KT E E n x p i Fn in n FP i i nn exp exp ()()VT V i FpFn i n n n n e n KT E E n x n x p 22exp =⎪⎪⎭⎫⎝⎛-= 而()()()000n n n nnn n n n n n n p x p pp n x n n n p x =+∆≈∆=+∆=+ (n n n p ∆=∆)()()TTVVin n n V V in n n en p n p e n n n p 2020=∆+⇒=∆+2001TV V n i n n n p n p e n n ⎛⎫⇒+=⎪⎝⎭ TV V 22n n0n i p +n p -n e=0n p =2(此为一般结果)小注入:(0n n n p <<∆) TTV Vn V Vn in ep en n p 002==()002n n i p n n =大注入: 0n n n p >>∆ 且 n n p p ∆= 所以 TV V inen p 22=或 TV Vi n en p 2=2-2.热平衡时净电子电流或净空穴电流为零,用此方法推导方程20lnia d T pn n N N V =-=ψψψ。

解:净电子电流为()n n n n I qA D n xμε∂=+∂处于热平衡时,I n =0 ,又因为 d dxψε=-所以nnd n n D dxxψμ∂=∂,又因为nT nD V μ=(爱因斯坦关系)所以dn nV d T =ψ,从作积分,则 2002ln ln ln lnlnia d n pT n T po T d T T ain N N V n V n V N V V N nψψψ=-=-=-=2-3.根据修正欧姆定律和空穴扩散电流公式证明,在外加正向偏压V 作用下,PN 结N 侧空穴扩散区准费米能级的改变量为qV E FP =∆。

最新第二章-PN结

最新第二章-PN结
达几百千欧以上)。
漂移电流大于扩散电

内电场
外电场 U

流,可忽略扩散电流
UB+U 在一定的温度条件下,
由本征激发决定的少
E
R
子浓度是一定的
故少子形成 的漂移电流是恒定的,基本上与所加反向 电压的大小无关,这个电流也称为 反向饱和电流IS。
《半导体器件》中国计量学院光电学院
综上所述:PN结加正向电压时,呈现低 电阻,具有较大的正向扩散电流;PN结加反 向电压时,呈现高电阻,具有很小的反向漂 移电流。 即PN结具有单向导电特性。
第二章-PN结
一、PN结的形成 二、PN结的单向导电性 三、PN结的击穿特性 四、PN结的电容效应 五、 PN结的隧道效应
《半导体器件》中国计量学院光电学院
P型半导体和N型半导体相结合——PN结
PN结是构造半导体器件的基本单元。其 中,最简单的晶体二极管就是由PN结构 成的。
PN
异质结、同质结
《半导体器件》中国计量学院光电学院
发生击穿并不一定意味着PN结被损坏。 当PN结反向击穿时, 只要注意控制反向
电流的数值(一般通过串接电阻R实现),
不使其过大, 以免因过热而烧坏PN结, 当反向电压(绝对值)降低时, PN结的性 能就可以恢复正常。 稳压二极管正是利用了PN结的反向击 穿特性来实现稳压的, 当流过PN结的电 流变化时, 结电压基本保持不变。
关键在于耗尽层的存在
《半导体器件》中国计量学院光电学院
PN结的伏安特性
UD
I
伏安特性方程 ID IS(eUT 1)
ID
UBR U B
O
U
加正向电压时,UD只要大
于UT几倍以上,IDISeUD/UT

第2章_2_PN结

第2章_2_PN结

2.反向偏压作用 2.反向偏压作用
外加偏压几乎全落在空 间电荷区上. 间电荷区上.方向与空间 电荷区内建电场一致, 电荷区内建电场一致,使 空间电荷区变宽,相应 势垒高度也由qV 势垒高度也由qVD增至 q(VD+V)。 +V)。 由于电场增强,加强了 载流子的漂移运动,打 破了原先已达成的扩散 电流和漂移运动之间的 平衡。
2.3.4 pn结电容 pn结电容
PN结在交流条件下呈现出电容效应,限制了PN PN结在交流条件下呈现出电容效应,限制了PN 结的高频应用。
1. pn结势垒电容 pn结势垒电容
(1)pn结势垒电容定性分析 pn结势垒电容定性分析 随着外界电压的变化,出现了载流子电荷在势垒 区中的存入和取出,此现象相当于一个电容的充 放电。这种与势垒区相联系的电容称为势垒电容, 记为C 记为CT。势垒电容大小与结上所加直流偏压有关, 是一个可变电容。 dQ CT = dV
由于少子浓度很低,扩散长度为一定值, 所以当反偏时空间电荷区边界处少子梯度 较小,相应的反向电流也小。 当反向电压很大时,空间电荷区边界处少 子浓度趋于零后不再变化,该处少子浓度 梯度趋于常数,电流就基本保持不变。 所以PN结反偏时表现为电流较小,而且随 所以PN结反偏时表现为电流较小,而且随 外加电压的增加电流趋于饱和。
I = A(
qDnnp0 Ln
qDPP 0 kT n + )(e −1) = IS (ek pn结饱和电流 Np0和pn0分别为P区和N区平衡时的少子电子浓度和 分别为P区和N 少子空穴浓度。 Ln 和 Lp分别为电子和空穴的扩散长度。
Ln = Dnτ n
PN结在平衡状态下,在N型半导体中电子是多子, PN结在平衡状态下,在N 空穴是少子,在P 空穴是少子,在P型半导体中空穴是多子,电子 是少子 当形成PN结后,其交界面两侧的电子和空穴浓度 当形成PN结后,其交界面两侧的电子和空穴浓度 存在较大差异,这就导致P型区的空穴向N 存在较大差异,这就导致P型区的空穴向N型区扩 散,N型区的电子向P型区扩散。P 散,N型区的电子向P型区扩散。P区边界处因只 剩下失去了空穴的离化受主杂质而带负电,N 剩下失去了空穴的离化受主杂质而带负电,N区 边界处因只剩下失去了电子的离化施主杂质而带 正电,这些离化的杂质位于晶格之中不能运动, 它们就在P 它们就在P 结附近形成了一个带电区域,称为空 间电荷区。

第二章PN结资料

第二章PN结资料

2.4 空间电荷区的复合电流和产生电流
• 低偏压:空间电荷区的复合电流占优势 • 偏压升高: 扩散电流占优势 • 更高偏压: 串联电阻的影响
I (A)
103
串联电阻
实验数据 104
105
106
107
斜率 q KT
108
109
斜率 q
2 KT
1 0 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7
• 由于这个原因,也把空间电 荷区称为势垒区。
3.耗尽层 -突变结
• 突变结势垒中的电场、电势分布 • 耗尽层近似:在空间电荷区中,与电离杂质浓度相比,自由载流子浓度
可以忽略,这称为耗尽近似。 • 杂质完全电离:
• 在N侧和P侧泊松方程可以分别简化为:
d dx22 qN D0xxn d dx22 qN A0xxn
0

边界条件: pnxpn0 pn0expV V T1
xW n xxn
pnxpn0AexpL xpBexpL xp
A pn0 exp k q 0 V T 1 exp L xn p pn0 exp V V T 1 exp L xn p B0
p n x p n 0 p n 0 e x p V V T 1 e x p x n L p x x x n
I0expV V T1
Shockley方程

正向偏压:
I
I0
exp
V VT
• 反向偏压: I I 0 • I0称为饱和电流
• 正向偏压情况下的PN结
载流子浓度
P型
np pn0
N型 pn pn0
空间电荷层
xp 0 xn
x
(a)少数载流子分布

半导体器件物理(第二章-PN结)

半导体器件物理(第二章-PN结)
PN结载流子浓度分布
n(x) n n 0
p p0
p(x)
n p0 xP
pn0 xN
空间电荷区中载流子浓度分 布是按指数规律变化的,变化 非常显著,绝大部分区域的载 流子浓度远小于两侧的中性区 域,即空间电荷区的载流子基
x 本已被耗尽,所以空间电荷区
又叫耗尽层。
2.2 PN结的直流特性
2.2.1 PN结的正向特性
2.1 平衡PN结
2.1.3 PN结的接触电势差与载流子分布
PN结的接触电势差
U (x)
UD
P区
N区
达到平衡状态时,如果P
区和N区的电势差为UD,则 两个区的电势能变化量为
qUD,其中UD称为PN结的接 触电势差,qUD就是势垒高 度。
xP
0 xN
x
UD kqTlnND niN2 A
2.1 平衡PN结
np(xP)np0expqk(U T) pn(xN)pn0expqk(U T)
我们看到,正向偏置的PN结边界处的少子浓度,等 于体内平衡少子浓度乘上一个指数因子。也就是说,势 垒区边界积累的少数载流子浓度随外加电压按指数规律 增加。
2.2 PN结的直流特性 3.PN结正向电流电压关系
空穴扩散电流密度
J Jp
n n(xP )
p
p(xN )
pn0
Ln
0 0 Lp
x
J Jn Jp Jn
0
xP xN
x
非平衡少子注入后,在 边界附近积累,形成从边 界到内部浓度梯度,并向 体内扩散,同时进行复合, 最终形成一个稳态分布。
扩散区中的少子扩散电 流都通过复合转换为多子 漂移电流。
2.2 PN结的直流特性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

引言
• 由同种物质构成的结叫做同质结(如硅),由不同 种物质构成的结叫做异质结(如硅和锗)。由同种 导电类型的物质构成的结叫做同型结(如P-硅和P型硅、P-硅和P-型锗),由不同种导电类型的物质 构成的结叫做异型结(如P-硅和N-硅、P-硅和N- 锗)。因此PN结有同型同质结、同型异质结、异型 同质结和异型异质结之分。广义地说,金属和半导 体接触也是异质结,不过为了意义更明确,把它们 叫做金属-半导体接触或金属-半导体结(M-S结)。
10 10
N bc 1014 cm 3
W m
1.0 101
10
16
1.0 101
1016
10 10
2
18
1018 102 103 102 102 101 1.0 10 102 103
102
101
1.0
10
VR ,V
(a)
VR ,V
(b)
图 2-6 耗尽层宽度随外加反偏压变化的实验结果与计算结果 (a) x j
pn 0 105
q p x

n 10 cm3 0 12
nn 0 1015
q n x
x
x
图2- 7 注入 P

N
结的 N 侧的空穴
及其所造成的电子分布
2.2 加偏压的 P-N 结
• 耗尽层宽度随外加反偏压变化的实验结果与计算结果
102 102
N bc 1014 cm 3
线性缓变结:在线性区
N ( x) ax
2.1 热平衡PN结
2.1 热平衡PN结
p
n
漂移
p
EC
n
E
扩散 q 0
EC EF EV
p
扩散 漂移
EF EV
n
EC EF Ei EV
(a)在接触前分开的P型和N型硅的能带图 图2-3
(b)接触后的能带图
2.1 热平衡PN结

p 型电中性区 边界层 边界层 n 型电中性区 耗尽区
小结 名词、术语和基本概念: PN结、突变结、线性缓变结、单边突变结、空间电荷区、 耗尽近似、中性区、内建电场、内建电势差、势垒。 分别采用费米能级和载流子漂移与扩散的观点解释了PN结空间电荷区(SCR)的形 成 。 介绍了热平衡PN 结的能带图(图2.3a、b)及其画法。
利用中性区电中性条件导出了空间电荷区内建电势差公式:
0 n p VT ln
Nd Na ni2
2.1热平衡PN结
• 小结
解Poisson方程求解了PN结SCR内建电场、内建电势、内建电势差和耗尽层宽度:
x m 1 x n
qNd x 2k 0
2 n 2
(2-14)
qNd xn m k 0
外延工艺: 外延是一种薄膜生长工艺,外延生长是在单晶衬 底上沿晶体原来晶向向外延伸生长一层薄膜单晶 层。 外延工艺可以在一种单晶材料上生长另一种单晶 材料薄膜。 外延工艺可以方便地可以方便地形成不同导电类 型,不同杂质浓度,杂质分布陡峭的外延层。 外延技术:汽相外延、液相外延、分子束外延 (MBE)、热壁外延(HWE)、原子层外延技 术。
1m 和(b) x j 10 m 10 20 / cm 3
假设为 erfc 分布且 N 0
2.2 加偏压的 P-N 结
• 小结
名词、术语和基本概念: 正向注入、反向抽取、扩散近似、扩散区
介绍了加偏压PN结能带图及其画法 根据能带图和修正欧姆定律分析了结的单向导电性: 正偏压V使得PN结N型中性区的费米能级相对于P型中性区的升高qV。在P型 中性区 EF = EFP 。在空间电荷区由于n、p<<ni ,可以认为费米能级不变即等 于 EFP 。在N型中性区 EF =EFN 。同样,在空间电荷区 E F= E EN ,于是从空间 电荷区两侧开始分别有一个费米能级从 EFP 逐渐升高到 E EN 和从 E FN 逐渐下降 到 E FP 的区域。这就是P侧的电子扩散区和N侧的空穴扩散区(以上分析就是画 能带图的根据)。
qN d xn 2 0 2k 0
(2-15)
x 1 (2-16) x n
12
(2-17)
2k 0 0 W xn qN d
扩展知识:习题2.2
(2-18)
2.5
2.1热平衡PN结
• 教学要求
掌握下列名词、术语和基本概念: PN结、突变结、线性缓变结、单边突变结、空间电荷区、耗尽近似、中性区 、内建电场、内建电势差、势垒。 分别采用费米能级和载流子漂移与扩散的观点解释PN结空间电荷区(SCR) 的形成 正确画出热平衡PN 结的能带图(图2.3a、b)。 利用中性区电中性条件导出空间电荷区内建电势差公式:
(c) 与(b)相对应的空间电荷分布 图2-3
2.1 热平衡PN结
Nd Na
x pN d
0
xn x Na N d
• 单边突变结电荷分 布、电场分布、电
势分布
- Na
(a )

(a)空间电荷分布
x
(b )

m
(b)电场
x
0
(c )
0
(c)电势图
图2-4 单边突变结
2.1 热平衡PN结
N Si N+
(i)蒸发/溅射金属
(j) P-N 结制作完成
引言
突变结与线性缓变结
Na
Na Nd
Na Nd
-ax
xj
xj 0 x -Nd
0 x
(a)突变结近似(实线)的窄扩散结 (虚线)
图 2.2
(b)线性缓变结近似(实线)的 深扩散结(虚线)
引言
突变结:
0 x x j , N ( x) N a x j x, N ( x) N d
P P
2.2 加偏压的 P-N 结
• 小结
根据载流子扩散与漂移的观点分析了结的单向导电性:
正偏压使空间电荷区内建电势差由 0 下降到 0 -V打破了PN结的热平衡,使载 流子的扩散运动占优势即造成少子的正向注入且电流很大。反偏压使空间电 荷区内建电势差由 0 上升到 0 +V同样打破了PN结的热平衡,使载流子的漂 移运动占优势这种漂移是N区少子空穴向P区和P区少子电子向N区的漂移,因 此电流是反向的且很小。 在反偏压下,耗尽层宽度为
引言
• 70年代以来,制备结的主要技术是硅平面工艺。硅平 面工艺包括以下主要的工艺技术: • 1950年美国人奥尔(R.Ohl)和肖克莱(Shockley)发明 的离子注入工艺。 • 1956年美国人富勒(C.S.Fuller)发明的扩散工艺。 • 1960年卢尔(H.H.Loor)和克里斯坦森(Christenson) 发明的外延工艺。 • 1970年斯皮勒(E.Spiller)和卡斯特兰尼(E.Castell ani)发明的光刻工艺。正是光刻工艺的出现才使硅器 件制造技术进入平面工艺技术时代,才有大规模集成 电路和微电子学飞速发展的今天。 • 上述工艺和真空镀膜技术,氧化技术加上测试,封装 工艺等构成了硅平面工艺的主体。
扩散工艺:由于热运动,任何物质都有一种从浓度高处向浓度低 处运动,使其趋于均匀的趋势,这种现象称为扩散。 常用扩散工艺:液态源扩散、片状源扩散、固-固扩散、双温区 锑扩散。 液态源扩散工艺:使保护气体(如氮气)通过含有扩散杂质的液 态源,从而携带杂质蒸汽进入高温扩散炉中。在高温下杂质蒸汽 分解,在硅片四周形成饱和蒸汽压,杂质原子通过硅片表面向内 部扩散。
离子注入技术: 将杂质元素的原子离化变成带电的杂质离子,在强电 场下加速,获得较高的能量(1万-100万eV)后直接 轰击到半导体基片(靶片)中,再经过退火使杂质激 活,在半导体片中形成一定的杂质分布。 离子注入技术的特点:
(1)低温; (2)可精确控制浓度和结深; (3)可选出一种元素注入,避免混入其它杂质; (4)可在较大面积上形成薄而均匀的掺杂层; (5)控制离子束的扫描区域,可实现选择注入,不需掩膜技术; (6)设备昂贵。
Nd Na 0 n p VT ln 2 ni
(2-7)
解Poisson方程求解单边突变结结SCR内建电场、内建电势、内建电势差和耗 尽层宽度。并记忆公式(2-14)―(2-18) 作业题:2.2 、 2.4 、 2.5、2.7、2.10
2.2 加偏压的 P-N 结
2.2 加偏压的 P-N 结
氧化工艺: 1957年人们发现硅表面的二氧化硅层具有阻止杂质向硅内扩散的 作用。这一发现直接导致了硅平面工艺技术的出现。 在集成电路中二氧化硅薄膜的作用主要有以下五条: (1)对杂质扩散的掩蔽作用; (2)作为MOS器件的绝缘栅材料; (3)器件表面钝化作用; (4)集成电路中的隔离介质和绝缘介质; (5)集成电路中电容器元件的绝缘介质。 硅表面二氧化硅薄膜的生长方法:热氧化和化学气相沉积方法。
• 2.2.1加偏压的结的能带图
能量 (E )
P
N W W
(a ) 能量 (E )
q 0 EC EF
(a)热平衡,耗尽层宽 度为 W
EFn
P
+
N V

(b )
EFp
q 0 V qV EFn
(b)加正向电压,耗尽
层宽度W’W
图2.5 单边突变结的电势分布
2.2 加偏压的 P-N 结
半导体器件物理
第二章 P-N结
引言
• PN结是几乎所有半导体器件的基本单元。除金属-半 导体接触器件外,所有结型器件都由PN结构成。PN结 本身也是一种器件-整流器。PN结含有丰富的物理知 识,掌握PN结的物理原理是学习其它半导体器件器件 物理的基础。正因为如此, PN结一章在半导体器件 物理课的64学时的教学中占有16学时,为总学时的四 分之一。 • 由P型半导体和N型半导体实现冶金学接触(原子级接 触)所形成的结构叫做PN结。 • 任何两种物质(绝缘体除外)的冶金学接触都称为结 (junction),有时也叫做接触(contact).
相关文档
最新文档