高中数学知识点函数与导数知识点【精品】
高一函数与导数知识点

高一函数与导数知识点函数与导数是高一数学学习中重要的知识点,掌握它们对于学习后续的数学知识和应用都至关重要。
本文将介绍高一函数与导数的基本概念、性质和应用。
一、函数的基本概念函数是一种特殊的关系,通常用字母表示。
在数学中,函数描述了自变量和因变量之间的关系。
一个函数可以理解为一个运算规则,它将每一个自变量对应到唯一一个因变量上。
在函数的定义中,有三个要素需要明确,分别是自变量、函数关系和因变量。
自变量是函数中的独立变量,通常用字母表示,函数关系则描述了自变量和因变量之间的规律,因变量是根据自变量和函数关系所确定的,也用字母表示。
函数可以用公式、图像或者表格来表示。
对于一元函数,可以用y=f(x)的形式来表示,其中y表示因变量,x表示自变量,f(x)表示函数关系。
二、导数的基本概念导数是函数的一个重要性质,可以用来描述函数在某一点上的变化率。
在数学中,导数是函数在某一点上的极限,表示函数曲线在该点处的切线斜率。
导数可以用数值、图像或者公式来表示。
对于函数y=f(x),其导数可以表示为dy/dx、f'(x)或者dy/dx|<sub>x</sub>=a,其中dy 表示函数的微小增量,dx表示自变量的微小增量,dy/dx表示函数的导数。
导数具有以下性质:加法性、数乘性、乘积法则、商数法则、复合函数求导法则等。
利用这些性质,可以简化对函数导数的求解过程。
三、函数与导数的应用函数与导数是高一数学中被广泛应用的知识点,它们在数学和其他学科中起到重要的作用。
1. 函数的应用函数用于描述自然界和社会现象中的规律,可以应用于物理、化学、生物、经济等领域。
在物理学中,常用函数描述质点的运动;在经济学中,函数可以描述收入与生产水平之间的关系。
2. 导数的应用导数可以用来求函数的极值,解决最优化问题。
在物理学中,导数可以用来描述物体的速度、加速度等;在经济学中,导数可以用来解决边际效应和边际成本的问题。
(完整版)高中数学导数与函数知识点归纳总结

高中导数与函数知识点总结归纳一、基本概念1.导数的定义:设x 0是函数y =f (x )定义域的一点,如果自变量x 在x 0处有增量∆x ,则函数值y 也引起相应的增量∆y =f (x 0+∆x )-f (x 0);比值率;如果极限lim ∆y f (x 0+∆x )-f (x 0)称为函数y =f (x )在点x 0到x 0+∆x 之间的平均变化=∆x ∆xf (x 0+∆x )-f (x 0)∆y 存在,则称函数y =f (x )在点x 0处可导,并把这个极限叫做=lim ∆x →0∆x ∆x →0∆x y =f (x )在x 0处的导数。
f (x )在点x处的导数记作y 'x =x=f '(x 0)=lim∆x →0f (x 0+∆x )-f (x 0)∆x2导数的几何意义:(求函数在某点处的切线方程)函数y =f (x )在点x 0处的导数的几何意义就是曲线y =f (x )在点(x 0,f (x ))处的切线的斜率,也就是说,曲'线y =f (x )在点P (x 0,f (x ))处的切线的斜率是f (x 0),切线方程为y -y 0=f (x )(x -x 0).'3.基本常见函数的导数:n①C '=0;(C 为常数)②x ()'=nx x x n -1;③(sin x )'=cos x ;④(cos x )'=-sin x ;⑤(e )'=e ;⑥(a )'=a ln a ;⑦(ln x )'=x x 11;⑧(l o g ax )'=logae .xx二、导数的运算1.导数的四则运算:法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即:⎡'⎣f (x )±g (x )⎤⎦=f '(x )±g '(x )法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:⎡'=f '(x )g (x )+f (x )g '(x )f x ⋅g x ⎤()()⎣⎦常数与函数的积的导数等于常数乘以函数的导数:(Cf (x ))'=Cf '(x ).(C为常数)法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:⎡f (x )⎤'f '(x )g (x )-f (x )g '(x )g (x )≠0)。
高中数学知识点函数与导数知识点

n
式子
a
叫做根式,n 叫做根指数,a 叫做被开方数.根式的性质有:
(i) (n a )n a ( n1,且 nN* );
高中数学知识点
(ii)当 n 为奇数时, n an a ;当 n 为偶数时, n an
a a
a0 a0 。
②分数指数幂
m
(i) a n n am
(ii)
a
m n
1
m
( a 0 , m , nN * ,且 n1);
(2)二次函数的图象:
图象是抛物线,其对称轴方程为
x
b 2a
.当
a0
时,开口向上;当
a0
时,
开口向下。
(3)二次函数的性质
①
a0
时,单调递减区间 (,
b] 2a
;单调递增区间 [
b 2a
,
)
,
ymin
4ac b 2 4a
。
②
a0
时,单调递增区间 (,
b] 2a
;单调递减区间 [
b 2a
,
)
,
ymax
●5. 一些有用的结论: ①奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。
②在公共定义域内:增函数 f (x) 增函数 g(x) 是增函数;减函数 f (x) 减函数
g(x) 是减函数;
③函数
y
ax
b x
(a
0,b
0)
的单调性:
单调增区间是: (,
b a
]
和
[
b a
,
)
;单调减区间是:
函数的单调性与最值在高考中常以选择填空题形式出现,但近几年高考常以 导数为工具,研究函数的单调性问题在大题中是必考内容。
函数与导数综合知识点总结

函数与导数综合知识点总结一、函数的概念与性质1. 函数的基本概念函数是一个从一个集合到另一个集合的映射规则。
通俗地说,函数就是一种输入与输出之间的对应关系。
函数通常用f(x)来表示,其中x是输入,f(x)是输出。
2. 函数的定义域与值域函数的定义域是指所有可能的输入值的集合,值域是指所有可能的输出值的集合。
在数学上,定义域和值域的概念非常重要,因为它们决定了函数的性质。
3. 函数的奇偶性如果对于函数f(x),有f(-x) = f(x),那么该函数是偶函数;如果对于函数f(x),有f(-x) = -f(x),那么该函数是奇函数。
奇偶函数具有一些特殊的对称性质,在积分和求导的时候非常有用。
4. 函数的周期性如果对于函数f(x),存在一个正数T,使得对所有的x,有f(x + T) = f(x),那么该函数是周期函数。
周期函数在数学建模和信号处理中有广泛的应用。
5. 函数的复合如果有两个函数f(x)和g(x),那么它们的复合函数就是f(g(x)),它是先对输入进行g(x)的处理,然后再对结果进行f(x)的处理。
复合函数在微积分中具有重要的地位。
6. 反函数如果一个函数f(x)的定义域和值域分别为A和B,那么如果存在另一个函数g(y),它的定义域和值域分别为B和A,并且对任意的x,有g(f(x)) = x,那么g(y)就是f(x)的反函数。
反函数在解方程和求逆矩阵等领域有重要应用。
二、导数的概念与性质1. 导数的定义给定函数f(x)和一点x,如果极限lim(h->0)[f(x + h) - f(x)]/h存在,那么这个极限就是函数f(x)在点x处的导数,用f'(x)或者dy/dx来表示。
导数衡量了函数在某个点处的变化率。
2. 导数的几何意义函数f(x)在点x处的导数f'(x)表示了函数曲线在点x处的切线斜率。
导数的几何意义可以帮助我们理解函数的变化规律。
3. 导数的计算有许多方法可以计算函数的导数,比如极限定义法、泰勒公式法、微分法等。
函数与导数知识点总结(高考必备)

1 函数一、函数的概念:1、函数的概念:设A,B 是两个非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的y 与之对应,那么就称f:A →B 为从集合A 到集合B 的一个函数,记作:y=f (x ),x ∈A.2、构成函数概念的三要素: 定义域、值域、对应关系。
二、函数的定义域:1、求函数定义域的主要依据:(1)分式的分母不为零; (2)偶次方根的被开方数不小于零,(3)零取零次方没有意义;(4)对数函数的真数必须大于零,指数函数和对数函数的底数必须大于零且不等于12、复合函数定义域的求法:(1)定义域指的都是x 的取值范围; (2)括号内范围保持一致三、函数的值域:求函数值域的方法:1、直接法:从自变量x 的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;2、换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;3、分离常数:适合分子分母皆为一次式(x 有范围限制时要画图);4、反表示法:适合x 有范围的情况,用y 表示x ,再利用x 的范围求出y 的范围;5、单调性法:利用函数的单调性求值域;6、图象法:二次函数必画草图求其值域;对号函数常用图像法求值域;7、判别式法:运用方程思想,依据二次方程有根,求出y 的取值范围;适合分母为二次且 ∈R 的分式;8、几何意义法:由数形结合,转化距离等求值域。
主要是含绝对值函数四、函数的解析式:1、换元法:2、配凑法:3、待定系数法:4、消元法:五、函数的奇偶性:1、定义: 设y=f(x),x ∈A ,如果对于任意 x ∈A ,都有f(x)= f(-x),则称y=f(x)为偶函数;如果对于任意 x ∈A ,都有f(x)=-f(-x),则称y=f(x)为奇函数。
2、性质:(1)偶函数的图象关于Y 轴 对称,奇函数的图象关于原点对称, (2)若奇函数在x=0处有定义,则必有f(0)=0;(3)奇±奇=奇; 偶±偶=偶; 奇×奇=偶; 偶×偶=偶; 奇×偶=奇 3、函数奇偶性的判断方法:(1)定义法:①看定义域是否关于原点对称;②看f(x)与f(-x)的关系 (2)图像法: (3)利用性质:六、函数的单调性:1、定义:设函数f(x),如果对于定义域内某个区间D 上的任意两个自变量的值1x ,2x , 当1x <2x 时,都有)()(21x f x f <,那么就说函数f(x)在区间D 上是增函数;当1x <2x 时,都有)()(21x f x f >,那么就说函数f(x)在区间D 上是减函数; 2、性质:(1)函数y=f(x)与y=-f(x)单调性相反; (2)若函数f(x)恒正或恒负时,函数)(1x f y =与f(x)单调性相反; (3)在公共定义域内,增函数+增函数=增函数; 增函数-减函数=增函数;减函数+减函数=减函数; 减函数-增函数=减函数;3、函数单调性的判断方法:(1)定义法:(作差、作除) (2)图像法: (3)利用性质:(4)导数法:设函)(x f y =在某个区间内可导,若0)(>′x f ,则)(x f 为增函数;若0)(<′x f ,则)(x f 为减函数. 4、复合函数的单调性判断:同增异减,注意定义域七、函数的周期性:1、定义:一般的,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x )=f (x+T );那么函数y=f(x)叫做周期函数,非零常数T 叫做这个函数的周期。
导数与函数常考知识点归纳总结

导数与函数常考知识点归纳总结导数是微积分中的核心概念之一,它描述了函数在某一点处的变化率。
掌握导数的基本概念和运算规则对于理解和应用微积分至关重要。
以下是导数与函数常考的知识点归纳总结:1. 导数的定义:函数在某一点的导数定义为该点处函数值的变化率。
如果函数\( f(x) \)在点\( x_0 \)处的极限\[\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}\]存在,则称\( f(x) \)在\( x_0 \)处可导,这个极限值就是\( f(x) \)在\( x_0 \)处的导数。
2. 导数的几何意义:函数在某一点的导数表示该点处函数图像的切线斜率。
3. 基本初等函数的导数:- 常数函数的导数为0。
- 幂函数\( x^n \)(\( n \)为实数)的导数为\( nx^{n-1} \)。
- 指数函数\( a^x \)(\( a > 0 \)且\( a \neq 1 \))的导数为\( a^x \ln(a) \)。
- 对数函数\( \ln(x) \)的导数为\( \frac{1}{x} \)。
- 三角函数的导数遵循特定的规则,例如\( \sin(x) \)的导数为\( \cos(x) \),\( \tan(x) \)的导数为\( \sec^2(x) \)。
4. 导数的运算法则:- 和差法则:\( (f(x) \pm g(x))' = f'(x) \pm g'(x) \)。
- 乘积法则:\( (f(x)g(x))' = f'(x)g(x) + f(x)g'(x) \)。
- 商法则:\( \left(\frac{f(x)}{g(x)}\right)' =\frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2} \)。
- 链式法则:\( (f(g(x)))' = f'(g(x))g'(x) \)。
高三函数与导数知识点总结
高三函数与导数知识点总结函数与导数是高三数学中重要的知识点,它们在解决实际问题和推导数学公式中起到至关重要的作用。
本文将对高三函数与导数的相关知识点进行总结,并提供一些例题以加深理解。
一、函数的基本概念函数是一种特殊的关系,它将一个集合的元素(自变量)映射到另一个集合的元素(因变量)。
函数可以用符号表示为f(x),其中x表示自变量,f(x)表示因变量。
函数在数学中有着广泛的应用,如描述物理运动、经济变化等。
二、函数的分类1.一次函数:f(x) = ax + b,其中a和b是常数,a不能为0。
一次函数的图像为一条直线,斜率a决定了直线的倾斜方向和程度,而常数b则决定了直线与y轴的交点位置。
2.二次函数:f(x) = ax² + bx + c,其中a、b和c是常数,a不能为0。
二次函数的图像为一条抛物线,a决定了抛物线的开口方向,b和c决定了抛物线的位置。
3.指数函数:f(x) = aˣ,其中a是常数,且大于0且不等于1。
指数函数的图像为以点(0, 1)为底的指数曲线,呈现上升或下降的趋势。
4.对数函数:f(x) = logₐ(x),其中a是常数,且大于0且不等于1。
对数函数的图像为以点(1, 0)为底的对数曲线,呈现上升或下降的趋势。
三、导数的概念导数是函数在某一点上的变化率,表示函数曲线在该点的切线斜率。
导数可以用符号表示为f'(x)或dy/dx,其中x表示自变量,f(x)表示函数。
导数在实际问题中有着重要的几何和物理意义。
四、导数的计算方法1.函数的导数定义:导数的定义为f'(x) = limₜ→0 [f(x + t) - f(x)] / t,其中lim表示极限。
2.常见函数的导数:- 一次函数f(x) = ax + b的导数为f'(x) = a。
- 二次函数f(x) = ax² + bx + c的导数为f'(x) = 2ax + b。
- 指数函数f(x) = aˣ的导数为f'(x) = aˣln(a)。
高考函数与导数知识点
高考函数与导数知识点在高考数学中,函数与导数是重要的考点之一。
理解和掌握函数与导数的知识对于解答各类函数与导数题目至关重要。
本文将对高考函数与导数的知识点进行详细论述,帮助同学们更好地应对考试。
1. 函数的概念与性质函数是数学中常见的概念,它描述了两个变量之间的关系。
通常用字母表示,其中一个变量称为自变量,另一个变量称为函数的值或因变量。
函数可以用方程、图形或解析式等形式表示。
函数的性质有很多,例如:奇偶性、单调性、周期性、有界性等。
了解这些性质对于解题非常有帮助。
同时,还需要掌握函数的基本运算、复合函数以及函数的反函数等概念和运算方法。
2. 导数的概念与计算方法导数是函数在某一点上的变化率或斜率。
它是函数微分学的基本概念之一。
导数的计算方法有很多,常见的有用定义法、用极限法和用基本导数法等。
要计算导数,首先需要了解导数的定义。
其次,掌握各类函数的导数公式,如幂函数、指数函数、对数函数、三角函数等的导数。
此外,还需要掌握导数的运算法则,例如和差法则、积法则、商法则等。
3. 函数与导数的关系函数与导数之间有着密切的联系,理解函数与导数的关系对于高考数学题目的解答至关重要。
首先,导数可以表征函数的变化趋势。
通过函数的导数值,可以判断函数在某一点上是递增还是递减,也可以分析函数的极值(最大值和最小值)。
其次,函数的导数也可以求出函数的切线方程。
通过求导并代入给定点的坐标,可以确定函数在该点的切线,进而得到切线的方程。
此外,通过函数的导数还可以判断函数的凹凸性。
函数的导数值的变化可以揭示函数的曲线是上凹还是下凹,从而确定函数的凹凸区间。
4. 应用题与解题技巧高考中,函数与导数的知识点经常会涉及到应用题。
这类题目结合了函数与导数的知识,考察学生对于函数与导数概念的理解和运用能力。
在解答应用题时,需要注意以下几个方面的技巧:(1) 确定函数的自变量和因变量,建立函数模型;(2) 利用导数求出函数的变化趋势,比如函数递增递减的区间、函数的最值等;(3) 根据问题中给出的条件,列方程并求解;(4) 检查解的合理性以及问题中是否有陷阱,注意解答方式和表述的准确性。
函数与导数知识点归纳总结
函数与导数知识点归纳总结函数与导数是高中数学中的重要概念,也是数学建模和解题中常用的工具。
函数是描述变量间关系的数学工具,而导数则是描述函数变化率的指标。
在这篇文章中,我们将对函数与导数的相关知识进行归纳总结。
以下是主要内容:一、函数的定义和性质1. 函数的定义:函数是一个将自变量的值映射到因变量的值的规则。
通常用f(x)表示,其中x为自变量,f(x)为函数值。
2. 定义域和值域:函数的定义域是自变量可能取值的集合,值域是因变量可能取值的集合。
3. 奇函数和偶函数:奇函数满足f(-x) = -f(x),偶函数满足f(-x) =f(x)。
4. 增减性和最值:函数在某一区间上的增减性能够描述函数的趋势,最值是函数在某一区间上的最大值或最小值。
二、导数的定义和计算方法1. 导数的定义:函数在某一点的导数描述了函数在该点附近的变化率。
导数可视为函数的斜率或速度。
2. 导数的计算方法:常用的导数计算方法包括使用导数的定义、使用导数的性质(如乘法法则、链式法则等),以及使用常见函数的导数公式。
三、导数的几何意义和应用1. 几何意义:导数表示了函数图像上某一点的切线斜率。
当导数为正时,函数图像在该点上升;当导数为负时,函数图像在该点下降。
2. 切线方程:使用导数可以求得函数图像上某一点的切线方程。
切线方程的斜率为该点的导数,截距为通过该点的切线。
3. 最优化问题:导数在优化问题中有广泛应用。
例如,求函数的最大值和最小值的问题可以通过导数为零的点来解决。
4. 运动学问题:导数可以用来描述物体运动的速度和加速度。
通过对位移函数取导数,可以得到速度函数;再对速度函数取导数,可以得到加速度函数。
四、高阶导数和导数应用1. 高阶导数:导数的导数称为高阶导数。
二阶导数表示函数的变化加快程度,三阶导数表示函数的变化加速程度,依此类推。
2. 凸凹性和拐点:使用高阶导数可以判断函数的凸凹性和拐点。
当二阶导数大于零时,函数图像在该区间上凸;当二阶导数小于零时,函数图像在该区间上凹;当二阶导数为零且三阶导数不为零时,函数图像存在拐点。
高三函数和导数知识点总结
高三函数和导数知识点总结函数是数学中的重要概念,而导数则是函数的基本性质之一。
在高三阶段,函数和导数是数学学习的重点内容。
下面将对高三函数和导数的知识点进行总结。
一、函数的定义和性质函数是一种特殊的关系,将一个数集的每一个元素都对应到另一个数集的元素上。
函数的定义包括定义域、值域和对应关系。
在函数的性质方面,常见的有奇偶性、单调性、周期性等。
二、常见函数的图像和特点1. 线性函数线性函数表示为y = kx + b,其中k为斜率,b为截距。
线性函数的图像为直线,其特点是一次函数,斜率决定了线的倾斜程度。
2. 二次函数二次函数表示为y = ax^2 + bx + c,其中a、b、c为实数且a≠0。
二次函数的图像为抛物线,其特点是开口方向、最值等。
3. 指数函数指数函数表示为y = a^x,其中a>0且a≠1。
指数函数的图像在直角坐标系中右上方增长,其特点是单调递增。
4. 对数函数对数函数表示为y = loga(x),其中a>0且a≠1。
对数函数的图像在直角坐标系中左上方增长,其特点是单调递增。
5. 三角函数三角函数包括正弦函数、余弦函数和正切函数等。
它们的图像在坐标系中以一定周期重复出现,具有周期性和振荡性。
三、导数的定义和求解导数描述了函数在某一点的变化率,是函数的重要性质之一。
导数的定义是函数的极限,常用的求导公式有:1. 基本函数的导数如常数函数、幂函数、指数函数、对数函数、三角函数等的导数可根据定义和求导法则进行求解。
2. 导数的四则运算法则导数具有加减乘除等基本运算法则,可根据这些法则对复杂函数进行求导。
3. 链式法则链式法则是求解复合函数导数时常用的方法,将复合函数拆开分别求导再进行乘积。
四、导数的应用导数不仅有理论意义,也在实际问题中有重要应用,以下是导数的几个常见应用:1. 切线和法线导数代表了函数曲线上某一点的斜率,通过导数可以求出函数曲线在某一点的切线和法线方程。
2. 最值问题导数的零点处为函数的极值点,通过求解导函数的零点可以求出函数的最值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题二函数【知识概要】一、映射●映射:映射是两个集合A 、B 间一种特殊的对应,:f A B →表示对集合A 中的任何一个元素,在集合B 中有唯一确定的元素与之对应。
如果a A ∈,b B ∈,且元素a 和元素b 对应,那么,元素a 叫做元素b 的原像,元素b 叫做元素a 的像,记为()b f a =。
【特别提醒】:(1)映射由三要素组成,集合A 、B 以及A 到B 的对应法则f ,集合A 、B 可以是数集,也可以是点集或其他集合。
对于A 中每一个元素,在B 中有且只有一个元素和它对应。
(2)A 中的不同元素允许对应B 中的相同元素,即映射允许“多对一”、“一对一”,但不允许“一对多”。
B 中的元素可以在A 中没有元素和它对应。
二、函数的概念●1.函数的定义:如果A 、B 都是非空的数集,映射:f A B →就叫做A 到B 的函数,记作:()y f x =,x A ∈,其中x 叫做自变量,x 的取值范围A 叫做函数的定义域,与x 的值相对应的y 值叫做函数值,函数值的集合{}|()y y f x x A =∈叫做函数的值域.如果用()f A 表示值域,则有()f A B ⊆。
通常()y f x =表示“y 是x 的函数”,简记作函数()f x 。
●2.函数的三要素:定义域A ,对应法则f ,值域()f A 。
●3.函数的三种表示法:解析法、列表法、图象法.函数解析式的求法:(1)待定系数法.若已知函数的类型,可用待定系数法;(2)换元法.已知复合函数(())f g x 的解析式,可用换元法,要注意变量的取值范围;(3)消参法.若已知抽象函数的表达式,则常用解方程组消参的方法求出()f x 。
(4)直接法.变形后直接代换【特别提醒】函数解析式是函数表示法的一种.求函数的解析式一定要注明定义域,特别是利用换元法求解析式时,不注明定义域往往导致错解。
分段函数:在定义域内不同部分上有不同的解析式,这样的函数通常叫分段函数,分段函数虽由几个部分构成,但它表示的是一个函数。
复合函数:如果(),()y f u u g x ==,则称函数(())y f g x =为f 和g 构成的复合函数,其中(),y f u =()u g x =分别叫做外层函数和内层函数,内层函数的值域是外层函数的定义域。
●4.函数的基本性质:(1)单调性:设函数的定义域为A ,区间I A ⊆。
如果对于任意1x ,2x ∈I ,当12x x <时,都有()()12f x f x >,那么就说()f x 在区间I 上是单调减函数.区间I 叫做()f x 的单调减区间;如果对于任意1x ,2x ∈I ,当12x x <时,都有12()()f x f x <,那么就说()f x 在区间I 上是单调增函数.区间I 叫做()f x 的单调增区间;单调增区间或单调减区间统称为单调区间。
单调性的求解方法:①定义法:取值——作差——变形——定号——判断②复合函数:“同增异减”(2)最大(小)值:设函数()f x 的定义域为I ,如果存在实数M 满足:①对于任意的x I ∈,都有()f x M ≤(或()f x M ≥);②存在0x I ∈,使得0()f x M =.那么我们称M 是函数()y f x =的最大(或小)值。
求函数最大(小)值的常用方法:分析观察法、反函数法、分离常数法、配方法、不等式法、判别式法、利用函数的单调性法、换元法、数形结合法、导数法。
函数的单调性与最值在高考中常以选择填空题形式出现,但近几年高考常以导数为工具,研究函数的单调性问题在大题中是必考内容。
(3)奇偶性:如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=-,那么函数()f x 就叫做奇函数。
奇函数的图象关于原点对称。
如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=,那么函数()f x 就叫做偶函数。
偶函数的图象关于y 轴对称。
奇偶函数的定义是判断函数奇偶性的主要依据,为了便于判断函数的奇偶性,有时需要先将函数进行化简,或应用定义的等价形式:()()f x f x -=±()()0f x f x ⇔-±=,也可以利用函数图象的对称性去判断函数的奇偶性。
【特别提醒】(1)若()0f x =,则()f x 既是奇函数又是偶函数,()(0)f x a a =≠,则()f x 是偶函数;若()f x 是奇函数且在0x =处有定义,则(0)0f =.(3)函数的奇偶性常与函数的单调性、最值或周期结合考查,以选择填空题居多,且是高考考查的热点。
(4)周期性:对于函数()f x ,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有()()f x T f x +=,那么函数()f x 就叫做周期函数。
非零常数T 叫做这个函数的周期。
对于常数T ,如果存在一个最小的正数,那么这个最小正数就叫做函数()f x 的最小正周期。
【特别提醒】:函数的图象是“形”与“数”的有机组合,由性质看图象,由图象研究性质是函数的永恒的主题,以图象考查函数性质是高考的常考点。
●5.一些有用的结论:①奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。
②在公共定义域内:增函数()f x +增函数()g x 是增函数;减函数()f x +减函数()g x 是减函数;③函数(0,0)b y ax a b x =+>>的单调性:单调增区间是:(,-∞和)+∞;单调减区间是:[和。
④如果函数()y f x =对于一切x R ∈,都有()()f a x f a x +=-,那么函数()y f x =的图象关于直线x a =对称。
⑤函数()y f x =与函数()y f x =-的图象关于直线0x =对称;函数()y f x =与函数()y f x =-的图象关于直线0y =对称;函数()y f x =与函数()y f x =--的图象关于坐标原点对称。
三、初等函数●1.二次函数(1)二次函数的三种表示形式:①标准式:()20y ax bx c a =++≠;②顶点式:()2y a x m n =-+,顶点(),m n ()0a ≠;③零点式:()()12y a x x x x =--()0a ≠。
(2)二次函数的图象:图象是抛物线,其对称轴方程为2b x a =-.当0a >时,开口向上;当0a <时,开口向下。
(3)二次函数的性质①0a >时,单调递减区间(,]2b a -∞-;单调递增区间[,)2b a -+∞,2min 44ac b y a -=。
②0a <时,单调递增区间(,]2b a -∞-;单调递减区间[,)2b a -+∞,2max 44ac b y a -=。
(4)求解二次函数在限定区间上的最大(小)值要抓住四点:①图象的开口方向;②顶点;③区间与对称轴的位置关系;④区间端点函数值。
●2.指数函数和对数函数(1)指数和对数指数对数定义n x a =(a 叫做x 的n 次幂)log a N b =(b 叫做以a 为底N 的对数)关系式logb a a N N b =⇔=()0, 1 , 0a a N >≠>运算性质r s r s a a a +⋅=()s r rs a a =()r r r ab a b =()0 , 0 , , a b r s Q >>∈()log log log a a a MN M N =+log log log a a a M M N N =-log log n a a M n M =()0 , 0 , 0 , 1M N a a >>>≠①根式:如果n x a =(1n >,且*n N ∈),那么x 叫做a 的n 次方根,。
式子叫做根式,n 叫做根指数,a 叫做被开方数.根式的性质有:(i )n a =(1n >,且*n N ∈);(ii )当na ;当n为偶数时,()(){00a a a a ≥-<。
②分数指数幂(i)m n a (ii )1m n m n a a -=(*0 , , a m n N >∈,且1n >);(iii )0的正分数指数幂等于0,0的负数指数幂、零指数幂没有意义。
③lg N 叫做常用对数,ln N 叫做自然对数,其底数分别为10和 2.71828e =L ④对数的换底公式及它的变形:log log ,log log (0,1,0,1,0)log n n c a a a c b b b b a a c c b a ==>≠>≠>。
⑤对数恒等式:log (0,1,0)a b a b a a b =>≠>。
●3.幂函数y x α=(x 是自变量,α是常数)四、函数与方程●1.函数的零点:()y f x =有零点⇔()y f x =的图象与x 轴有交点⇔方程()0f x =有实根。
●2.函数零点的存在性:如果函数()y f x =在区间[,]a b 上的图象是连续不断的一条曲线,并且有()()0f a f b ⋅<,那么函数()y f x =在区间(,)a b 内有零点,即存在(,)c a b ∈,使得()0f c =,这个c 就是方程的根.注意:①上述判定方法中在(,)a b 内的零点不一定唯一;②逆命题不成立。
专题九导数及其应用【知识概要】一、导数的概念和几何意义●1.函数的平均变化率:函数()f x 在区间12[,]x x 上的平均变化率为:2121()()f x f x x x --。
●2.导数的定义:设函数()y f x =在区间(,)a b 上有定义,0(,)x a b ∈,若x ∆无限趋近于0时,比值00()()f x x f x y x x +∆-∆=∆∆无限趋近于一个常数A ,则称函数()f x 在0x x =处可导,并称该常数A 为函数()f x 在0x x =处的导数,记作0()f x '。
函数()f x 在0x x =处的导数的实质是在该点的瞬时变化率。
●3.求函数导数的基本步骤:(1)求函数的增量00()()y f x x f x ∆=+∆-;(2)求平均变化率:00()()f x x f x x +∆-∆;(3)取极限,当x ∆无限趋近与0时,00()()f x x f x x +∆-∆无限趋近与一个常数A ,则0()f x A '=。
●4.导数的几何意义:函数()f x 在0x x =处的导数就是曲线()y f x =在点00(,())x f x 处的切线的斜率。
由此,可以利用导数求曲线的切线方程,具体求法分两步:(1)求出()y f x =在x 0处的导数,即为曲线()y f x =在点00(,())x f x 处的切线的斜率;(2)在已知切点坐标和切线斜率的条件下,求得切线方程为000()()y y f x x x '-=-。