工程电磁场实验指导材料
电磁场的参考文献

电磁场的参考文献电磁场是物质中电荷所产生的一种物理现象,广泛应用于电子技术、通信、电力系统等领域。
了解电磁场的基本原理和相关研究是深入掌握这一领域的必备知识。
本文旨在为读者提供一些重要的参考文献,帮助其进一步了解电磁场的研究进展以及实际应用。
一、经典电动力学参考文献1.《电磁场与电磁波》(作者:刘家琳)该书是电动力学领域的经典之作,深入浅出地介绍了电磁场的基本原理和电磁波的性质。
该书内容系统全面,适合作为电动力学学习的参考书。
2.《电磁学基础》(作者:David J. Griffiths)这本教材是电磁学领域的经典之作,被广泛应用于大学本科及研究生课程中。
该书语言通俗易懂,涵盖了电磁场的基本概念、电场与磁场的计算方法以及麦克斯韦方程组的应用等内容。
二、电磁场数值计算参考文献1.《电磁场模拟与仿真》(作者:刘吉全)该书详细介绍了电磁场的数值计算方法,包括有限差分法、有限元法、边界积分方程法等。
通过实例的应用,读者可以深入了解电磁场的数值计算原理和技术。
2.《Computational Electromagnetics for RF and Microwave Engineering》(作者:David B. Davidson)该书介绍了电磁场的数值计算在射频和微波工程领域的应用。
从理论到实践,该书系统地阐述了电磁场的数值计算方法,并给出了实际工程中的应用案例。
三、电磁场实验技术参考文献1.《电磁场与电磁波实验》(作者:张铭双)该书包含了多个电磁场实验的设计和实施方法,对实验室中的电磁场实践课程非常有帮助。
书中提供了详细的实验操作步骤和实验装置原理,读者可以通过实验深入理解电磁场的概念与现象。
2.《Introduction to Electromagnetic Compatibility》(作者:Clayton R. Paul)该书主要介绍了电磁兼容性(EMC)领域的相关知识,讲解了电磁场对电子系统产生的干扰和噪声问题以及解决方法。
工程电磁场PPT

PPT文档演模板
2020/11/12
工程电磁场PPT
PPT文档演模板
工程电磁场PPT
教育部电子信息与电气学科教学指导委员会 基础课教学指导分委员会
《电磁场》课程教学基本要求
PPT文档演模板
工程电磁场PPT
PPT文档演模板
工程电磁场PPT
电磁学三大实验定律: 库仑定律, 安培定律, 法拉第定律。
Reaction Field
提升力
Magnetic Force
PPT文档演模板
Levitation Force (mN): Theory 45.72 Lorentz 42.04 Maxwell Str 44.60 Virt Work 44.73
工程电磁场PPT
2-D Magnetostatics (2-D静磁场)
电场强度E (V/m) - 8000 8000 200/f 200/f 67 67 67/f1/2 14 9.85f1/2 28
磁场强度H (A/m)
7000 7000/f2 900/f 0.9/f
1.13 1.13 0.17/f 0.17/f1/2 0.036 0.026f1/2 0.073
磁感应强度B (μT) 9000 9000/f2 1100/f 1.1/f 1.4 1.4 0.21/f
雷达
工程电磁场PPT
PPT文档演模板
电磁波暗室(无反射)
工程电磁场PPT
PPT文档演模板
工程电磁场PPT
PPT文档演模板
工程电磁场PPT
PPT文档演模板
电场脉冲模拟器
工程电磁场PPT
PPT文档演模板
开阔地试验
工程电磁场PPT
磁悬浮分析
电磁感应与磁悬浮实验指导书

感应电动势的大小与磁通量变化率成正比。
3
楞次定律
感应电流产生的磁场总是阻碍原磁场的变化。
磁悬浮技术原理
磁力排斥型
利用同极性磁铁的相互排斥力实现物体的悬浮。
磁力吸引型
利用异性磁铁的相互吸引力和稳定化机构实现物体的悬浮。
磁力混合型
结合排斥型和吸引型的优点,实现更高效和稳定的悬浮。
磁悬浮技术的应用场景
学习磁悬浮技术
总结词
了解磁悬浮技术的原理和实现方式,掌握磁悬浮列车和磁悬浮轴承的基本工作 原理。
详细描述
通过实验操作,了解磁悬浮技术的概念和分类,掌握磁悬浮列车的工作原理和 特点,以及磁悬浮轴承的基本原理和应用。通过实验操作,观察磁悬浮物体的 现象,深入理解磁悬浮技术的实现方式和应用前景。
掌握实验操作流程
实验结束后,清理实验现场,确 保实验室整洁。
06
实验报告撰写要求
实验目的与意义
实验目的
通过电磁感应与磁悬浮实验,探究磁 场变化与感应电流之间的关系,理解 磁悬浮现象的基本原理。
实验意义
本实验有助于加深学生对电磁感应和 磁悬浮理论知识的理解,培养其动手 实践能力和科学探究精神。
实验过程描述
• 实验准备:准备好实验器材,包括线圈、磁铁、电流表、 电源等。
设定实验参数
设定电源电压
根据实验需要,调整电源电压,以控制电磁场强度。
选择磁铁材料和尺寸
根据实验目的,选择适当的磁铁材料和尺寸,以确保磁悬浮效果。
设定实验温度
保持实验环境温度恒定,以减小温度对实验结果的影响。
开始实验并记录数据
启动实验
接通电源,启动实验装置。
观察实验现象
观察磁悬浮现象,记录悬浮高度、电流等数据。
北京邮电大学电磁场与电磁波实验报告

信息与通信工程学院电磁场与电磁波实验报告题目:校园无线信号场强特性的研究姓名班级学号序号指导老师:日期:2012年4月目录一、实验目的 (1)二、实验原理 (1)1、电磁波的传播方式 (1)2、尺度路径损耗 (1)3、阴影衰落 (2)4、建筑物的穿透损耗的定义 (3)三、实验内容 (3)四、实验步骤 (4)1、实验对象的选择 (4)2、数据采集 (5)3、数据录入 (5)4、数据处理 (6)五、实验结果与分析 (7)1、磁场强度地理分布 (7)2、磁场强度统计分布 (13)3、建筑物的穿透损耗 (18)六、问题分析与解决 (18)1、测量误差分析 (18)2、场强分布的研究 (19)七、分工安排 (19)八、心得体会 (19)九、附录:数据处理过程 (21)一、实验目的1. 掌握在移动环境下阴影衰落的概念以及正确的测试方法;2. 研究校园内各种不同环境下阴影衰落的分布规律;3. 掌握在室内环境下场强的正确测量方法,理解建筑物穿透损耗的概念;4. 通过实地测量,分析建筑物穿透损耗随频率的变化关系;5. 研究建筑物穿透损耗与建筑材料的关系。
二、实验原理1、电磁波的传播方式无线通信系统是由发射机、发射天线、无线信道、接收机、接收天线所组成。
对于接受者,只有处在发射信号的覆盖区内,才能保证接收机正常接受信号,此时,电波场强大于等于接收机的灵敏度。
因此基站的覆盖区的大小,是无线工程师所关心的。
决定覆盖区的大小的主要因素有:发射功率,馈线及接头损耗,天线增益,天线架设高度,路径损耗,衰落, 接收机高度,人体效应,接收机灵敏度,建筑物的穿透损耗,同播,同频干扰等。
电磁场在空间中的传输方式主要有反射﹑绕射﹑散射三种模式。
当电磁波传播遇到比波长大很多的物体时,发生反射。
当接收机和发射机之间无线路径被尖锐物体阻挡时发生绕射。
当电波传播空间中存在物理尺寸小于电波波长的物体﹑且这些物体的分布较密集时,产生散射。
散射波产生于粗糙表面,如小物体或其它不规则物体﹑树叶﹑街道﹑标志﹑灯柱。
电磁场实验二

《微波技术与天线实验》课程实验报告实验二:集总参数滤波器设计学院通信工程学院班级13083414学号13081405姓名田昕煜指导教师魏一振2015年11 月11 日实验名称:1.实验目的一:通过此次实验,我们需要熟悉集总参数滤波器软件仿真过程,且通过亲自实验来熟悉MWO2003的各种基本操作。
二:本次实验我们需要用到MWO2003的优化和Tune等工具,要求熟练掌握MWO 提供的这些工具的使用方法和技巧2.实验内容设计一低通滤波器要求如下:1、通带频率范围:0MHz~400MHz2、增益参数 S 21 :通带内 0MHz~400MHz S 21 >--0.5dB3、阻带内 600MHZ 以上 S 21 <-50dB4、反射系数 S 11 :通带内 0MHz~400MHz S 11 <-10dB3.实验结果电路设计如下图然后在软件中按照设计的要求做如下的优化要求然后点击运行就可以得到仿真的结果了,我们还可以对结果进一步进行优化,利用优化选项,使用随机优化,点击开始优化,可以是结果更加理想。
之后再点开Tuner微调,多次调试后发下如下参数比较合理得到仿真结果如下4.思考题(1)如果要你设计的是高通滤波器,与前面相比,需要变化那几个步骤?首先需要改变电路图的结构,如下图将原来的电容接地改成电感接地。
之后在优化参数进行重新设置。
也就是将原来0~400MHZ的优化条件改成400MHZ~MAX的频率范围。
原来的600~MAX的改为0~600MHZ的频率范围。
如下图之后重复上述仿真可以得到如下结果可见这样设计并不是十分的完美,在0~300MHZ内基本满足条件,在之后增益略微有偏差。
反射系数在某个区域内比较符合。
(2)你在优化设计过程中,那些参量调解对优化结果影响最大?(最敏感)利用TUNE进行略微条件,观察波形的变化。
可以总结出电容中:调节电容C1(位于最左边的电容)对波形的影响最大。
电感中:调节电感L3(位于最中间的电感)对波形的影响最大。
高中物理电磁实验全套教案

高中物理电磁实验全套教案
实验目的:通过观察磁感线的分布情况,了解磁场的性质。
实验器材:磁铁、铁磁粉、白纸、透明胶布、尺子。
实验步骤:
1. 在白纸上均匀地撒上一层铁磁粉。
2. 将磁铁放在铁磁粉的上方,让磁铁与铁磁粉之间有一定的距离。
3. 缓慢地将磁铁移动到铁磁粉的不同位置,观察铁磁粉在磁场下的分布情况。
记录每个位置的观察结果。
4. 将铁磁粉粘在白纸上,以便观察和记录。
实验结果与分析:
根据观察结果可知,在磁场中,铁磁粉会排列成条纹状,这些条纹被称为磁感线。
磁感线是磁场强度和方向的图像,它们从磁铁的南极指向北极,形成一系列闭合的曲线。
结论:
1. 磁感线的分布情况可以帮助我们更直观地了解磁场的性质。
2. 磁感线的密度表示磁场的强度,磁感线的方向则表示磁场的方向。
3. 对磁感线的观察可以帮助我们理解磁场的作用规律。
注意事项:
1. 在实验过程中要小心操作,避免弄脏衣物和皮肤。
2. 实验结束后要及时清理工作台和实验器材,确保实验环境整洁。
3. 实验时要保持注意力集中,注意观察和记录实验数据。
实验二__利用Maxwell_2D电磁场分析软件对静磁场进行分析

工程电磁场实验报告实验二利用Maxwell 2D电磁场分析软件对静磁场进行分析班级:学号:姓名:指导老师:一、实验目的1)认识钢涡流效应的损耗,以及减少涡流损耗的方法2)学习涡流损耗的计算方法3)学习用Maxwell 2D计算叠片钢的涡流二、实验内容1)如图所示,模型为四个钢片叠加而成,每一片的界面长和宽分别为12.7mm和0.356mm,两片之间的距离为8.12um,叠片钢的电导率为 2.08e6S/m,相对磁导率为2000,作用在磁钢表面的外磁场Hz=397.77 A/m,即Bz=1T。
2)本实验就采用轴向磁场涡流求解器来计算不同频率下的涡流损耗。
建立相应的几何模型,指定材料属性和边界条件,分析不同频率下的损耗。
由于模型对X、Y轴具有对称性,可以只计算第一象限内的模型。
三、实验原理1、低频涡流损耗的计算公式为:P=t²w²B²δV/24式中V为叠片体积;t为叠片厚度;B为峰值磁通密度;δ为叠片电导率;w 为外加磁场角频率。
Maxwell 2D所获得的功率损耗值是假定叠钢片在Z方向具有单位长度(1m)时而计算出来的。
因此,上式中的体积显然需要按一下就算公式计算V=12.7*1e-3*0.356*1e-3*1=4.5212e-6(m³)公式成立的条件是频率低于2KHz,趋肤深度远小于叠片厚度。
由此计算各个频率下的涡流损耗,见下表:低频数值计算结果2、高频涡流损耗的计算公式为:P=0.5*Ht²【(ωμ/2σ)^1/2】*S式中,S为叠片表面积,Ht为磁场强度切线分量,σ为叠片电导率,u为叠片相对磁导率,ω为外加磁场角频率。
公司成立的条件位频率大于等于10KHz,趋肤深度远远小于叠片厚度。
高频数值计算结果四、计算机仿真由实验结果与理论值比较可以大致看出,在较低频部分用低频计算公式得理论值与仿真值吻合的很好,而高频部分误差较大。
而高频部分用高频计算公式计算时与仿真值也吻合得非常好。
工程电磁场数值分析(概述)

实验法:成本高昂,有时无法实现 实测法 模拟法 计算法:
解析法
数值法
积分法
分离变量法
解析法 镜像法、电轴法 微分方程法 计算法
保角变换法
有限差分法 有限元法
电磁场 问题研 究方法
数值法
边界元法 矩量法
实测法 实验法 模拟法 定性 作图法 定量
模拟电荷法
路与场分析的是同一种对象。
路采用集成参数化方法,简单,近似。 场是分布式的,复杂,但是更加本质,给出更 多更加真实的信息,揭示问题的实质。 场是路的基础,路是从场中抽象出来的。
借助于实验和经验,路的做法很多时候也很有
效;但实际上是一种不得已的做法。
1. 为什么要做电磁场的分析
很多时候必须知道场的分布,并对之加以控制。
数学模拟法 物理模拟法
解析法:求解偏微分方程的经典方法
• 分离变量法、格林函数法、积分变换法等。 • 主要优点:解是精确的;具有一定的普适性,当 问题中的某些参数变化时不必重新求解;具有明确 的解析表达式,能够反映参数之间的依赖关系;解 连续可微。 • 主要缺点:适用的范围非常有限,仅有极少数的 问题可以直接求解。 • 解析法主要用于理论分析,获取简单、但具有典 型意义问题的解答,建立概念,得到定性理解。
工程电磁场数值分析(0)
华中科技大学电机与控制工程系
陈德智
2007.11
推荐教材或参考书
颜威利.电气工程电磁场数值分析.机械工业出版社, 2006 汤蕴璆.电机内的电磁场.科学出版社,1998 周克定.工程电磁场专论.华中工学院出版社,1986 倪光正.工程电磁场数值计算.机械工业出版社,2004 金建铭.电磁场有限元方法.西安电子科技大学出版 社,1998 刘圣民.电磁场的数值方法.华中理工大学出版社, 1991
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程电磁场实验指导讲义实验一用模拟法测绘静电场带电导体(有时称电极)在空中形成的静电场,除极简单的情况外,大都不能求出它的数学表达式。
为了实用的目的,往往借助实验的方法来测定。
但是直接测量静电场则遇到很大的困难,这因为设备复杂,与原电场迭加起来,使原电场产生显著的畸变,但是可以用间接的测定方法(称模拟法)来解决。
模拟法的特点是仿造另一个电场(称模拟场),使它与原电场完全一样,当用探针去测模拟场时,它不受干扰,因此可间接地测出被模拟的静电场。
一、目的1.学习用模拟法描述和研究静电场分布的概念和方法;2.测绘等位线,根据等位线画出电力线,加深对电场强度和电位要领的理解及静电场分布规律的认识。
二、原理1.用电流场模拟静电场用模拟法测量静电场的方法之一是用电流场代替静电场。
由电磁学理论可知,电解质(或水液)中稳恒电流的电流场与电介质(或真空)中的静电场具有相似性。
在电流场的无源区域中,电流密度矢量满足(1)在静电场的无源区域中,电场强度矢量满足由(1)式和(2)式可看出电流场中的电流密度矢量和静电场中的电场强度矢量所遵从的物理规律具有相同的数学形式,所以这两种场具有相似性。
在相似的场源分布和相似的边界条件下,它们的解的表达式具有相同的数学模型。
如果把连接电源的两个电极放在不良导体如稀薄溶液(或水液)中,在溶液中将产生电流场。
电流场中有许多电位彼此相等的点,测出这些电位相等的点,描绘成面就是等位面。
这些面也是静电场中的等位面。
通常电场分布是在三维空间中,但在水液中进行模拟实验时,测出的电场是在一个水平面内的分布。
这样等位面就变成了等位线。
根据电力线与等位线正交的关系,即可画出电力线,这些电力线上每一点切线方向就是该点电场强度的方向。
这样就可以用等位线和电力线形象地表示静电场的分布了。
检测电流中各等位线时,不影响电力线的分布。
测量支路不能从电流场中取出电流,因此,必须使用高内阻电压表或平衡电桥法进行测绘。
但直流电压长时间加在电极上,在水液中会使电极产生“极化作用”而影响电流场的分布,若把直流电压换成交流电压就能消除这种影响。
当电极接上交流电压时,产生交流电场的瞬时值是随时间变化的,但交流电压的有效值与直流电压是等效的,所以在交流电场中用交流电压表测量有效值的等位线与交流电场中测量测量同值的等位线,其效果和位置完全相同。
2.同轴圆柱面形电极的静电场与电流场图1为静电场模拟举例,现在用同轴电缆圆柱形电极具体说明电流场与静电场的相似性。
如图1(a)所示,将其置于水液中,在电极之间加电压(为正,为负)。
由于电极形状是轴对称的,电流自向在水液中形成一个径向均匀的稳恒电流场。
在电极、间有电场的整个空间内填满均匀的不良导体,这样原真空静电场中的电力线平面被埋没在不良导体之中,这就仿造了一个与静电场分布完全一样的模拟场。
静电场中带电导体的表面是等位面,模拟场中的电极即不良导体的电导率要远远大于水液的电导率,才能认为电极也是等位面。
有了“模拟场”,可以分析它与静电场的相似性。
图1 静电场模拟举例(1)静电场图2为长同轴柱面的电场。
如图2(a)所示,在真空中有一个半径为的长圆柱导体(电极)和一个半径为的长圆柱导体(电极),它们的中心轴重合。
设、的电位分别为,(接地),各带等量异号电荷,则在两电极之间产生静电场。
由于对称性,在垂直于轴的任一截面内有均匀分布的辐射状电力线(见图2(b)),电场的等位面是许多同轴管状柱面。
电力线与等位线正交,等位线是封闭线,而电力线是有头有尾的,它发自正电荷,终止于负电荷,它的方向是由正电荷指向负电荷的方向。
对中心金属圆柱,金属内部场强为0,电荷分布在金属表面,电力线应从中心圆柱柱面发出,而终止于圆筒壁的内表面。
我们在轴长方向上取一段单位长度的同轴柱面,其截面图如图2(d)所示,并设内外柱面各带电荷和。
做半径为的高斯面(柱面),设此面上的电场强度为,由高斯定理可得由式(3)就有积分上式得其中。
应用边界条件:时,;时,,分别带入(4)式,解出积分常数和,再把和的值代回(4),整理后得式(4)、(5)表示柱面之间的电位和r的函数关系,可以看出和是线性关系,并且相对电位仅是坐标的函数。
图2 长同轴柱面的电场(2)电流场如图3所示,在电极、间有电场的整个空间内填满均匀的不良导体(如水液),仿造一个与静电场完全一样的模拟场。
这个原理性的装置称为“模拟模型”。
直接测出它上面的模拟场,就可以间接地获得原静电场的分布图。
图3 同轴柱面电场模拟模型的获得为了计算电流场的电位差,先计算两柱面间的电阻,后计算电流,最后计算任意两点间的电位差。
设不良导电介质薄层(如水液)厚度为,电阻率为,则任意半径到圆周之间的电阻是:将(6)式积分得半径到半径圆周之间的总电阻:同理可得半径到半径之间的总电阻:因此,从内柱到外柱面的电流为:则外柱面()至半径处的电位:比较(5)式和(10)式可知,静电场与模拟场的电位分布是相同的。
以上是边界条件相同的静电场与电流场的电位分布相同的一个实例,电极形状复杂的静电场用解析法计算是困难的,甚至是不可能的,这时用电流场模拟静电场将显示出更大的优越性。
3.长平行导线(输电线)的电场如图4(a)所示,两圆柱形长平行导线、各带等量异号电荷,电位分别为、。
由于对称性,静电场中存在着许多水平的并与导线垂直的电力线平面,图4(a)中的平面就是其中一个。
平面的电场分布如图4(b)所示。
图4 长平行导线的电场以均匀的不良导体填满整个有电场的空间,并在电极、上接入电动势为的电池,做成如图4(c)所示的模拟模型,不良导体内电场的分布在有稳定电流的情况下不会改变。
在长平行导线的电场里,存在一个平面等位面,即过两导线垂直连线中点的平面。
因此可以将模拟模型简化。
把图4(c)的简块(原静电场的电力线平面(面)改写为表示不良导体中电力线平面(面))内两电极中间的平面等位面切开,中间夹以任意的不良导体金属板。
这样金属板与电池中间点是等电位的。
用导线把金属板和这个等位点连接起来,得到图4(d)。
这时,金属板两边的不良导体内各自的电流状态,以及金属板两边各自的电场分布完全与图4(c)的相同,并且是左右对称的。
去掉绘成虚线的半边后,剩下的半边就构成长平面导线的电场简化的模拟模型。
实验时,只要测出半边,另一半也就知道了。
前面提到的不良导体,是相对于电极的不良导体而言的。
因为只有电极的导电率大得多的时候,电流通过电极本身而产生的电位差才能忽略不计。
这样,静电场中电极是等位体的现象才能在模拟场中得以近似实现。
三、仪器静电场描绘仪电源,描绘装置,模拟模型(带电极的水槽),导电液(自来水),32开白纸(同学自备)四、实验内容和步骤1.描绘同轴电缆的等位线按图5接好线路,模拟模型中放入自来水使水深性同(约5mm),在装置的描绘台面上布置好白纸,且固定好。
先用探针定出圆心位置,按下探针上端的描绘针,白纸上就定出了圆心的位置。
接通电源,外侧电压调至10。
将按钮置“内侧”,用探针分别找出2、4、6、8的等位线。
每条等位线均匀测8个点,测绘时沿径向移动,能较快确定测绘点的数值,测绘点若能布置在4条直径上更好。
等位线测完后,以所确定圆心位置为中心,以0.5cm为半径画圆,为中心圆柱柱面;以4cm、5cm为半径作圆为圆筒的内外筒壁。
图5 电场描绘仪示意图2.用同样的测量方法,测量出两平行板的电场分布图。
3.用同样的测量方法,测量出两平行轴电线的电场分布图。
五、数据处理1.在测绘等位线图上再画出电力线分布图,作图时应在图中标出正负电荷,画出电力线方向。
电力线应与等位线正交,电力线的疏密应反映电场强度的大小。
2.根据电场强度公式,由实验得出的电位分布曲线,求出,绘制曲线图,并观察电场强度变化的规律。
六、问题讨论1.如果将电源的电压增大一倍或减小一半,等位线和电力线的形状是否变化?电场强度和电位分布是否变化?2.若在自来水的某个地方放入一块金属块,会出现什么现象?放入的是绝缘体又会出现什么现象?3.如果在实验中没有调好水槽的水平(如沿某一个方向倾斜),应出现什么现象?4.在本实验中测绘等位线为什么要使用高内阻的交流电压表?不用模拟法,可否直接测量静电场?七、注意的问题1.一条等位线上相邻两个记录点的距离约为1cm为宜,曲线急转弯或两曲线靠近处,记录应取得密一些,否则连接曲线时会遇到困难。
2.水液深度各处应该相同,否则导电液不能视为均匀的不良导体薄层,模拟场和静电场的分布不会相同。
3.由于水槽边界条件的限制(水槽边界处水液中的电流只能沿边界平行流过,等位线必然与边界垂直),边上的等位线和电力线分布严重失真,故失去模拟意义,故靠边的图线不必绘出。
4.探针较锋利,操作时应小心,以免划伤皮肤。
5.水槽使用完后,将水液倒掉,并用干布将残留水液擦拭干净,放通风处晾干,以防电极生锈。
实验二 用感应法测磁场了解载流圆线圈的磁场是研究一般载流回路的基础。
本实验用感应法测定圆线圈的交流磁场,从而掌握低频交变磁场的测定方法,以及了解如何用探测线圈确定磁场方向。
一、 目的1. 掌握感应法测磁场的原理和方法。
2. 研究单只载流圆线圈和亥姆霍兹线圈轴线上及周围的磁场分布。
二、 原理法拉第电磁感应定律指出,处于磁场中的导体回路,其感应电动势的大小与穿过它的磁通量的变化率成正比。
因此,可以通过测定探测线圈中的感应电动势来确定磁场量。
1. 均匀磁场的测定 设被测磁场为均匀分布的交变磁场,如图1穿过探测线圈的磁通量为:式中,、分别为探测线圈的匝数和面积,为磁感应强度的峰值,为交变磁场的角频率,为探测线圈法线与磁场之间的夹角。
线圈中的感应电动势为:式中,为感应电动势的峰值。
由于探测线圈的内阻远小于毫伏表的内阻,可忽略线圈上的压降。
故毫伏表的读数(有效值)与感应电动势的峰值之间有如下关系:由上式可知,当或时,毫伏表读数有极大值:。
显然,由毫伏表测出的最大值可确定磁感应强度的峰值:n 图1磁感应强度的方向,可通过毫伏表读数的最小值来确定。
式(3)对求导得:容易看出,当或时,毫伏表读数对夹角的变化最大。
此时,探测线圈只要稍微有转动,便可引起毫伏表读数的明显变化。
利用这一特征,可准确地确定探测线圈的方位。
如图2所示,此时探测线圈法线方向与磁感应强度方向垂直。
2.非均匀磁场的测定为测定非均匀磁场,探测线圈的面积必须很小。
但由公式(3)看出,此时毫伏表的读数也将变得很小,即探测线圈的灵敏度降低,不利于测量。
为克服这一矛盾,设计了如图3所示的探测线圈。
用增加匝数的方法来提高它的灵敏度。
可以证明在线圈体积适当小的前提下,当时,探测线圈几何中心处的磁感应强度仍可用(4)式表示。
代入各匝线圈的平均面积,则式(4)可写成:即与保持线性关系。
故可通过测定来测定的大小和方向。