10米路灯抗风强度校对5mm

合集下载

路灯杆强度计算简述

路灯杆强度计算简述

路灯杆强度计算简述作者:沈磊来源:《商品与质量·建筑与发展》2014年第02期【摘要】简述路灯行业在灯杆结构设计中存在着一些不合理的地方,介绍路灯杆抗风荷载强度计算、地脚螺栓强度计算、基础承载力验算的计算方法。

【关键词】灯杆;强度;抗风荷载;地脚螺栓;基础承载力引言:灯杆照明使用便利、功能性强,在世界各地应用非常广泛。

在各级道路、广场、公园等地大量使用的同时,必须考虑到在恶劣环境如大风大雨中可靠使用的安全性。

其中包括灯杆的刚度、稳定性、经济性等多方面的考虑。

尤其在灯杆设计阶段的强度校核是非常重要的。

在市场上不乏存在着一些设计不合理,存在安全隐患的灯杆。

本文将以浙江中企实业有限公司道路灯杆在风荷载作用下的强度和基础计算为例,做一简述,供大家参考。

一、部分灯杆设计不合理的情况1)灯杆壁厚设计过厚或过薄。

设计时未经计算盲目增大灯杆壁厚,造成材料的浪费,增加了成本,还加重了地基承载的负荷。

而壁厚设计的过薄,虽然降低了成本,但安全性却得不到保证。

2)杆体结构设计成头重脚轻。

某些灯杆顶部叉头设计的又大又重,而主杆又细又薄,灯杆的稳定性很差。

3)基础设计未经计算,凭经验沿用原有路灯的基础,减低了灯杆抗风荷载的能力,也加大了基础的支撑荷载。

二、灯杆计算举例图1 灯杆基本尺寸及风荷载1、灯杆设计条件假设灯杆设计标高为15m,抗风力30m/s,适用于B类地区。

《荷载规范》中把地表粗糙度分为ABCD四类,a类指近海面和海岛、海岸、湖岸及沙漠地区;b类指田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊区;c类指有密集建筑群的城市市区;d类指有密集建筑群且房屋较高的城市市区。

灯杆的灯盘为圆周敞开式,直径为1.6m,高度0.8m。

灯具为4只GE牌EF40400W灯具(电器一体化结构)。

杆体为锥形杆,锥比度11/1000,材料为Q235A钢材,外表镀锌喷塑防腐处理。

上口外径φ=120mm,下口外径252mm,壁厚4mm。

10米太阳能路灯杆强度计算,基础强度计,基础螺杆强度计算

10米太阳能路灯杆强度计算,基础强度计,基础螺杆强度计算
148.8mm250.0mm1.7
结论:
考虑风速的不均匀系数,空气动力系数,以及风向与灯杆、灯具的夹角等,实际 危险截面处的应力及灯顶的挠度均比以上计算的结果低,故此灯杆设计是安全可 靠的。
第2页,共2页 基础强度校验 已知条件:F、
21、当地基础地基的承载能力:F=120KN/m
2、混泥土基础尺寸:B(长)=1mL(宽)=1mH(高)=
(d+D)*H/2
60X1500>300X1000X1200>540 >300X1200X
(2d+D)*H/3(d+D)
2、风压对路灯各部份的扭矩:M塔杆=PXS塔杆XdxM挑臂=PXS挑臂XHM灯具
=PXS灯具XdM太阳能板=PXS太阳能板XdM风叶=PXS风叶XH
M总=M灯杆+M灯具+M挑臂
3、灯杆根部的截面抵抗矩:
1、基础螺杆分布直径:320mm螺杆数量为:4螺杆尺寸为:M20
2、基础螺杆受力点设为为1点,各受力点的力臂为丄1、L2、L3。。。 力臂总长L总:J、
1、经计算力臂总长为L总:L1+L2*2+L3*2*。。。=773mm
2、 那么地脚螺杆上的拉力为:Fmax=M总/L总
=14.27KN
3、螺杆材质为:Q235屈服强度为:[235MP
44
n*(DODDID)/32DW=
4、灯杆根部实际理论扭矩允许值:
[M]=W*[(T]5因此:
[M]>Mtotal
灯杆强度是安全的。
4538.7765.92553.03163.0
0.011020.6N mN- mN- mN- mN- mN- m
7.26E-05m317062.8N m1.5

10米路灯抗风强度校对5mm

10米路灯抗风强度校对5mm

10米太阳能路灯抗风强度校核一、计算依据1.风速V=120km/h(十二级风)2.基本风压 W0=0.7MPa3. 整基杆风振系数取1.33.设计计算依据:①、《建筑结构荷载规范》GB50009-2001②、《建筑地基基础设计规范》GB5007-2002③、《钢结构设计规范》GB50017-2003④、《高耸结构设计规范》GBJ135-90二、设计条件⑴.基本数据:170W硅铁模块距地面高度10m,面积1.34m2 ,每块重量45kg,220W硅铁模块距地面高度7m,面积1.74m2 ,每块重量30kg,灯杆截面为圆形,灯杆上口径直径d为120mm,底部下口径直径D为260mm,厚度δ=5mm。

法兰厚度为20mm,直径500mm。

材料为Q235钢,屈服强度为f屈=240N/mm2,灯杆高度为10m,路灯含模块灯头总重为380kg。

二、灯柱强度计算1.风载荷系数W K=βz·μs·μz·u r·W0式中:W K—风荷载标准值(KN/m2);βz—高度z处的风振系数;μs—风荷载体型系数;μz—风压高度变化系数;μr—高耸结构重现期调整系数,对重要的高耸结构取1.2。

⑴.太阳能板:高度为10m和7m,风压高度变化系数μz取1.38,风荷载体型系数μs =0.8μr=1.2整基杆风振系数βz取1.3灯盘风载荷系数W K1=βz·μs·μz·ur·W0=1.3×0.8×1.38×1.2×0.7=1.2kN/m2⑵.灯杆:简化为均布荷载风压高度变化系数μz取1.38风荷载体型系数μs =0.6μr=1.2整基杆风振系数βz取1.3灯杆风载荷系数W K2=βz·μs·μz·ur·W0=1.3×0.6×1.38×1.2×0.7=0.90kN/m22.太阳能板及灯杆迎风面积S太阳能板1=(1.34+1.34)×Sin22°=0.96㎡S太阳能板2=1.74×Sin22°=0.63㎡S灯杆=(0.12+0.26)×10/2=1.9㎡3.内力计算弯矩设计值:M=M灯盘+M灯杆M=γQ×WK1×S太阳能板×10m+γQ×WK2×S灯杆×5m=1.4×1.2×0.96×10+1.4×1.2×0.63×7+1.4×0.90×1.9×5M=35.5 kN·m最大剪力V=γQ×WK1×S太阳能板+γQ×WK2×S灯杆=5.05kN式中γQ---载荷组合系数4.灯柱根部应力灯柱根部最大应力应小于灯柱材料的许应力即ξmax=M/W+P/ψA +2V/A式中M/W—弯曲应力 P/ψA—轴向应力 2V/A—剪应力由前面计算出灯柱总弯矩为M=34.25kN·mW—抗弯截面系数 W=I/yI为截面惯性矩 y为应力点到中性轴的距离截面惯性矩I=∏(D4-d4)/64d------灯柱根部内径D------灯柱根部外径I=3.14×[(260mm)4-(250mm)4]/64=0.32×108mm4弯曲应力бmax=M×y/I=35.5×106 N·mm×130mm/0.32×108mm4=144.2N/ mm2=144.2MPa轴向应力---P/ψAP—轴向负荷 P=路灯总重=380kgψ—稳定系数A—灯杆根部截面积。

路灯灯杆的抗风破坏设计计算公式

路灯灯杆的抗风破坏设计计算公式

路灯灯杆得抗风破坏设计计算公式路灯得参数如下: 电池板倾角A=16°,灯杆高度=5m 设计选取灯杆底部焊缝宽度δ=4mm灯杆底部外径=168mm。

焊缝所在面即灯杆破坏面。

灯杆破坏面抵抗矩W得计算点P到灯杆受到得电池板作用荷载F作用线得距离为PQ= [50(168+6/tan16o]×Sin16o= 1545mm=1。

545m。

所以,风荷载在灯杆破坏面上得作用矩M=F×1、545。

根据27m/s得设计最大允许风速,2×30W得双灯头太阳能路灯电池板得基本荷载为730N。

考虑1。

3得安全系数,F=1.3×730=949N。

所以,M=F×1。

545=949×1。

545=1466N。

m、根据数学推导,圆环形破坏面得抵抗矩W=π×(3r2δ+3rδ2+δ3)。

上式中,r就是圆环内径,δ就是圆环宽度。

破坏面抵抗矩W=π×(3r2δ+3rδ2+δ3)=π×(3×842×4+3×84×42+43)=88768mm3=88、768×10-6m3风荷载在破坏面上作用矩引起得应力=M/W=1466/(88、768×10-6)=16.5×106pa=16、5Mpa<〈215Mpa其中,215Mpa就是Q235钢得抗弯强度。

所以,设计选取得焊缝宽度满足要求,只要焊接质量能保证,灯杆得抗风就是没有问题得。

灯杆材质选用上海宝钢产优质低碳钢Q235A型,钢材得硅含量不高于0、04%,经大型折弯机一次折弯成型,直线度误差不超过0、05%,灯杆得抗风能力按36.9米/秒11级以上设计,抗地震烈度为8级。

高杆灯具操作及注意事项一:高杆灯具得操作必须由两人或两人以上进行,控制柜由一人操作,其余人员注意观瞧灯盘得升降位置、二:高杆灯具得升降操作1、打开配电控制柜,将空气开关分开,切断总电源。

10米路灯抗风强度校对5mm

10米路灯抗风强度校对5mm

10米太阳能路灯抗风强度校核一、计算依据1.风速V=120km/h(十二级风)2.基本风压 W0=3. 整基杆风振系数取3.设计计算依据:①、《建筑结构荷载规范》GB50009-2001②、《建筑地基基础设计规范》GB5007-2002③、《钢结构设计规范》GB50017-2003④、《高耸结构设计规范》GBJ135-90二、设计条件⑴.基本数据:170W硅铁模块距地面高度10m,面积1.34m2 ,每块重量45kg,220W硅铁模块距地面高度7m,面积1.74m2 ,每块重量30kg,灯杆截面为圆形,灯杆上口径直径d为120mm,底部下口径直径D为260mm,厚度δ=5mm。

法兰厚度为20mm,直径500mm。

材料为Q235钢,屈服强度为f屈=240N/mm2,灯杆高度为10m,路灯含模块灯头总重为380kg。

二、灯柱强度计算1.风载荷系数W K=βz·μs·μz·u r·W0式中:W K—风荷载标准值(KN/m2);βz—高度z处的风振系数;μs—风荷载体型系数;μz—风压高度变化系数;μr—高耸结构重现期调整系数,对重要的高耸结构取。

⑴.太阳能板:高度为10m和7m,风压高度变化系数μz取,风荷载体型系数μs =μr=整基杆风振系数βz取灯盘风载荷系数W K1=βz·μs·μz·ur·W0=××××=m2⑵.灯杆:简化为均布荷载风压高度变化系数μz取风荷载体型系数μs =μr=整基杆风振系数βz取灯杆风载荷系数W K2=βz·μs·μz·ur·W0=××××=m22.太阳能板及灯杆迎风面积S太阳能板1=+×Sin22°=㎡S太阳能板2=×Sin22°=㎡S灯杆=+×10/2=㎡3.内力计算弯矩设计值:M=M灯盘+M灯杆M=γQ×WK1×S太阳能板×10m+γQ×WK2×S灯杆×5m=×××10+×××7+×××5M= kN·m最大剪力V=γQ×WK1×S太阳能板+γQ×WK2×S灯杆=式中γQ---载荷组合系数4.灯柱根部应力灯柱根部最大应力应小于灯柱材料的许应力即ξmax=M/W+P/ψA +2V/A式中M/W—弯曲应力 P/ψA—轴向应力 2V/A—剪应力由前面计算出灯柱总弯矩为M=·mW—抗弯截面系数 W=I/yI为截面惯性矩 y为应力点到中性轴的距离截面惯性矩I=∏(D4-d4)/64d------灯柱根部内径D------灯柱根部外径I=×[(260mm)4-(250mm)4]/64=×108mm4弯曲应力бmax=M×y/I=×106 N·mm×130mm/×108mm4= mm2=轴向应力---P/ψAP—轴向负荷 P=路灯总重=380kgψ—稳定系数A—灯杆根部截面积。

10米太阳能LED路灯灯杆强度计算说明书

10米太阳能LED路灯灯杆强度计算说明书

太阳能LED路灯灯杆强度计算说明书10米灯杆光伏板功率:130Wp*2光伏板尺寸:1650*550mm1、整灯抗风计算风压(Wp):Wp=0.5*Ρ*V²Ρ:为空气密度[kg/m3] v:为风速[m/s]空气密度Ρ==r/g r:重度(标准状态r=0.01225 [kN/m3]) g:重力加速度9.8[m/s2]即:将Ρ带入Wp=0.5*Ρ*V²公式中,得wp=0.5·r·v2/g将r、g带入公式wp=0.5·r·v2/g,得Wp= v2/1600[kN/m²]1、要求抗风等级12级根据以上公式:Wp=v²/160012级风速:32.7~36.9m/s代入公式(选择最大),得:Wp= 36.9²/1600=0.851[kN/m²]根据太阳能路灯灯杆截面积:(a+b)*H/2a=0.136m b=0.28m10米灯杆截面积及光伏板面积为:S总=(0.136+0.28)*10/2+1.65*0.55*2=3.895m²S 光伏板=1.65*0.55*2=1.815m²力臂长度:10米依据力学中的杠杆公式,此时固定螺钉所承受的弯矩为:M=0.851*3.895*10=33.2n.m根据设计:螺栓使用M24高强度螺栓,六个螺栓固定。

螺栓扭矩力大于需要的承受力,因此根据数据表明,该抗风设计完全符合设计要求。

螺栓扭矩力:参考以下表格或GB/T 3098.13-1996高强度螺栓施工扭矩值参考表系数值即可得施工终拧扭矩钢结构用大六角高强度螺栓连接副的施工扭矩是根据实测的扭矩系数进行计算而得的,即为了满足规范中所规定的预拉力值要求,根据试验所获得的真实的扭矩系数用GB50205-2001附录中的计算公式计算而得。

详见《钢结构工程施工质量验收规范》(GB50205-2001)第65页“附录B 紧固件连接工程检验项目”中的第B.0.3条规定。

12m路灯灯杆抗风、抗挠强度计算

12m 路灯灯杆抗风、抗挠技术1、已知条件1.1 最大风速 Vm=35m/s (P 风压:ω0=0.81KN/m 2)1.2 材料 材质符合Q235(A3)/Q3451.3 许用应力[σ]=210Mpa(《钢结构设计规范》)(Q235) 许用应力[σ]=345Mpa(《钢结构设计规范》)(Q345)1.4 弹性模量:E=2.06×1011N/M 2(《机械设计手册》)1.5 灯管外形为选用Q235钢管焊接,100*200,壁厚分别为4mm.1.6 灯体自重10kg ,杆重 500 kg2、迎风面积2.1 S 灯体= 0.1m 22.2 S 灯杆= 6m 23、结构自振周期I=⨯64π (0.174-0.1724)=8.5×10-6m 4 A=⨯4π(0.172-0.1722)=0.0022m 2T1=3.63×)236.0(3AH m EIH ρ+ =0.56sT1>0.25s 采用风振系数来考虑,风压脉动的影响。

4、风振系数βz4.1 基本风压 ω0T 12= 0.81×0.562 =0.254kN/ m 2∴脉动增大系数 ξ =2.104.2 风压脉动和风压高度变化的影响系数ε1 =0.754.3 振型、结构外形影响系数 ε2=0.76∴β =1+ξ ·ε1•ε2=2.205、顶端灯具大风时的风荷载: (u τ 取1.3)F1=βzUsUzU τ灯体S ⋅0ω=2.20×0.9×1.3×1.0×0.81×0.15=0.31KN6、灯杆大风的风荷载:F2=βzUsUzU τ杆S ⋅0ω=2.20×0.7×1.0×1.1×0.81×1=1.40KN7、灯杆距底法兰处所受的最大弯矩:M 总=0.31×8+1.40×4=8.08KN ·m8 、灯杆底端(危险截面即筋板上部开孔处的截面) 风压弯曲应力 σb σb = S M 总 =34417.0)162.017.0(098.004.8mm KN -⨯⋅ =87MPaσb <[ σb ]=210Mpa结论:结构设计是满足国家相关设计规程的要求是安全的。

10米路灯灯杆技术说明

10米路灯灯杆技术说明1、灯杆材质选用上海宝钢产优质低碳钢Q235A型,经大型折弯机一次折弯成型,灯杆的设计强度可达抗风力等级11级以上,抗地震烈度为8级。

2、杆体为圆锥形,其截面圆度误差不超过3%。

杆体总高10米,上口径为80mm,下口径为185mm,壁厚为4mm。

灯杆底部带有法兰盘,法兰盘尺寸为320*320,厚度为16mm,安装孔距为Ø320,通过4根地脚螺栓安装在基础上。

3、灯杆焊接成型,焊接依照国家标准进行,并以此为检验依据,保证焊接可靠,表面光滑,无明显的气孔、焊瘤、咬边等焊接缺陷,焊接达三级焊缝标准。

4、灯杆内外热镀锌防腐处理,镀锌工艺过程经过酸洗、热镀锌、水洗、磷化、钝化等过程,表面光洁,锌层均匀,保证镀锌层85um,560g/m2以上,保证灯杆二十年以上的防腐性能。

防腐质量符合现行国家标准《金属覆盖及其他有关覆盖层维氏和努氏显微硬度试验》(GB/T9790)、《热喷涂金属件表面预处理通则》(GB/T11373),现行行业标准《钢铁热浸铝工艺及质量检验》(ZBJ36011)的有关规定。

5、灯杆热镀锌后进行静电喷塑,喷塑层百度140um,喷塑后覆盖层无鼓包、针孔、粗糙、裂纹或漏喷区缺陷,覆盖层与基体有牢固的结合强度。

6、灯具为压铸铝,经喷砂弹丸处理后,表面聚脂粉体涂装。

灯杆插入口径为直径60管,(高频无极灯)插入深100MM;(高压钠灯)插入深135MM。

7、灯具上下盖之间采用密封条进行密封,防护等级IP66,灯泡和电器分别装在下盖的前、后端与外壳良好地接触,灯具下盖前、后端有散热条,散热效果好。

8、灯具反射器采用多面体组合方式,由高纯度铝板拉伸成形,反光效率极佳。

9、灯具玻璃采用高透明、高强度钢化玻璃,并使用GE硅胶封接于灯具下盖,内换泡结构,灯座支架可调节,用于安装不同功率的光源。

10、紧固件螺钉、螺帽为不锈刚件11、光源为:40W-150W高频无极灯、150W-400W高压钠灯。

10m中华灯抗风强度计算

智慧路灯受力分析计算书一、计算说明1.概述:本路灯设计用于城市道路/景区/公园/广场建设工程,地面粗糙度为B类2.设计高度:10米3.主体结构形式:截面为圆形的锥管杆4.灯杆配置:灯盘、基站、显示屏5.设计年限:五十年6.安全等级:二级7.设计风压:0.66kpa8.基础形式:方形混凝土独立基础9.计算依据:1)《建筑结构荷载规范》 (GB50009-2012)2)《建筑抗震设计规范》 (GB50011-2010)3)《钢结构设计规范》 (GB50017-2003)4)《城市户外广告设施技术规范》 (CJJ149-2010)5)《高耸结构设计规范》 (GB50135-2006)6)《架空送电线路钢管杆设计技术规范》 (DLT5130-2001)7)《架空输电线路基础设计技术规程》 (DLT5219-2014)8)《建筑地基基础设计规范》 (GB50007-2011)9)《混凝土结构设计规范》 (GB50010-2010)10)《户外广告设施钢结构技术规程条文说明》 (CECS148-2003)11)《玻璃幕墙工程技术规范》 (JGJ102-2003)12)《机械设计手册第五版》 (主编成大先)二、基本数据左侧图纸仅为示意1.设备1)设备名称重量(kg)高度(m)X向迎风面积(m2)Y向迎风面积(m2)基站2410.600.38主灯盘80100 1.2按照主灯臂所在的辅灯盘20 6.600.3相应垂直主灯臂为摄像头100摄像头200显示屏7050 1.22)设备X轴总迎风面积 A1=0㎡3)设备Y轴总迎风面积 A2= 3.08㎡4)设备总重量G1= 1.94kN2.灯杆1)灯杆高度H1=10m2)灯臂长度L0=3m3)灯臂直径d0=0.06m4)灯臂壁厚t b=0.004m5)灯臂与灯杆夹角k b=8°6)灯杆底部外径D=0.245m7)灯杆顶部外径d=0.245m 8)等效直径De=0.245m 9)灯杆壁厚t 0.005m 10)灯杆迎风面积A 2=2.63㎡11)柱底法兰规格L 1×B 1×t 10.50.50.025m12)灯杆重量(包含法兰)G 2= 3.590 kN(钢材密度7.85Kg/m³)3.基础1)预埋锚板规格L 2×B 2×t 20.50.50.025m2)地脚螺栓距离l 2×b 20.40.4m3)地脚螺栓直径d 2=M 30地脚螺栓有效面积A 3=㎡5614)地脚螺栓数量n=8个5)混凝土规格L×B×H 1.2 1.2 1.4m 6)L/B方向配筋直径d L =d B =φ127)L/B/H方向配筋条数K L ×K B ×K B888条三、结构分析与计算由于灯杆横断面宽度相对于高度较小,且对风载荷作用敏感,因此可看作为一种特殊的高耸结构,其简化模型为悬臂梁结构。

灯杆基础抗风强度计算与路灯倾斜因素分析

灯杆基础抗风强度计算与路灯倾斜因素分析摘要:随着城市现代化的推进,金属杆路灯已取代了水泥杆路灯,其已成为了主流的道路照明设施,路灯线路也由架空线转向地埋电缆敷设。

建设地埋管线的金属杆路灯对路灯的基础施工有比较严格的强度要求,涉及到基础螺杆、基础混凝土本身强度、基础周围围土压实度等几个方面的安全性验算。

本文针对路灯基础螺杆的设计尺寸和设计强度进行安全性校验计算,同时对当前普遍存在的路灯倾斜原因进行系统分析。

关键词:城市照明抗风强度安全校验路灯倾斜在城市照明施工图设计中,通常会根据道路的等级、路面材料、结构形式、道路长度选定照明设计标准值包括平均照度、照度均匀度、功率密度、环境比等,根据这些标准值选定灯杆类型、光源类型和光源功率、布灯方式、设计间距、电缆类型等,然后通过平均照度的计算、功率密度的计算、线路压降的计算等验算是否达到照明设计标准,其中涉及到灯杆详细结构、基础配套设计、灯具配套设计等都是按照通用配套定制,这其中涉及的灯杆强度、基础强度、基础螺杆强度、地基土质等均没有做很详细的安全性校核。

本文针对路灯基础螺杆的强度进行受力分析并验算基础安全性,并对路灯施工中常见的灯杆歪斜原因进行分析。

<!--[if !supportLists]-->一、 <!--[endif]-->运行条件假设我们假定一套常规单弯臂路灯,灯高10米(灯具中心线到基础法兰平面的垂直高度),要求抗风等级为12级台风。

基础为无锡标准1.4米常规基础,灯杆法兰尺寸360*360mm,基础法兰尺寸410*410mm,基础螺杆为4*M20,螺杆中心距为?290mm,灯杆、基础螺杆均为Q235钢,灯杆底部外直径?180,顶部直径?68。

另假设灯杆无弹性变形,灯杆和基础混凝土本身均能满足12级台风极限下不发生变形或破坏的强度要求,灯杆法兰和基础法兰均能在极限条件下不发生变形破坏,基础基坑稳固。

灯杆和基础详细结构图如下:二、灯杆受力分析<!--[if !supportLists]-->1、<!--[endif]-->受力图简化根据材料力学分析,我们可以看出,灯杆在未发生倾斜前,基础法兰接触面上四个固定螺杆均承受了单一拉伸力,在灯杆发生倾斜后才会在基础螺杆上产山扭矩和剪力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10米太阳能路灯抗风强度校核一、计算依据
1.风速V=120km/h(十二级风)
2.基本风压W0=
3. 整基杆风振系数取
3.设计计算依据:
①、《建筑结构荷载规范》GB50009-2001
②、《建筑地基基础设计规范》GB5007-2002
③、《钢结构设计规范》GB50017-2003
④、《高耸结构设计规范》GBJ135-90
二、设计条件
⑴.基本数据:170W硅铁模块距地面高度10m,面积1.34m2 ,每块重量45kg,220W硅铁模块距地面高度7m,面积1.74m2 ,每块重量30kg,灯杆截面为圆形,灯杆上口径直径d为120mm,底部下口径直径D为260mm,厚度δ=5mm。

法兰厚度为20mm,直径500mm。

材料为Q235钢,屈服强度为f屈=240N/mm2,灯杆高度为10m,路灯含模块灯头总重为380kg。

二、灯柱强度计算
1.风载荷系数
W K=βz·μs·μz·u r·W0
式中:W K—风荷载标准值(KN/m2);
βz—高度z处的风振系数;
μs—风荷载体型系数;
μz—风压高度变化系数;
μr—高耸结构重现期调整系数,对重要的高耸结构取。

⑴.太阳能板:高度为10m和7m,
风压高度变化系数μz取,
风荷载体型系数μs =
μr=
整基杆风振系数βz取
灯盘风载荷系数W K1=βz·μs·μz·ur·W0
=××××=m2
⑵.灯杆:简化为均布荷载
风压高度变化系数μz取
风荷载体型系数μs =
μr=
整基杆风振系数βz取
灯杆风载荷系数W K2=βz·μs·μz·ur·W0
=××××=m2
2.太阳能板及灯杆迎风面积
S太阳能板1=+×Sin22°=㎡
S太阳能板2=×Sin22°=㎡
S灯杆=+×10/2=㎡
3.内力计算
弯矩设计值:M=M灯盘+M灯杆
M=γQ×WK1×S太阳能板×10m+γQ×WK2×S灯杆×5m
=×××10+×××7+×××5
M= kN·m
最大剪力V=γQ×WK1×S太阳能板+γQ×WK2×S灯杆
=
式中γQ---载荷组合系数
4.灯柱根部应力
灯柱根部最大应力应小于灯柱材料的许应力即
ξmax=M/W+P/ψA +2V/A
式中M/W—弯曲应力P/ψA—轴向应力2V/A—剪应力由前面计算出灯柱总弯矩为M=·m
W—抗弯截面系数W=I/y
I为截面惯性矩y为应力点到中性轴的距离截面惯性矩I=∏(D4-d4)/64
d------灯柱根部内径
D------灯柱根部外径
I=×[(260mm)4-(250mm)4]/64
=×108mm4
弯曲应力бmax=M×y/I=×106 N·mm×130mm/×108mm4
= mm2=
轴向应力---P/ψA
P—轴向负荷P=路灯总重=380kg
ψ—稳定系数
A—灯杆根部截面积。

当长细比λ=2L/i=(2x10000)/=218时
查表得ψ= 式中:L—灯杆高度10000mm i—. R=260/2=130
轴向应力P/ψA=(380×/××103 mm2)
= N/ mm2=
最大剪应力τmax=2V/A=×103N)/×103 mm2
= N/ mm2=
式中V----最大剪力
灯柱根部最大应力为ξmax=++
=
由于ξmax=<屈服强度是安全的.。

相关文档
最新文档