导数与微分PPT优秀课件

合集下载

大学数学微积分第16讲《求导法则》课件

大学数学微积分第16讲《求导法则》课件
高等院校非数学类本科数学课程
大 学 数 学(一)
—— 一元微积分学
第十六讲 求导法则
第四章 一元函数的导数与微分
本章学习要求: ▪ 理解导数和微分的概念。熟悉导数的几何意义以及函数的可
导、可微、连续之间的关系。 ▪ 熟悉一阶微分形式不变性。 ▪ 熟悉导数和微分的运算法则,能熟练运用求导的基本公式、
例6 设 y a0 xn a1xn1 an1x2 an1x an,
求 y。
解 由和的求导公式
y (a0 xn ) (a1xn1) (an2 x2 ) (an1x) (an )
a0n xn1 a1(n 1)xn2 an2 2x an1
通常说, 多项式的导数仍是多项式, 其次 数降低一次, 系数相应改变.
1 x2
y arctanx, ( x ), 求y。
例17
解 它是 x tan y , y ( , )的反函数,
22
且 x tan y 满足定理的条件,
又 (tan y) 1 tan2 y 0

y
(arctan
x)
1 (tan
y)
1
1 tan 2
y
1 1 x2
x ( , )
(arctan
又 x cos y 在 (0, ) 内单调、连续、可导, 且
d x (cos y) sin y 0 dy
故 y (arccos x) d y 1 1
d x d x (cos y) dy
1 1
1
sin y
1 cos2 y
1 x2
(1 x 1)
(arccos x) 1
(1 x 1)
x 等价无穷小替代
lim
ln 1

数学分析第十六章课件偏导数与全微分

数学分析第十六章课件偏导数与全微分

解: 已知

V 2 rh r r 2h
r 20, h 100, r 0.05, h 1
V 2 20100 0.05 202 (1) 200 (cm3)
即受压后圆柱体体积减少了
作业
• P192:1:(单数题) • P193:7;9 • P208:1:(双数题) • P208:3 • P209:9 • P217:1:(1;3);2:(2;4);6 • P223:2;3;8
定理16.1 3.全微分与偏导数的关系:
f (x, y) 设 (x0 , y0 ) 可微,在表达式中 分别令 f 0 x 0 和 x 0 y 0

定理16.2
从而:f 在 p0 的全微分可写成
dz |p0 fx (x0 , y0 )dx f y (x0 , y0 )dy
z f (x) 在某区域 G 内(x,y) 点的全微分为
f11,
f12,
f21,
f22
书上记号易混
链式法则的应用
偏微分方程的变换
目的
求解
2)复合函数的全微

u
f (x, y),若x, y为自变量,则
du f dx f dy x y
进一步,若x (s,t) y (s,t) 则有
du u ds u dt dx x ds x dt dy y ds y dt
r x 2
2x x2 y2 z2
x r
r z z r
4、计算
的近似值.
解: 设
,则
f x (x, y) y x y1 , f y (x, y) x y ln x

则 1.042.02 f (1.04, 2.02 )
1 2 0.04 0 0.02 1.08

高中物理课件-高数第二章-导数与微分--课件

高中物理课件-高数第二章-导数与微分--课件
求 f 0
例2.已知 f x0 存在,求
lim f x0 ah f x0 bh
h0
h
3、导数的意义
函数 y f x在点x0 处的导数f x0
是因变量 y在点x0处的变化率,它反
映了 在点x0 处因变量随自变量的变
化而变化的快慢程度。
(二)导函数
1、定义:如果函数 y f x 在开区间
四、基本求导法则与导数公式
(一)常数和基本初等函数的导数公式
1. C 0
2. x x1
3. sin x cos x
4. cos x sin x
5. ta n x sec2 x 6. cot x csc2 x
7. sec x sec x tan x 8. csc x csc x cot x

k0
lim xx0
f
x f x0 就是曲线C
x x0
在 M0 x0, y0 点处切线的斜率。
二、导数的定义 (一)函数在一点处的导数
1、定义:设函数 y f x在点x0的某个
邻域内有定义,当自变量 x在x0 处取得
增量 x(点 x0
时 , 相应地函数
x 仍在该邻域内)
y 取得增量
chx shx
thx
1 ch2
x
arshx 1 archx 1
1 x2
x2 1
arthx
1
1 x2
例18.求
y cos x2 sin 1 arctan thx x
的导数。
例19.
y sin nxsinn xn为常数,求y
§2-3 高阶导数
(一)二阶导数
1、定义:把 y f x 的导数叫做函数
x xx0 x0

专升本高数数学第二章导数与微分

专升本高数数学第二章导数与微分
对数求导法适用于幂指函数 以及多因子乘积(或商)函数的导数
例. 见 P53 页例4,5,6
例 求函数 y (x 1)(x 2) (x 4) 的导数.
(x 3)(x 4)
解: 两边取对数,得
ln y 1 [ln(x 1) ln(x 2) ln(x 3) ln(x 4)], 2
f (x) x
f (x0 ) x0
lim
x 0
f (x0
x) x
f (x0 );
函数 f ( x)在点x0 处可导 左导数 f( x0 ) 和右
导数 f( x0 )都存在且相等.
在讨论分段函数在分段点的可导时,由于在分段点两侧表达式 可能不同,因此一般应从定义出发讨论其左、右导数。
x { f [(x)]} 表示复合函数对自变量
求导
f [(x)] 表示复合函数对中间变量 (x) 求导
例求下列函数的导数
y cos ln(1 x)
例 设 y ln(arcsinx) ,求 y' .

y 1 (arcsin x) 1 1
1
.
arcsin x
arcsin x 1 x2 1 x2 arcsin x
x0
lim f (x) f (0)
x sin 1 lim x
lim sin 1
x0 x 0
x0 x
x0
x
因为limsin 1 不存在
x0
x
f ( x)在x 0处不可导.
练习:P43页第7题
5、基本导数公式(常数和基本初等函数的导数公式)
(C ) 0
(sin x) cos x
f (x0

大一高数上_1完整_第三章ppt课件

大一高数上_1完整_第三章ppt课件
例如, f(x)x22x3(x3 )x (1 ).
在[1,3]上连,续 在 (1,3)内可导 , 且 f( 1 ) f(3 ) 0 ,
f(x ) 2 (x 1 )取 , 精 选1 课,件(1 ( 1 ,3 ))f()0. 2Biblioteka 几何解释:yC
yf(x)
若连续曲线弧的两个
端点的纵坐标相等,
且除去两个端点外处 o a 处有不垂直于横轴的
f(x2)f(x1)。 因此 f(x)在区间I上是一个常数。
精选课件
10
例 2 . 证 明 当 x > 0 时 , x l 1 x ) n x 。 ( 1 x
证明:设f(x)ln(1x),显然f(x)在区间[0, x]上满足
拉格朗日中值定理的条件,根据定理,就有
f(x)f(0)f ()(x0),0<<x。
在闭区间[a, b]上连续,在开区间(a, b)内可导,且F ' ( x)
在(a, b)内每一点处均不为零,那么在(a, b)内至少
有一点(a b),使等式
f F
(a) (a)
f (b) F (b)
f F
' ()成立. ' ()
Cauchy定理又称为广义微分中值定理
精选课件
12
结构图
特例
推广
lim xn 0.
n x 0
精选课件
21
2. 型
步骤: 11 0 0 . 0 0 00
例8 求lim ( 1 1). x0 sinx x
()
解 原式 lim xsin xlim1coxs x 0 xsin x x 0sin xxcoxs
lim sinx
0.
x0 2cosxxsinx

《微积分》(上下册) 教学课件 02.第2章 导数与微分 高等数学第一章第3-5节

《微积分》(上下册) 教学课件 02.第2章 导数与微分 高等数学第一章第3-5节

1
记作
f
(
x),
y,
d2y dx2

d
2 f (x) dx2
.
二阶导数的导数称为三阶导数,记作
f ( x),
y,
d3y dx3 .
三阶导数的导数称为四阶导数, 记作
f (4)(x),
y(4) ,
d4y dx4 .
一般地, 函数f ( x)的n 1阶导数的导数称为
函数f ( x)的n阶导数, 记作
f (n)(x),
10
一、微分的概念
实例 半径为 x的0 金属圆板受热后面积的改变量.
设半径由x0变到x0 x,
圆板的面积 A x02,
A (x0 x)2 x02
2x0 x (x)2.
(1)
(2)
(1) x的线性函数,且为A的主要部分;
(2) x的高阶无穷小,当x 很小时可忽略.
11
再例如
设函数 y x3在点 x0处的改变量为x时, 求函数的 改变量 y.
§2.3 高阶导数
问题 变速直线运动的加速度.
设 s s(t), 则瞬时速度为v(t) s(t);
因为加速度a是速度v对时间t的变化率,所以
a(t) v(t) s(t).
定义 如果f (x)的导函数f (x)在点x处可导,即
( f (x)) lim f (x x) f (x)
x0
x
存在,则称( f (x))为f (x)在点x处的二阶导数.
dt dx
3a sin2 t cost 3a cos2 t(sint
)
tan t,
dt
d2y dx2
d (dy) dx dx
d ( tan t ) dx

高等数学第二章导数与微分

高等数学第二章导数与微分

x0
x
瞬时变化率
点导数是因变x0量 处在 的点 变化 ,它率 反映因 了变量随自变量 而的 变变 化化 的快 慢程.度
根据导数定义求导,可分为如下三个步骤:
( 1 ) 求y 增 f( x 量 x ) f( x );
曲线 y = f (x)在点x0处的切线斜率
tan lim y
x0 x
lim
x0
f (x0
x) x
f (x0)
f x0
左右导数
设函数 y = f (x)在点x0的某一个邻域内有定义.
假设极限l i m x 0

y x
存在,那么称 y = f (x)在点 x0 左可 导,
且称此极限值为函数 y = f (x) 在点 x0 的左导数,
解:由导数的几何意义, 得切线斜率为
k
y
x1 2
1 x
x 1 2
1 x2
x1 2
4.
切线方程为 y24x12, 即 4 xy 4 0 .
法线方程为
y
2
1 4
x
12,
即 2 x 8 y 1 5 0 .
2.1.4 函数的可导性与连续性的关系
〔1〕假设 f (x)在 x0点可导,那么它在 x0点必连续.
记作 f(x0 ). 同样可定义右导数: f(x0 ).
f (x)在x0可导的充要条件是: f (x)在 x0 既左可导
又右可导,且 f (x0)f (x0). 即 f(x0)存在 f (x 0 )f (x 0 )存 在 .
导函数的概念
假设函数 y = f (x)在开区间I内每一点都可导,那么称
f (x)在I 内可导. 此时对xI, 有导数 f ( x ) 与之

《高等数学教案》课件

《高等数学教案》课件

《高等数学教案》PPT课件第一章:导数与微分1.1 导数的概念引入导数的定义解释导数的几何意义举例说明导数的计算方法1.2 基本函数的导数计算常数函数、幂函数、指数函数、对数函数的导数总结常用函数的导数公式1.3 微分的概念与应用引入微分的定义解释微分的几何意义举例说明微分的计算方法介绍微分在实际问题中的应用第二章:积分与微分方程2.1 积分的概念引入积分的定义解释积分的几何意义举例说明积分的计算方法2.2 基本函数的积分计算常数函数、幂函数、指数函数、对数函数的积分总结常用函数的积分公式2.3 微分方程的概念与解法引入微分方程的定义解释微分方程的意义举例说明微分方程的解法介绍微分方程在实际问题中的应用第三章:级数与极限3.1 级数的概念引入级数的定义解释级数的收敛性与发散性举例说明级数的计算方法3.2 幂级数的概念与应用引入幂级数的定义解释幂级数的收敛区间与收敛半径举例说明幂级数的计算方法介绍幂级数在实际问题中的应用3.3 极限的概念与性质引入极限的定义解释极限的意义举例说明极限的计算方法介绍极限在实际问题中的应用第四章:向量与矩阵4.1 向量的概念与运算解释向量的几何意义举例说明向量的运算方法4.2 矩阵的概念与运算引入矩阵的定义解释矩阵的意义举例说明矩阵的运算方法4.3 向量空间与线性变换引入向量空间的概念解释线性变换的意义举例说明线性变换的性质介绍向量空间与线性变换在实际问题中的应用第五章:概率与统计5.1 概率的基本概念引入概率的定义解释概率的意义举例说明概率的计算方法5.2 随机变量的概念与分布引入随机变量的定义解释随机变量的意义举例说明随机变量的分布方法5.3 统计的基本概念与方法解释统计的意义举例说明统计的计算方法介绍统计在实际问题中的应用第六章:多变量微积分6.1 多元函数的概念引入多元函数的定义解释多元函数的意义举例说明多元函数的计算方法6.2 偏导数与全微分引入偏导数的定义解释偏导数的意义举例说明偏导数的计算方法介绍全微分的概念与应用6.3 多重积分的概念与应用引入多重积分的定义解释多重积分的意义举例说明多重积分的计算方法介绍多重积分在实际问题中的应用第七章:常微分方程7.1 常微分方程的概念引入常微分方程的定义解释常微分方程的意义举例说明常微分方程的解法7.2 线性微分方程与非线性微分方程引入线性微分方程与非线性微分方程的定义解释线性微分方程与非线性微分方程的区别与联系举例说明线性微分方程与非线性微分方程的解法7.3 常微分方程的应用介绍常微分方程在物理、工程等领域的应用举例说明常微分方程解决实际问题的方法第八章:数值计算方法8.1 数值计算方法的概念引入数值计算方法的定义解释数值计算方法的意义举例说明数值计算方法的计算过程8.2 数值积分与数值微分引入数值积分与数值微分的定义解释数值积分与数值微分的意义举例说明数值积分与数值微分的计算方法8.3 常微分方程的数值解法引入常微分方程的数值解法的定义解释常微分方程的数值解法的意义举例说明常微分方程的数值解法第九章:概率与统计(续)9.1 描述统计与推断统计引入描述统计与推断统计的定义解释描述统计与推断统计的意义举例说明描述统计与推断统计的方法9.2 假设检验与置信区间引入假设检验与置信区间的定义解释假设检验与置信区间的意义举例说明假设检验与置信区间的计算方法9.3 回归分析与相关分析引入回归分析与相关分析的定义解释回归分析与相关分析的意义举例说明回归分析与相关分析的方法第十章:高等数学在实际问题中的应用10.1 高等数学在物理学中的应用介绍高等数学在经典力学、电磁学等物理学领域中的应用举例说明高等数学解决物理学问题的方法10.2 高等数学在工程学中的应用介绍高等数学在土木工程、机械工程等工程领域中的应用举例说明高等数学解决工程学问题的方法10.3 高等数学在经济学、生物学等领域的应用介绍高等数学在经济学、生物学等领域中的应用举例说明高等数学解决经济学、生物学等领域问题的方法重点解析第一章:导数与微分重点:理解导数和微分的定义及其几何意义,掌握基本函数的导数和微分计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前页 后页 结束
三、左导数与右导数 左导数: f (x 0) lx i0 m f(x 0 x x )f(x 0). 右导数: f (x 0) lx i0 m f(x 0 x x )f(x 0). 显然可以用下面的形式来定义左、右导数
f(x0)xl ixm 0 f(xx) xf0(x0), f(x0)xl ix0 m f(xx) xf0(x0).
x x0
当 f(x0)0 时,曲线 f ( x ) 在 M 0 的法线方程为
1 yf(x0)f(x0)(xx0).
而当 f(x0)0时,曲线 f ( x ) 在 M 0 的法线方程为
x x0 (即法线平行y轴).
前页 后页 结束
例3 求函数 y 的x 2导数
解: ((x x )2 x 2 2 x x ( x )2
(2)算比值: (3)取极限:
y 2xx x
ylim yli(m 2x x)2x
x x 0
x 0
同理可得: (xn) nxn1(n为正整数)
特别地, (x)1. (n1)
前页 后页 结束
例4 求曲线 y 在x 3点 处(的2,8切) 线与法线方程.
f(x 0 ) lix m 0 x y l i m ta n ta n k
所以,导数 f (x0) 的几何意义 是曲线y = f (x) 在点M0(x0,f(x0)) 处的切线斜率.
M
P
M0
x0
x0 x
前页 后页 结束
设函数y=f(x)在点处可导,则曲线y=f(x)在点 处的切线方程为: y f(x 0 ) f(x 0 ) (x x 0 ) 而.当 时,曲f(线x0)在 的切f (线x ) 方程M 为0
O
x 0 x0 x x
k M N ta n x yf(x 0 x x )f(x 0)
前页 后页 结束
这里为割线MN的倾角,设 是切线MT的倾角,
当 x 时0,点N沿曲线趋于点M。若上式的
极限存在,记为k,则此极限值k就是所求切线
MT的斜率,即
k tanθ lim tan x0
y lim
此时x为割线两端点M0,M
的横坐标之差,而 y
则为M0,M 的纵坐标之差, 所以 即为xy 过M0,M两点的 割线的斜率.
M
M0
x0
x0 x
前页 后页 结束
曲线y = f (x)在点M0处的切线即为割线M0M当M沿曲
线y=f(x)无限接近 M 0 时的极限位置M0P,因而当 x0
时,割线斜率的极限值就是切线的斜率.即:
若 lim y lim f(x0x)f(x0)
x0 x x 0
x
存在,则称其极限值为y = f (x)在点x0 处的导数,记为
f('x 0)或 y|x ' x 0,或 d d x y|x x 0,或 d d f x|x x 0.

f(x '0 ) lx i0 m x y lx i0f m (x 0 x x ) f(x 0 ).
2.1.4 可导性与连续性的关系
定理2 若函数y = f (x)在点x0处可导,则f(x)在点x0 处连续.

因为f
(x)在点x0处可导,故有
f
(x0)
y lim .
x0 x
根据函数极限与无穷小的关系,可得:
x yf(x0), 其 中 lixm 00.
两端乘以 x 得: yf(x 0) x x
解:因为 (x3),由3x导2 数几何意义,曲线
y x3
在点 (2,8的) 切线与法线的斜率分别为:
k 1yx 2(3 x2)x 2 1,2 k 2k 1 1 1 12
于是所求的切线方程为: y81(2 x2)
即 1x 2y16 0
法线方程为: y81(x2) 12
即 x1y 298 0
前页 后页 结束
由此可见: lx im 0 y lx im 0 (f( x 0 ) x x ) 0 .
即函数y = f (x)在点x0 处连续.证毕.
前页 后页 结束
例5 证明函数 y | x | 在x=0处连续但不可导. 证 因为 lim | x | 0
x0
所以 y | x | 在x =0连
而 续 f (0) lxi m 0 x y lxi m 0 x x1
第2章导数与微分
1.1导数的概念 1.2导数的运算 1.3微分
2.1 导数的概念
2.1.1 引出导数概念的实例 例1 平面曲线的切线斜率 曲线 y f的(x图) 像如图所示, 在曲线上任取两点 M(x0,y0) 和 N (x0 x,y0 y),作割线
M,N割线的斜率为
y
y f (x) N
y
M
T
x P
当产量从Q 0 变到 Q0 Q 时,总成本的平均变化率
CC(Q0Q)C(Q0)
Q
Q
当 Q趋0向于0时,如果极限
lim Clim C (Q 0 Q )C (Q 0)
Q Q 0
Q 0
Q
存在,则称此极限是产量为 Q 0 时总成本的变化率。
前页 后页 结束
2.1.2 导数的概念
定义 设y=f(x)在点x0的某邻域内有定义,x0x 属于该邻域,记 yf(x 0 x )f(x 0),
x0 x
lim f ( x0 x) f ( x0 )
x0
x
y
y f (x) N
y
M
T
x P
O
x 0 x0 x x
前页 后页 结束
例2 产品总成本的变化率
设某产品的总成本C是产量Q的函数,即C=C(Q ),当产
量Q 从Q 0 变到 Q0 Q 时,总成本相应地改变量为
C C ( Q 0 Q ) C ( Q 0 )
定理3.1 y = f (x)在x =x0可导的充分必要条件是 y = f (x)在x=x0 的左、右导数存在且相等.
前页 后页 结束
三、导数的几何意义
当自变量x 0 从变化到 x0 x 时,曲线y=f(x)
上的点由M0(x0, f(x0)).变到M (x 0 x ,f(x 0 x )).
前页 后页 结束
导数定义与下面的形式等价:
f(x0)xl ixm 0 f(xx) xf0(x0).
若y =f (x)在x= x0 的导数存在,则称y=f(x)在点x0 处可导,反之称y = f (x)在x = x0 不可导,此时意 味着不存在.函数的可导性与函数的连续性的概念 都是描述函数在一点处的性态,导数的大小反映 了函数在一点处变化(增大或减小)的快慢.
相关文档
最新文档