八年级数学上册第1课时 利用平方差公式分解因式 (2)
人教版数学八年级上册+因式分解(2)——公式法(平方差公式)课件

-b2=(a+b)·(a-b).
(3)4x2 - 1 = ( 2x )2 - (
(2x+1)(2x-1)
______________;
3.因式分解与整式乘法的关系:
(4)25 - 4m2 = (
a2-b2
(5+2m)(5-2m)
_________________.
(a+b)(a-b)
1
)2 =
5 )2 - ( 2m )2 =
1
024,y=
,求(x+y)2-(x-y)2的值.
2 024
解:(x+y)2-(x-y)2=[(x+y)+(x-y)][(x+y)-(x-y)]=4xy.
当x=2
1
024,y=
时,原式=4×2
2 024
1
024×
=4.
2 024
因式分解(2)——公式法(平方差公式)
预习导学
1.如果把乘法公式反过来,就可
以把某些多项式因式分解,这种
方法叫公式法.
将下列各式因式分解:
(a+x)(a-x)
(1)a2-x2=____________;
(x+3)(x-3)
(2)x2-9=x2-( 3 )2=____________;
2.运用平方差公式因式分解:a2
课堂导学
知识点1
直接运用公式因式分解
【例1】将下列各式因式分解.
(3m+2n)(3m-2n)
(1)9m2-4n2=(3m)2-(2n)2=__________________;
2-62
2
2
(xy)
(xy+6)(xy-6)
(2)x y -36=__________=________________;
人教版八年级数学 利用平方差公式因式分解PPT课件

–
+
)(
-
)
问题:观察平方差公式:a2-b2=(a+b) (a-b)的项、指数、符号有什么特点?
【练一练】一: 4a2=( )2
0.16a4=( x4 y2=( ) )2
25b2=( )2
2
a b =(
2
2
)
2
【练一练】二:
下列多项式可以用平方差公式去分 解因式吗? 为什么?
(1) 4x2+y2
(2) a b–ab=____________________
特殊说明:平方差公式中的字母a、b,可以表示数、含字母的 代数式(单项式、多项式).
4
4
3
小结:
平方差公式:
a b
2
2
(a b)(a b)
平方差公式因式分解特征: (1)两部分相减
(2)两部分都可写成某数(式)的平方
(3)结果是两数之和与这两数之差的积
公式法因式分解(一)
1.理解平方差公式的意义,弄清平方差 公式的形式和特点;
2.掌握运用平方差公式分解因式的方法, 能正确运用平方差公式把多项式分解 因式(直接用公式不超过两次)
情景导入:
1、同学们,你能很快知道992-1是100 b)(a-b)=__________ 3.你能将a2-b2 分解因式吗? 你是如 何思考的?
注意:
1.因式分解的步骤是首先提取公因式,然后考 虑用公式.
2.因式分解进行到每一个因式不能分解为止. 3.计算中应用因式分解,可使计算简便.
(3) -4x2-y2
(2) 4x2-(-y)2
(4) -4x2+y2
(5) a2-4
华师大版八年级数学上册因式分解(第一课时)课件

①25 x2 = (__5_x__)2 ②36a4 = (__6_a_2_)2
③0.49 b2 = (_0_._7_b_)2 ④64x2y2= (_8_x_y__)2
⑤
1 4
b2
=
(
)2
⑥
9 16
c2=( )2
一、问题情景导入 分解因式
x4-x2
你会做吗?
二、探究新知 1、(a+b)(a-b)=__a_2_-b_2____.
=(3m+3n+m-n) (3m+3n-m+n)
=(4m+2n) (2m+4n) =4 (2m+n) (m+2n)
分解因式,必须
1、分解因式:
进行到每一个多 项式都不能再分
①x4-y4 ②a3b-ab
解为止。
例3.简便计算:
解: ①x4-y4 =(x2)2-(y2)2=(x2+y2)(x2-y2) =(x2+y2)(x+y)(x-y)
随堂练习 1、判断正误
(1)x²+y²=(x+y)(x+y) ( ) (2)x²-y²=(x+y)(x-y) ( ) (3)-x²+y²=(-x+y)(-x-y)( ) (4)-x² -y² =-(x+y)(x-y) ( )
2、把下列各式分解因式:
(1)a2b2-m2 (2)(m-a)2-(n+b)2 (3)x2-(a+b-c)2
这个公式叫_平__方__差__公__式___。 从左边到右边的这个过程叫_整__式__乘__法____。
2、反过来,a2-b2=(__a_+_b_)_(_a_-b_)_. 从左边到右边的这个过程叫_分__解__因__式____。
人教版八年级数学上册第十四章《 公式法》教学课件

课堂检测
能力提升题
2.如图,在边长为6.8 cm正方形钢板上,挖去4个边长 为1.6 cm的小正方形,求剩余部分的面积.
解:根据题意,得 6.82–4×1.62
=6.82– (2×1.6)2 =6.82–3.22 =(6.8+3.2)(6.8 – 3.2) =10×3.6 =36 (cm2)
素养目标
3. 能综合运用提公因式、完全平方公式分解 因式这两种方法进行求值和证明. 2. 能较熟练地运用完全平方公式分解因式.
1. 理解完全平方公式的特点.
探究新知 知识点 1 用完全平方公式分解因式
1.因式分解
回
:把一个多项式转化为几个整式的积的形式.
顾
旧 2.我们已经学过哪些因式分解的方法
知
∴(a2–c2)+ 2ab–2bc=0,(a+c)(a–c)+ 2b(a-c)=0, ∴(a–c)(a+c+2b)=0. ∵a+c+2b≠0,∴a–c=0,即a=c, ∴这个三角形是等腰三角形.
巩固练习
连接中考
1. 多项式4a–a3分解因式的结果是( B )
A.a(4–a2)
B.a(2–a)(2+a)
人教版 数学 八年级 上册
14.3 因式分解 14.3.2 公式法
第一课时 第二课时
第一课时
平方差公式
导入新知
如图,在边长为a米的正方形上剪掉一个边长为b
米的小正方形,将剩余部分拼成一个长方形,根据此
图形变换,你能得到什么公式?
a米
b米
(a–b)
a米 b米
a2– b2=(a+b)(a–b)
华师大版数学八年级上册《用平方差公式进行因式分解》说课稿2

华师大版数学八年级上册《用平方差公式进行因式分解》说课稿2一. 教材分析华师大版数学八年级上册《用平方差公式进行因式分解》这一节,是在学生已经掌握了有理数的乘法、平方根的基础上进行学习的。
平方差公式是初中数学中的一个重要公式,它不仅可以简化运算,还可以把一些复杂的代数式进行因式分解。
这一节内容既有理论性,又有实践性,通过学习,让学生体会数学的简洁美,提高他们学习数学的兴趣。
二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和运算能力,他们已经学习过了有理数的乘法、平方根等知识,对代数式有一定的认识。
但是,学生对平方差公式的理解和运用还需要加强,因此,在教学过程中,我们需要引导学生理解平方差公式的推导过程,掌握公式的运用方法。
三. 说教学目标1.知识与技能:让学生理解和掌握平方差公式,学会运用平方差公式进行因式分解。
2.过程与方法:通过学生的自主学习、合作交流,培养学生的探究能力和团队协作能力。
3.情感态度与价值观:让学生感受数学的简洁美,提高学生学习数学的兴趣,培养学生的自信心。
四. 说教学重难点1.教学重点:平方差公式的理解和运用,以及因式分解的方法。
2.教学难点:平方差公式的推导过程,以及如何把复杂的代数式进行因式分解。
五. 说教学方法与手段在本节课的教学过程中,我将采用自主学习、合作交流的教学方法,让学生在探究中发现问题、解决问题。
同时,我会利用多媒体教学手段,为学生提供丰富的学习资源,帮助学生更好地理解和掌握平方差公式。
六. 说教学过程1.导入:通过复习有理数的乘法、平方根等知识,为学生引入平方差公式。
2.探究:让学生自主探究平方差公式的推导过程,引导学生发现公式的特点。
3.讲解:讲解平方差公式的运用方法,以及如何把复杂的代数式进行因式分解。
4.练习:让学生进行相关的练习,巩固所学知识。
5.总结:对本节课的内容进行总结,让学生明确学习的重点和难点。
七. 说板书设计板书设计要简洁明了,能够突出平方差公式的特点和运用方法。
精品 八年级数学上册 因式分解二 同步讲义+同步练习题

因式分解 二知识点平方差公式:完全平方公式:十字相乘法公式:分组分解法公式: 例1.用平方差公式对下列各式分解因式。
(1)92+-x (2)x x -5(3)222)21()2(y y x ---例2.用完全平方公式对下列各式分解因式.(1)41292+-x x (2)110252+-x x(3))1(4)(2-+-+y x y x例3.用十字相乘法对多项式进行因式分解.(1)1832-+x x (2)1522--x x (3)226y xy x -+例4.对多项式进行因式分解:(1)3722+-x x (2)622-+y y (3)61362+-x x例5.对多项式进行因式分解:(1)2224)3(x x -- (2)60)(17)(222++-+x x x x例6.用分组分解法对下列多项式进行分解因式:(1)2222c b ab a -+- (2)yz z y x 2222--- (3)181696222-+-++a a y xy x课堂练习:1.下列多项式中,没有公因式的是( )A.()y x a +和(x +y)B.()b a +32和()b x +-C.()y x b -3和 ()y x -2D.()b a 33-和()a b -62.多项式)2()2(2n m n m ---分解因式等于( )A.(n-2)(m+m 2)B.(n-2)(m-m 2)C.m(n-2)(m+1)D.m(n-2)(m-1)3.如果4,-==+ab m b a ,化简)2)(2(--b a 的结果是( )A.6B.82-mC.m 2D.m 2-4.利用因式分解计算:2224825210000-=5.计算:20152014)125.0()8(-⋅-= ;2014201522-= ;20152014)2()2(-+-=6.当m=______时,25)3(22+-+x m x 是完全平方式.7.已知x+y=4,那么221122x xy y ++的值为________ 8.对下列各多项式进行因式分解:(1)23)1(2)1(4-+-q q p (2)122)()(+-+-n n y x b a y x ab (3)x x 32122+-(4)m m m 216423-+- (5)1642-a (6)35a a -(7)44y x - (8)9)(6)(2++-+n m n m (9)1)4(2)4(222++-+x x(10)()()b a b a +-+43 (11)814-x (12)x x x +-232(13)71522++x x (14)4832+-a a (15)6752-+x x(16)101162--y y (17)223116y xy x +- (18)234283x x x --(19)222)73()3(+--x x x (20)91024+-x x (21)1002924+-x x(22)a b b ab a 4912622-++- (23)222y yz xz xy x ++--(24)120)8(22)8(222++++a a a a (25)2222224)(b a b a c ---10.已知3,7==+ab b a ,求32232ab b a b a ++.11.求证:201320142015310343⨯+⨯-能被7整除。
因式分解(2)——公式法(人教版)八年级数学上册PPT课件
13. 分解因式:n2(m-2)+(2-m).
解:原式=(m-2)(n+1)(n-1).
三级检测练
一级基础巩固练
14. 分解因式:
(1)x2-25=
(x+5)(x-5)
;
(2)4b2-a2=
(2b+a)(2b-a)
;
(3)9b2-4a2=
5. 分解因式:
(1)x2-25=
(x+5)(x-5)Biblioteka ;(2)x2-36=
(x+6)(x-6)
.
6. (例 2)分解因式:
(1)4x2-25=
(2x+5)(2x-5)
;
(2)9x2-16y2=
(3x+4y)(3x-4y)
.
7. 分解因式:
(1)16x2-1=
(4x+1)(4x-1)
;
(2)36x2-25y2=
)2.
知识点.公式法(平方差公式)
3. 平方差公式:
整式乘法:(a+b)(a-b)= a2-b2
;
分解因式:a2-b2=
(a+b)(a-b)
.
4. (例 1)分解因式:
(1)x2-4=
(x+2)(x-2)
;
(2)x2-9=
(x+3)(x-3)
.
总结:能用平方差公式分解因式的条件: ①二项式;②能化成两个平方相减.
(1)设 S1,S2 分别是图 1,图 2 的面积,若用
含 a,b 的代数式表示它们的面积,则
S1=
a2-b2
初二【数学(人教版)】因式分解——公式法(第一课时) 教学设计
2分钟1.5分钟0.5分钟归纳总结拓展提升例:利用因式分解计算22224914.35114.3)2(202120202020)1(⨯-⨯-+分析:(1)中2220212020-可利用平方差公式分解成)20212020()20212020(-⨯+,进而再进行化简运算;(1)中可以先提取共同的因数3.14,再利用平方差公式分解计算.解:2021202120202020)1()20212020(2020)20212020()20212020(2020202120202020)1(22-=--=-⨯++=-⨯++=-+28.6210014.3)4951()4951(14.3)4951(14.34914.35114.3)2(2222=⨯⨯=-⨯+⨯=-⨯=⨯-⨯例:如图,在一块长为a的正方形纸片的四角,各减去一个边长为b的正方形,其中a=1.86,b=0.34,求剩余部分面积.分析:求正方形减去四角后的面积,即用大正方形的面积,减去四个小正方面即可。
先可以列出式子为a2-4b2,若直接带入数值,发现运算量较大,所以可以先将a2-4b2因式分解后,再代入数值运算,可大大简化运算过程。
解:S剩= a2-4b2=(a+2b)(a-2b)把a=1.86,b=0.34带入S剩=(1.86+2×0.34)×(1.86-2×0.34)=2.72×1 =2.72四.归纳总结问题:今天我们主要学了哪些知识?利用平方差公式分解因式:))((22bababa-+=-问题:怎样判断能否利用平方差公式因式分解?利用平方差公式分解需要满足所给多项式能够写成两项平方差的形课后作业式,或者在变形后能够写成两项平方差的形式.平方差公式中的字母a,b可以表示数、单项式或多项式.问题:在运用平方差公式分解因式时,我们应该注意哪些问题?(1)若多项式中有公因式,应先提取公因式,再进一步分解因式;(2)因式分解要彻底,直到不能继续再分解为止.五.拓展提升如图,100个正方形由小到大套在一起,从外向里相间画上阴影,最里面一个小正方形没有画阴影,最外面一层画阴影,最外面的正方形的边长为100cm,向里依次为99cm,98cm,…,1cm,那么在这个图形中,所有画阴影部分的面积和是多少?解:每一块阴影的面积可以表示成相邻正方形的面积的差,而正方形的面积是其边长的平方,这样就可以逆用平方差公式计算了.则S阴影=(1002-992)+(982-972)+…+(22-12)=100+99+98+97+…+2+1=5050(cm2).答:所有阴影部分的面积和是5050cm2.六.课后作业1.下列所向是能否用平方差公式分解因式?为什么?22222222)4()3()2()1(yxyxyxyx--+--+2.分解因式16)4(4)3(49)2(251)1(422222+----ayyxbaba3.已知x+2y=3, x2-4y2=-15,求x-2y的值和x, y的值.。
人教版八年级数学上册《公式法》整式的乘法与因式分解PPT精品课件
-1
1
-2
1×(-2)+1×(-1)=-3
(2)
1
-2
1
5
1×5+1×(-2)=3
解:(1) x2-3x+2=(x-1)(x-2); (2) x2+3x-10=(x-2)(x+5).
随堂练习
x(x+2)(x+3)
1.(2019·淄博)分解因式:x3+5x2+6x=___________.
分析:x3+5x2+6x
(1)当多项式的各项有公因式时,应先提取公因式;当
多项式的各项没有公因式时(或提取公因式后),若
符合平方差公式或完全平方公式,就利用公式法分解
因式;
(2)当不能直接提取公因式或用公式法分解因式时,可
根据多项式的特点,把其变形为能提取公因式或能用
公式法的形式,再分解因式;
(3)当乘积中的每一个因式都不能再分解时,因式分解
一般地,如果多项式的各项有公因式,可以把这个公
因式提取出来,将多项式写成公因式与另外一个因式
的乘积的形式,这种分解因式的方法叫做提公因式法.
提公因式法一般步骤:
(1)确定公因式:先确定系数,再确定字母和字母的指
数;
(2)提公因式并确定另外一个因式:用多项式除以公因
式,所得的商就是提公因式后剩下的另一个因式;
1
2
=x(x2+5x+6)
1
3
=x(x+2)(x+3).
1×3+1×2=5
2.(2019·威海)分解因式:2x2-6x+4=__________.
2(x-1)(x-2)
人教版八年级数学上册第十四章 平方差公式
小组展示
越展越优秀
提疑惑:你有什么疑惑?
知识点:用平方差公式分解因式(重难点)
1.直接运用平方差公式分解因式: 两个数的平方差,等于这两个数的和与这两个数的差的积, 即a2-b2=(a+b)(a-b). 注:a,b可以是数字、单项式或者多项 式.
2.多项式的各项有公因式,先提取公因式,再利用平方差公式 分解另一个因式.
14.3因式分解
14.3.2公式法
第1课时 平方差公式
1. 通过学生自主探究,掌握平方差公式的特点,会运用平 方差公式进行因式分解,提高学生的自学意识.
2.通过具体练习理解运用平方差公式分解因式,掌握提公 因式法和公式法分解因式的综合运用,培养学生解决问 题的能力.
3.经历利用平方差公式进行因式分解的过程,发展学生的 逆向思维,感受数学知识的关联]=4(2m+n)(m+2n).
【题型三】用平方差公式分解因式的应用 例4:已知a2-b2=8,且a-b=-4,则a+b=__-_2_____.
例5:用简便方法计算:3.14×512-3.14×492. 解:3.14×512-3.14×492=3.14×(512-492) =3.14×(51+49)×(51-49)=3.14×100×2= 628.
注:因式分解的结果一定要彻底,即分解到不能再分解为止.
【题型一】用平方差公式分解因式
例1:下列各式不能用平方差公式分解因式的是( D )
A.a2-4
B.-x2+y2
C.x2y2-1
D.-m2-n2
例2:已知x2-16=(x-a)(x+a),则a=_4_或_-__4___.
【题型二】用提公因式法、平方差公式分解因式
的打“√”,不可以的打“×”. (1)y2-49; (√ ) (2)(p+q)2-9; (√ ) (3)-4x2+y2; ( √ ) (4)-m4-n4; (× ) (5)x2+4; ( × ) (6)a2+(-b)2. (× ) 3.请同学们完成课本116页例3,例4.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作品编号:0115230988859532558954500001
学校:秘强市景秀镇赛班家屯小学*
教师:丽景春*
班级:凤凰队参班*
14.3.2 公式法
第1课时利用平方差公式分解因式
【知识与技能】
掌握平方差公式并应用于因式分解.
【过程与方法】
分析平方差公式的结构与特点,提高判断、运算能力.
【情感态度】
培养学生的观察、联想能力,进一步了解换元思想方法.
【教学重点】
应用平方差公式分解因式.
【教学难点】
根据问题特点,选择因式分解的方法.
一、情境导入,初步认识
思考多项式a2-b2有什么特点?你能将它分解因式吗?
【教学说明】教师讲课前,先让学生完成“名师导学”.鼓励学生思考并合作交流,并大胆地表述出来.教师可提供以下思考步骤:
1.多项式的因式分解是整式乘法的逆用,也就是把一个多项式化成几个整式的积的形式.
2.提公因式法的第一步是观察多项式各项是否有公因式,如果没有公因式,
就不能使用提公因式法对该多项式进行因式分解.
3.对不能使用提公因式法分解因式的多项式,不能说不能因式分解.
4.对a2-b2,提公因式法不适用,联想(a+b)(a-b)=a2-b2,这启示我们有新的分解因式的方法.
【归纳总结】因式分解的公式法中平方差公式为a2-b2=(a+b)(a-b),它具有如下特点:
(1)左边是二项式,每项都是平方的形式,两项的符号相反.
(2)右边是两个多项式的积,一个因式是两数的和,另一个因式是这两数的差.
二、思考探究,获取新知
例1下列各式中能用平方差公式分解因式的有个(填序号).
【分析】①⑤是两个符号相同的平方项,不能用平方差公式分解;③是三项式,不符合平方差公式的特点;②④⑥都能写成两个数(式)的平方差,在实数范围内能够运用平方差公式.
【答案】3
【教学说明】能否用平方差公式分解因式,应紧紧抓住平方差公式的特点进行判断,分别从项数、符号、平方项等方面判断.
例2分解因式.
【教学说明】(1)可以利用加法交换律把负平方项交换放在后面;(2)1是平方项,可以写成“12”.
例3分解因式.
【教学说明】(1)如果多项式的各项中含有多项式,那么先提起公因式,再运用平方差公式求解.(2)因式分解必须进行到每一个多项式的因式都不能分解为止.
三、运用新知,深化理解
1.下列多项式能用平方差公式分解的有().
3.王敏同学去商店买了单价是9.8元/kg的糖果10.2kg,售货员刚拿起计算器,王敏就说应付99.96元,结果与售货员计算的结果相吻合,售货员很惊讶地说:“你好像个神童,怎么算得这么快?”王敏得意地说:“过奖了,我只不过利用数学上的一个公式”.
你知道王敏同学是怎样计算的吗?
【教学说明】设置上述3个题目是为了加强学生对于平方差公式的结构认识及应用,教师可安排学生上台板书解题过程,师生共同检查.第3题虽然是整式乘法平方差公式应用,主要是为了帮助学生分清整式乘法中的平方差公式与因式分解中的平方差公式的应用区别.
【答案】1.D2.(1)(2x+3)(2x-3);
(2)(2x+p+q)(p-q);
(3)(x2+y2)(x+y)(x-y);
(4)ab(a+1)(a-1);
(5)(13x-y)(-x+13y);
(6)x(x2+x+2)(x+1).
3.10.2×9.8=(10+0.2)(10-0.2)=102-0.22=99.96(元).
四、师生互动,课堂小结
集体回顾平方差公式结构与分解因式时应注意的事项.
1.布置作业:从教材“习题14.3”中选取部分题.
2.完成创优作业本课时的“课时作业”部分.
本课时教学重点是引导学生因整式乘法中的平方差公式推导出因式分解的平方差公式,教师应组织学生利用这个关系自主认识出新知识,了解公式的结构特征,并交流思考.加深学生对公式变式的认识,从而全方位地掌握平方差公式的应用范围,再指导学生利用实际训练强化对新知识的掌握.。