三年级奥数等差数列专项练习

合集下载

三年级下册数学试题-奥数练习:等差数列(含答案)全国通用

三年级下册数学试题-奥数练习:等差数列(含答案)全国通用

等差数列初步(求公差与某一项、求项数)1.等差数列中,第9 项和第17 项相隔__________个公差.2.等差数列中,第6 项和第20 项相隔__________个公差.3.一个等差数列共有15 项.每一项都比它的前一项大2,并且首项为30,那么末项是__________.4.一个等差数列,每一项都比它的前一项大2,第3 项为33,那么第10 项是__________.5.一个等差数列第4 项为25,第15 项为113,那么这个等差数列的公差是__________.6.一个等差数列第7 项为50,第12 项为75,那么这个等差数列的公差是__________.7.一个等差数列首项为5,末项为101,公差为8,那么首项和末项之间相隔了__________个公差.8.一个等差数列首项为20,末项为116,公差为6,那么首项和末项之间相隔了__________个公差.9.已知等差数列2,9,16,23,30,…,那么86 是这个等差数列的第__________项.10.已知等差数列3,9,15,21,27,…,那么93 是这个等差数列的第__________项.11.一个等差数列的首项为7,第8 项为91,127 是第__________项.12.一个等差数列的首项为12,第7 项为90,129 是第__________项.答案:1.(8) 2.(14) 3.(58)4.(47)5.(8) 6.(5)7.(12)8.(16)9.(13)10.(16)11.(11)12.(10)等差数列求和(配对求和、利用中间数求和)1.计算:13+17+21+25+29+33+37+41=__________.2.计算:32+34+36+38+40+42+44+46+48+50= __________.3.3+7+11+15+……,等差数列共12 项,那么这12 项的和是__________.4.4+7+10+13+……,等差数列共20 项,那么这20 项的和是__________.5.计算:5+7+9+……+53+55=__________.6.计算:13+19+25+……+67+73=_________.7.文雯为了增肥,计划每天吃包子,第一天她吃了5 个包子,以后每天都比前一天多吃 3 个包子,最后一天吃了32 个包子.那么文雯一共吃了________ 天包子,共吃8.一个等差数列共15 项,那么这个等差数列的中间数是第__________项.9.一个等差数列共9 项,那么这个等差数列的中间数是第__________项.10.馋嘴猴特别爱吃香蕉,它每周吃的香蕉数量成等差数列,已知它第5 周吃了20 根香蕉.馋嘴猴前9周一共吃了_________根香蕉.11.旦旦很喜欢吃包子,她每天吃的包子数成等差数列,已知她第6 天吃了30 个包子,那么旦旦前11天一共吃了__________个包子.12.已知一个等差数列的下列条件:① 第1 项是7;② 第7 项是25;③ 第8 项是28;④ 第13 项是43;⑤ 公差是3;⑥ 共13 项.以下选项中不能求出这个等差数列和的是__________.• A. ①、④和⑥• B. ③、⑤和⑥• C. ②和⑥• D. ③和⑥答案:1.(216) 2.(410) 3.(300)4.(650)5.(780)6.(473)7.(10,185)8.(8)9.(5)10.(180)11.(330)12.(D)等差数列应用(求中间数、中间数的应用)1. 9 个连续自然数之和为126,其中第5 个数是__________.2. 7 个连续自然数之和为105,其中第4 个数是__________.3.9 个连续自然数之和为135,其中最小的数是__________.4.9 个连续自然数之和为153,其中最大的数是_________.5.把248 表示成8 个连续偶数的和,其中最大的偶数是__________.6.等差数列中,第5 项到第13 项共有______ 项,第5 项到第13 项的中间项是第_______ 项.7.等差数列中,第3 项到第9 项共有________ 项,第3 项到第9 项的中间项是第_________ 项.答案:1.(14) 2.(15) 3.(11)4.(21)5.(38)6.(9,9)7.(7, 6)割圆术数学意义:“割圆术”,则是以“圆内接正多边形的面积”,来无限逼近“圆面积”。

三年级下册数学试题-奥数:等差数列(二)全国通用

三年级下册数学试题-奥数:等差数列(二)全国通用

【温故】等差数列(二)【小检测】1. 通项公式:末项=首项+(项数-1)×公差1.对于数列4、7、10、13、16、19……,第10项是多少?2.【拓展】( -) 12.在等差数列6,13,20,27,…中,从左向右数,第个数是1994.从1开始的连续奇数的项数——(末项+1)÷2从2开始的连续偶数的项数——末项÷23.求和公式:和=(首项+末项)×项数÷2【拓展】项数为奇数的等差数列,则和=中间项×项数3. 计算下列一组数的和:105,110,115,120,…,195,200【例1】(★★★)已知数列:2,1,4,3,6,5,8,7,…,问2009是这个数列的第多少项?【例2】(★★★)⑴如果一个等差数列的第4项为21,第6项为33,求它的第8项。

⑵如果一个等差数列的第3项为16,第11项为72,求它的第6项。

【例3】(★★★★)有一列数:1,2,4,7,11,16,22,29,37,…,问这列数第51个数是多少?【例4】(★★★)计算:1+2-3+4+5-6+7+8-9+…+97+98-991⑴3322⑵510⑶123【例5】(★★★★)计算:1+3+4+6+7+9+10+12+13+…+66+67+69+70【例6】(★★★)一个大剧院,座位排列成的形状像是一个梯形,而且第一排有10个座位,第二排有12个座位,第三排有14个座位,……最后一排他们数了一下,一共有210个座位,思考一下,剧院中间一排有多少个座位呢?这个剧院一共有多少个座位呢?【例7】(★★★★)在1~100这一百个自然数中,所有能被9整除的数的和是多少?一、本讲重点知识回顾高频考点:1.差等差,双重等差2.找规律3.分组计算二、本讲经典例题1 502 50 …98 50 99 50例3,例4,例5,例72难忘的一天今天,太阳照着大地,就像闪闪发光的金子一样,到处都是暖洋洋的,我的心里也是暖洋洋的。

小学奥数等差数列练习及答案

小学奥数等差数列练习及答案

小学奥数等差数列练习及答案【三篇】【篇一】知识点:1、数列:按一定顺序排成的一列数叫做数列。

数列中的每一个数都叫做项,第一项称为首项,最后一项称为末项。

数列中共有的项的个数叫做项数。

2、等差数列与公差:一个数列,从第二项起,每一项与与它前一项的差都相等,这样的数列的叫做等差数列,其中相邻两项的差叫做公差。

3、常用公式等差数列的总和=(首项+末项)项数2 项数=(末项-首项)公差+1 末项=首项+公差(项数-1)首项=末项-公差(项数-1)公差=(末项- 首项)(项数-1)等差数列(奇数个数)的总和=中间项项数【篇二】典例剖析:例(1在数列3、6、9……,201中,共有多少数?如果继续写下去,第201个数是多少?分析:(1)因为在这个等差数列中,首项=3,末项=201,公差=3,所以根据公式:项数=(末项-首项)公差+ 1,便可求出(2)根据公式:末项=首项+公差(项数-1 )解:项数=(201-3)3+1=67末项=3+3(201-1)=603答:共有67 个数,第201 个数是603练一练:在等差数列中4、10、16、22、……中,第48项是多少?508是这个数列的第几项?答案:第48项是286,508是第85项例(2)全部三位数的和是多少?分析::所有的三位数就是从1 00~999共900个数,观察100、101、102、……、998、999这一数列,发现这是一个公差为1的等差数列。

要求和可以利用等差数列求和公式来解答。

解:(100+999)9002=10999002=494550答:全部三位数的和是494550。

练一练:求从1 到2000 的自然数中,所有偶数之和与所有奇数之和的差。

答案:1000例(3)求自然数中被10除余1 的所有两位数的和。

分析一:在两位数中,被1 0除余1最小的是1 1 ,的是91 。

从题意可知,本题是求等差数列11、21、31、……、91的和。

它的项数是9,我们可以根据求和公式来计算。

(完整)三年级奥数等差数列求和习题及答案

(完整)三年级奥数等差数列求和习题及答案

计算(三)等差数列求和知识精讲一、定义:一个数列的前n 项的和为这个数列的和。

二、表达方式:常用n S 来表示 。

三:求和公式:和=(首项+末项)⨯项数2÷,1()2n n s a a n =+⨯÷。

对于这个公式的得到可以从两个方面入手:(思路1)1239899100++++++11002993985051=++++++++共50个101()()()() 101505050=⨯= (思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和 (1001)100 2 10150 5050=+⨯÷=⨯=。

四、中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数。

譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=(),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯。

例题精讲:例1:求和:(1)1+2+3+4+5+6 = (2)1+4+7+11+13=(3)1+4+7+11+13+ (85)分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。

例如(3)式项数=(85-1)÷3+1=29和=(1+85)×29÷2=1247答案:(1)21 (2)36 (3)1247例2:求下列各等差数列的和。

(1)1+2+3+4+…+199(2)2+4+6+…+78(3)3+7+11+15+…+207分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。

三年级奥数等差数列专项练习

三年级奥数等差数列专项练习

三年级奥数等差数列专项练习1. 求等差数列2,5,8,11,…的第28项和50项2. 求等差数列2,7,12,17,22…的第20项和第80项3. 等差数列1,4,6,…某项为82,它是第多少项?4.等差数列3,7,11,15,…某项为163,它是第多少项?5.等差数列3,10,17,…前20项和是多少?6. 在等差数列4,11,18,25,32,…中,前25项和是多少?7. 50个士兵排成一行报数,后一个士兵总是比前一个士兵多报4,一直到最后一个同学报198,那么第一个士兵报多少?第20个士兵报多少?8. 有65个学生参加数学竞赛,每个学生都有一个考号,已知前一个学生的考号总是比后一个学生的考号小4,最后一个学生的考号是259,那么第一个学生的考号是多少?第40个学生的考号是多少?9.军训时排队列,第一排5人,以后每排比第一排多4人,共排成19排,那么中间一排有多少人?一共有多少人?10. 6个连续自然数的和是363,那么这6个数是?11. 5个连续奇数的和是295,那么这5个奇数分别是?12. 在1~1000中所有是7的倍数的数和是多少?13. 在1~200之间不能被3整除的数的和是多少?14. 一座大钟在半点敲一次,在整点敲对应时间的次数,那么这座中一天共敲多少次?15. 把一堆苹果分给8个小朋友,每个小朋友至少有一个,但是大家的数量都不相同,至少需要多少个苹果?16. 把120个苹果分给一群小朋友,每个小朋友至少有一个,但是大家所分的苹果数都不同。

那么这群小朋友最多有多少个17. 20支球队进行比赛,每个队伍都和其他队伍有一场比赛,那么一共有多少场比赛?18. 若干支球队进行比赛,每个队伍都和其他队伍有一场比赛,一共进行了36场比赛,那么一共有多少支队伍?19. 在一个等差数列中,前10个数的和是70,前20个数的和是130,那么前30个数的和是多少?20. 小明家住在一条胡同里,这条胡同门牌号为“1,2,3……”这样一组自然数,如果小明把除了自己家的门牌号都加在一起得到88,那么这条胡同里一共有多少户人家?。

(完整版)三年级奥数等差数列求和习题及答案

(完整版)三年级奥数等差数列求和习题及答案

计算(三)等差数列求和知识精讲一、定义:一个数列的前n 项的和为这个数列的和。

二、表达方式:常用n S 来表示 。

三:求和公式:和=(首项+末项)⨯项数2÷,1()2n n s a a n =+⨯÷。

对于这个公式的得到可以从两个方面入手:(思路1)1239899100++++++L11002993985051=++++++++L 1444444442444444443共50个101()()()() 101505050=⨯= (思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++L L L 和=1+和倍和即,和 (1001)100 2 10150 5050=+⨯÷=⨯=。

四、中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数。

譬如:① 48123236436922091800+++++=+⨯÷=⨯=L (),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=L (),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯。

例题精讲:例1:求和:(1)1+2+3+4+5+6 = (2)1+4+7+11+13=(3)1+4+7+11+13+ (85)分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。

例如(3)式项数=(85-1)÷3+1=29和=(1+85)×29÷2=1247答案:(1)21 (2)36 (3)1247例2:求下列各等差数列的和。

(1)1+2+3+4+…+199(2)2+4+6+…+78(3)3+7+11+15+…+207分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。

等差数列三年级奥数题

等差数列三年级奥数题

等差数列三年级奥数题摘要:1.等差数列的概念和基本性质2.等差数列求和公式3.三年级奥数等差数列求和习题及答案4.提高等差数列求和题目的解题技巧正文:一、等差数列的概念和基本性质等差数列是指一个数列,其中每个相邻的元素之差相等。

等差数列的基本性质包括:1.等差数列中任意两个相邻元素的差值相等;2.等差数列中任意两个元素之差的值都是相同的;3.等差数列中元素的和与项数成正比。

二、等差数列求和公式等差数列求和公式是指将一个等差数列的所有元素相加得到的总和的计算公式。

等差数列求和公式为:S = n * (a1 + an) / 2其中,S 表示等差数列的和,n 表示等差数列的项数,a1 表示等差数列的第一个元素,an 表示等差数列的最后一个元素。

三、三年级奥数等差数列求和习题及答案1.习题:一个等差数列的前5 个元素分别为1, 3, 5, 7, 9,求这个等差数列的和。

答案:S = 5 * (1 + 9) / 2 = 252.习题:一个等差数列的前10 个元素分别为2, 4, 6, 8, 10, 12, 14, 16, 18, 20,求这个等差数列的和。

答案:S = 10 * (2 + 20) / 2 = 110四、提高等差数列求和题目的解题技巧1.观察题目中的已知条件,如元素个数、首项和末项等,确定等差数列的性质;2.利用等差数列求和公式,将已知条件代入公式计算;3.注意数列中可能出现的公差为0 的情况,此时等差数列的所有元素都相等,和为元素个数乘以任意一项。

通过以上提纲和正文内容,我们可以了解到等差数列的概念和基本性质,以及等差数列求和公式的应用。

同时,我们通过三年级奥数等差数列求和习题及答案,学会了如何利用等差数列求和公式解决实际问题。

三年级奥数题及参考答案:等差数列基础练习

三年级奥数题及参考答案:等差数列基础练习

三年级奥数题及参考答案:等差数列基础练习编者导语:数学竞赛题代表了活的数学。

解竞赛题虽离不开一般的思维规律,离不开数学知识,也有一些使用频率较大的方法和技巧,但大都没有常规模式可套,也无万能范本可循。

且赛题内容不断更新,重要的是整体全局上的洞察力、敏锐的直觉和独创性的构思。

查字典数学网为大家准备了小学三年级奥数题,希望小编整理的三年级奥数题及参考答案:等差数列基础练习,可以帮助到你们,助您快速通往高分之路!!1、一个递增(后项比前项大)的等差数列,第28项比第 53项________(多或少)______个公差。

2、一个递增(后项比前项大)的等差数列,第53 项比第28 项________(多或少)______个公差。

3、一个递增(后项比前项大)的等差数列,第55 项比第37 项________(多或少)______个公差。

4、一个递增(后项比前项大)的等差数列,第55 项比第83 项________(多或少)______个公差。

5、一个递增(后项比前项大)的等差数列,第28项比第73项________(多或少)______个公差。

6、一个递增(后项比前项大)的等差数列,第90项比第73项________(多或少)______个公差。

7、一个递增(后项比前项大)的等差数列,首项比第73 项________(多或少)______个公差。

8、一个递增(后项比前项大)的等差数列,第87 项比首项________(多或少)______个公差。

9、一个递减(后项比前项小)的等差数列,第18项比第 32 项________(多或少)______个公差。

10、一个递减(后项比前项小)的等差数列,第32项比第 18 项________(多或少)______个公差。

11、一个递减(后项比前项小)的等差数列,第74项比第26项________(多或少)______个公差。

12、一个递减(后项比前项小)的等差数列,第74项比第91 项________(多或少)______个公差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三年级奥数等差数列专项练习
1. 求等差数列2,5,8,11,…的第28项和50项
2. 求等差数列2,7,12,17,22…的第20项和第80项
3. 等差数列1,4,6,…某项为82,它是第多少项?
4.等差数列3,7,11,15,…某项为163,它是第多少项?
5.等差数列3,10,17,…前20项和是多少?
6. 在等差数列4,11,18,25,32,…中,前25项和是多少?
7. 50个士兵排成一行报数,后一个士兵总是比前一个士兵多报4,一直到最后一个同学报198,那么第一个士兵报多少?第20个士兵报多少?
8. 有65个学生参加数学竞赛,每个学生都有一个考号,已知前一个学生的考号总是比后一个学生的考号小4,最后一个学生的考号是259,那么第一个学生的考号是多少?第40个学生的考号是多少?
9.军训时排队列,第一排5人,以后每排比第一排多4人,共排成19排,那么中间一排有多少人?一共有多少人?
10. 6个连续自然数的和是363,那么这6个数是?
11. 5个连续奇数的和是295,那么这5个奇数分别是?
12. 在1~1000中所有是7的倍数的数和是多少?
13. 在1~200之间不能被3整除的数的和是多少?
14. 一座大钟在半点敲一次,在整点敲对应时间的次数,那么这座中一天共敲多少次?
15. 把一堆苹果分给8个小朋友,每个小朋友至少有一个,但是大家的数量都不相同,至少需要多少个苹果?
16. 把120个苹果分给一群小朋友,每个小朋友至少有一个,但是大家所分的苹果数都不同。

那么这群小朋友最多有多少个
17. 20支球队进行比赛,每个队伍都和其他队伍有一场比赛,那么一共有多少场比赛?
18. 若干支球队进行比赛,每个队伍都和其他队伍有一场比赛,一共进行了36场比赛,那么一共有多少支队伍?
19. 在一个等差数列中,前10个数的和是70,前20个数的和是130,那么前30个数的和是多少?
20. 小明家住在一条胡同里,这条胡同门牌号为“1,2,3……”这样一组自然数,如果小明把除了自己家的门牌号都加在一起得到88,那么这条胡同里一共有多少户人家?。

相关文档
最新文档