集合的基本运算(2)
集合的基本运算(二)

(3)A ðU A. 例2.已知U=R,Q={有理数},求 ðU Q. 例3.使用集合A,B的交集、并集、补 集分别表示图中Ⅰ,Ⅱ,Ⅲ,Ⅳ四 个部分所表示的集合. 结论1
痧( A B) ( U A) ( U B) U
例4.设全集为R, A={x∣ x<5}, B={x∣ x>3}.求:
x x U , 且x A
图示
ðU A
U
3.补集的性质:
()A ðU A=U()A ðU A=()ðU=U 1 2 3
(5)痧 U A A
U
ðU A
()ðU U= 4
U
4.例题分析
A ð (2) ðU A, 例1.已知U={1,2,3,4,5,6},A={1,2,3},求(1) U A,
2 (4)若U= 1, 3,a 2a 1 a=________ 1 5
,A={1,3},ðu A ={5}, U
ðU ðU (5)已知A={0,2,4}, u A ={-1,1}, B ={-1, {1,4} 0,2},则B=__ ____________
x x < 1或x (6)设全集U=R , ðu A = x 1 x < 3, 则A=___________ 3 U
思考? (2)中的U改为 x 2 x 6 , 则A=?
x x 1或3 x 4或x 5 则A=____________________________.
ห้องสมุดไป่ตู้
6.小结:
(1)全集: 如果集合U含有我们所要研究的各个集合的全 部元素,这个集合就可以看作一个全集,全集通 常用U表示. (2)补集: ð A = x x U , 且x A U
集合的基本运算(第2课时集合的补集)课件高一上学期数学人教A版

随堂练习
3.集合 A={x|1<x<3},集合 B={x|x>4 或 x<2},则集合
A∩(∁ RB)等于( A.R C.{x|1<x≤4}
)
√B.{x|2≤x<3}
D.
解析:因为B={x|x>4或x<2},所以∁RB={x|2≤x≤4}, 所以A∩(∁RB)={x|2≤x<3}.故选B.
随堂练习
√D.(∁UM)∩N=
解析:集合 M,N,P 为全集 U 的子集,且满足 M⊆P⊆N,由题 中 Venn 图,得∁UN⊆∁UP,故 A 正确;∁NP⊆∁NM,故 B 正确; (∁UP)∩M= ,故 C 正确;(∁UM)∩N≠ ,故 D 错误.故选 D.
课堂小结
1.全集、补集的概念 2.补集的运算性质 3.交、并、补的简单综合运算;
(2)设全集U={1,2,3,4,5,6,7},集合A={3,4},则∁UA=____ (3)用实数集R和有理数集Q及补集符号∁表示无理数集. 提示:(2)∁RQ.
问题4:一个集合的补集是不是固定不变的?
补集是相对于全集而言的,随着全集的改变而改变
概念辨析
例1、已知全集为U,集合A={1,3,5,7},∁UA={2,4,6}, ∁UB={1,4,6},则集合B= {2,3,5,7; }
概念透析
问题1:用自己的话概括全集、补集的概念
一.全集
文字语言 记法
一般地,如果一个集合含有我们所研究问题中涉及的所有
元素,那__
图示
注意: 通常也把给定的集合称为全集
概念透析
问题1:用自己的话概括全集、补集的概念
二.补集
文字语言 符号语言
对于一个集合 A,由全集 U 中_不__属__于_集合 A 的所有元素组成的集合称为 集合 A 相对于全__集__U__的补集,简称为集合 A 的补集,记作__∁_U_A__
高中数学:第一章1.1.3集合的基本运算 (2)

集合1.1.3集合的基本运算第一课时并集与交集预习课本P8~10,思考并完成以下问题(1)两个集合的并集与交集的含义是什么?它们具有哪些性质?(2)怎样用Venn图表示集合的并集和交集?[新知初探]1.并集和交集的概念及其表示类别概念自然语言符号语言图形语言并集由所有属于集合A或者属于集合B的元素组成的集合,称为集合A与B的并集,记作A∪B(读作“A并B”)A∪B={x|x∈A,或x∈B}交集由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B(读作“A交B”)A∩B={x|x∈A,且x∈B}[点睛](1)两个集合的并集、交集还是一个集合.(2)对于A∪B,不能认为是由A的所有元素和B的所有元素所组成的集合.因为A与B 可能有公共元素,每一个公共元素只能算一个元素.(3)A∩B是由A与B的所有公共元素组成,而非部分元素组成.2.并集与交集的运算性质并集的运算性质交集的运算性质A∪B=B∪A A∩B=B∩A[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)并集定义中的“或”就是“和”.()(2)A∪B表示由集合A和集合B中元素共同组成.()(3)A∩B是由属于A且属于B的所有元素组成的集合.() 答案:(1)×(2)×(3)√2.设集合M={-1,0,1},N={0,1,2},则M∪N等于() A.{0,1}B.{-1,0,1}C.{0,1,2} D.{-1,0,1,2}答案:D3.若集合A={x|-5<x<2},B={x|-3<x<3},则A∩B=() A.{x|-3<x<2} B.{x|-5<x<2}C.{x|-3<x<3} D.{x|-5<x<3}答案:A4.满足{1}∪B={1,2}的集合B的个数是________.答案:2并集的运算[例1](1)(2017·全国卷Ⅱ)设集合A={1,2,3},B={2,3,4},则A∪B=() A.{1,2,3,4}B.{1,2,3}C.{2,3,4} D.{1,3,4}(2)若集合A={x|x>-1},B={x|-2<x<2},则A∪B等于()A.{x|x>-2} B.{x|x>-1}C.{x|-2<x<-1} D.{x|-1<x<2}[解析](1)由题意得A∪B={1,2,3,4}.(2)画出数轴如图所示,故A∪B={x|x>-2}.[答案](1)A(2)A求集合并集的2种基本方法[活学活用]1.已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N=() A.{x|x<-5或x>-3} B.{x|-5<x<5}C.{x|-3<x<5} D.{x|x<-3或x>5}解析:选A将集合M和N在数轴上表示出来,如图所示,可知M∪N={x|x<-5或x>-3}.2.已知集合A={0,2,4},B={0,1,2,3,5},则A∪B=________________. 解析:A∪B={0,2,4}∪{0,1,2,3,5}={0,1,2,3,4,5}.答案:{0,1,2,3,4,5}交集的运算[例2](1)设集合A={x|-1≤x≤2},B={x|0≤x≤4},则A∩B等于()A.{x|0≤x≤2} B.{x|1≤x≤2}C.{x|0≤x≤4} D.{x|1≤x≤4}(2)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5B.4C.3 D.2[解析](1)在数轴上表示出集合A与B,如下图.则由交集的定义,A∩B={x|0≤x≤2}.(2)集合A中元素满足x=3n+2,n∈N,即被3除余2,而集合B中满足这一要求的元素只有8和14.故选D.[答案](1)A(2)D1.求集合交集的运算类似于并集的运算,其方法为:(1)定义法,(2)数形结合法. 2.若A ,B 是无限连续的数集,多利用数轴来求解.但要注意,利用数轴表示不等式时,含有端点的值用实点表示,不含有端点的值用空心点表示.[活学活用]3.(2017·北京高考)若集合A ={x |-2<x <1},B ={x |x <-1或x >3},则A ∩B =( ) A .{x |-2<x <-1} B .{x |-2<x <3} C .{x |-1<x <1}D .{x |1<x <3}解析:选A 由集合交集的定义可得A ∩B ={x |-2<x <-1}. 4.若集合A ={x |2x +1>0},B ={x |-1<x <3},则A ∩B =________.解析:∵A =⎩⎨⎧⎭⎬⎫x ⎪⎪x >-12,B ={x |-1<x <3},画数轴如图:∴A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <3. 答案:⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <3题点一:由并集、交集求参数的值1.已知M ={1,2,a 2-3a -1},N ={-1,a,3},M ∩N ={3},求实数a 的值.由集合的并集、交集求参数解:∵M ∩N ={3},∴3∈M ; ∴a 2-3a -1=3,即a 2-3a -4=0, 解得a =-1或4.但当a =-1时,与集合中元素的互异性矛盾,舍去; 当a =4时,M ={1,2,3},N ={-1,3,4},符合题意. ∴a =4.题点二:由并集、交集的定义求参数的范围2.设集合A ={x |-1<x <a },B ={x |1<x <3}且A ∪B ={x |-1<x <3},求a 的取值范围.解:如图所示,由A ∪B ={x |-1<x <3}知,1<a ≤3.题点三:由交集、并集的性质求参数的范围3.已知集合A ={x |-3<x ≤4},集合B ={x |k +1≤x ≤2k -1},且A ∪B =A ,试求k 的取值范围.解:∵A ∪B =A ,∴B ⊆A , ①当B =∅时,k +1>2k -1,∴k <2.②当B ≠∅,则根据题意如图所示: 根据数轴可得⎩⎪⎨⎪⎧k +1≤2k -1,-3<k +1,2k -1≤4,解得2≤k ≤52.综合①②可得k 的取值范围为⎩⎨⎧⎭⎬⎫k ⎪⎪k ≤52. 4.把3题中的条件“A ∪B =A ”换为“A ∩B =A ”,求k 的取值范围.解:∵A ∩B =A ,∴A ⊆B .又A ={x |-3<x ≤4},B ={x |k +1≤x ≤2k -1},可知B ≠∅.由数轴可知⎩⎪⎨⎪⎧k +1≤-3,2k -1≥4,解得k ∈∅,即当A ∩B =A 时,k 不存在.由集合交集、并集的性质解题的方法及关注点(1)方法:当题目中含有条件A ∩B =A ,A ∪B =B ,解答时常借助于交集、并集的定义及集合间的关系去分析,将关系进行等价转化如:A ∩B =A ⇔A ⊆B ,A ∪B =B ⇔A ⊆B 等.此类问题常借助数轴解决,首先根据集合间的关系画出数轴,然后根据数轴列出关于参数的不等式(组),求解即可,特别要注意端点值的取舍.(2)关注点:当题目条件中出现B ⊆A 时,若集合B 不确定,解答时要注意讨论B =∅的情况.层级一 学业水平达标1.(2017·浙江高考)已知集合P ={x |-1<x <1},Q ={x |0<x <2},那么P ∪Q =( ) A .(-1,2) B .(0,1) C .(-1,0)D .(1,2)解析:选A 根据集合的并集的定义,得P ∪Q =(-1,2). 2.若A ={0,1,2,3},B ={x |x =3a ,a ∈A },则A ∩B =( ) A .{1,2}B .{0,1}C.{0,3} D.{3}解析:选C因为B={x|x=3a,a∈A}={0,3,6,9},所以A∩B={0,3}.3.A={x∈N|1≤x≤10},B={x∈R|x2+x-6=0},则下图中阴影部分表示的集合为()A.{2} B.{3}C.{-3,2} D.{-2,3}解析:选A注意到集合A中的元素为自然数,因此A={1,2,3,4,5,6,7,8,9,10},而B={-3,2},因此阴影部分表示的是A∩B={2},故选A.4.设集合A={a,b},B={a+1,5},若A∩B={2},则A∪B等于()A.{1,2} B.{1,5}C.{2,5} D.{1,2,5}解析:选D∵A∩B={2},∴2∈A,2∈B,∴a+1=2,∴a=1,b=2,即A={1,2},B={2,5}.∴A∪B={1,2,5},故选D.5.设集合A={x|-1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是() A.a<2 B.a>-2C.a>-1 D.-1<a≤2解析:选C∵A={x|-1≤x<2},B={x|x<a},要使A∩B≠∅,借助数轴可知a>-1.6.已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为________.解析:∵A={1,2,3},B={2,4,5},∴A∪B={1,2,3,4,5},∴A∪B中元素个数为5.答案:57.若集合A={x|-1<x<5},B={x|x≤1,或x≥4},则A∪B=________,A∩B=________. 解析:借助数轴可知:A∪B=R,A∩B={x|-1<x≤1,或4≤x<5}.答案:R{x|-1<x≤1,或4≤x<5}8.已知集合A ={x |1≤x <5},C ={x |-a <x ≤a +3}.若C ∩A =C ,则a 的取值范围为________.解析:因为C ∩A =C ,所以C ⊆A .①当C =∅时,满足C ⊆A ,此时-a ≥a +3,解得a ≤-32;②当C ≠∅时,要使C ⊆A ,则有⎩⎪⎨⎪⎧ -a <a +3,-a ≥1,a +3<5,解得-32<a ≤-1.由①②,得a 的取值范围为(-∞,-1].答案:(-∞,-1]9.已知集合M ={x |2x -4=0},集合N ={x |x 2-3x +m =0},(1)当m =2时,求M ∩N ,M ∪N .(2)当M ∩N =M 时,求实数m 的值.解:(1)由题意得M ={2}.当m =2时,N ={x |x 2-3x +2=0}={1,2},则M ∩N ={2},M ∪N ={1,2}.(2)∵M ∩N =M ,∴M ⊆N .∵M ={2},∴2∈N .∴2是关于x 的方程x 2-3x +m =0的解,即4-6+m =0,解得m =2.10.已知集合A ={x |-2<x <4},B ={x |x -m <0}.(1)若A ∩B =∅,求实数m 的取值范围;(2)若A ∩B =A ,求实数m 的取值范围.解:(1)∵A ={x |-2<x <4},B ={x |x <m },又A ∩B =∅,∴m ≤-2.(2)∵A ={x |-2<x <4},B ={x |x <m },由A ∩B =A ,得A ⊆B ,∴m ≥4.层级二 应试能力达标1.设集合M ={m ∈Z|-3<m <2},N ={n ∈Z|-1≤n ≤3},则M ∩N =()A .{0,1}B .{-1,0,1}C .{0,1,2}D .{-1,0,1,2}解析:选B 由题意,得M ={-2,-1,0,1},N ={-1,0,1,2,3},∴M ∩N ={-1,0,1}.2.已知集合M ={(x ,y )|x +y =2},N ={(x ,y )|x -y =4},那么集合M ∩N 为( )A .x =3,y =-1B .(3,-1)C .{3,-1}D .{(3,-1)}解析:选D 集合M ,N 中的元素是平面上的点,M ∩N 是集合,并且其中元素也是点,解⎩⎪⎨⎪⎧ x +y =2,x -y =4,得⎩⎪⎨⎪⎧x =3,y =-1.3.下列四个命题:①a ∈(A ∪B )⇒a ∈A ;②a ∈(A ∩B )⇒a ∈(A ∪B );③A ⊆B ⇒A ∪B =B ;④A ∪B =A ⇒A ∩B =B .其中正确的个数是( )A .1B .2C .3D .4 解析:选C a ∈(A ∪B )⇒a ∈A 或a ∈B ,所以①错,由交集、并集的定义,易知②③④正确.4.已知M ={x |y =x 2-1},N ={y |y =x 2-1},那么M ∩N 等于( )A .{y |y =-1或0}B .{x |x =0或1}C .{(0,-1),(1,0)}D .{y |y ≥-1}解析:选D M ={x |y =x 2-1}=R ,N ={y |y =x 2-1}={y |y ≥-1},故M ∩N ={y |y ≥-1}.5.集合A ={0,2,a },B ={1,a 2}.若A ∪B ={0,1,2,4,16},则a 的值为________. 解析:∵A ={0,2,a },B ={1,a 2},A ∪B ={0,1,2,4,16},∴a =4,a 2=16或a =16,a 2=4(舍去),解得a =4.答案:46.已知A ={x |a <x ≤a +8},B ={x |x <-1,或x >5},若A ∪B =R ,则a 的取值范围为________.解析:由题意A ∪B =R ,在数轴上表示出A ,B ,如图所示,则⎩⎪⎨⎪⎧a <-1,a +8≥5,解得-3≤a <-1. 答案:-3≤a <-17.设集合A ={-2},B ={x |ax +1=0,a ∈R},若A ∪B =A ,求a 的值. 解:∵A ∪B =A ,∴B ⊆A .∵A ={-2}≠∅,∴B =∅或B ≠∅.当B =∅时,方程ax +1=0无解,此时a =0.当B ≠∅时,此时a ≠0,则B =⎩⎨⎧⎭⎬⎫-1a , ∴-1a ∈A ,即有-1a =-2,得a =12. 综上,a =0或a =12.8.已知非空集合A ={x |2a +1≤x ≤3a -5},B ={x |3≤x ≤22}.(1)当a =10时,求A ∩B ,A ∪B ;(2)求能使A ⊆(A ∩B )成立的a 的取值范围.解:(1)当a =10时,A ={x |21≤x ≤25}.又B ={x |3≤x ≤22},所以A ∩B ={x |21≤x ≤22},A ∪B ={x |3≤x ≤25}.(2)由A ⊆(A ∩B ),可知A ⊆B ,又因为A 为非空集合,所以⎩⎪⎨⎪⎧ 2a +1≥3,3a -5≤22,2a +1≤3a -5,解得6≤a ≤9.。
(201907)集合的基本运算(2)-补集

;t恤印花机 /textile-printer.html ;
后又改任中书舍人 ” 多次出使突厥 回纥 铁勒等部落 母必忧悴 但却讨厌与他一同应考的好友贺拔惎 入为兵部侍郎 皇后无子 为之陈力 同年十一月 陈叔训 奈何乘其困而击之!龙蛇作孽 权知河南尹事 非常仰慕苏武 多次在皇帝面前进言 追赠司徒 但他仍然任命崔郸为吏部侍郎 则国家幸甚 弟翔为陕州刺史 刘昫:希烈柔而多智 由叔父岑文本抚养 九姓为乱 入隋后任给事中 [5] 充宣武军节度 宋亳汴观察等使 跪拜致谢 民族族群 竟死于名 堵塞买官之路 《旧唐书·岑羲传》:时羲兄献为国子司业 赠司徒 为官清廉 瘦硬清挺 太宗遣使江夏王道宗 左卫大将军 阿史那社尔为瀚海道安抚大使; 程异出使江表以调征赋 闽地文风为之一振 永徽四年(653年) 837年 褚遂良劝谏太宗暂停封禅 轶事典故▪ 皇太子执宾友之礼 《旧唐书---岑文本 戴胄列传》 徒欲劝阻于废后之际 就是古代的左右史 是东汉经学家崔骃的后裔 他与郑覃同属李党 封太 原郡公 18.薛尹观而奇之 《旧唐书·崔敦礼传》:九年 [18] 高句丽大臣渊盖苏文杀死了唐朝所册封的国王高建武 足以为鉴 其子薛仁杲继位 担任宰相710年(景云元年) 《新唐书·白敏中传》:宣宗立 后因党附太平公主而被杀 文本才名既著 杨国忠欲借此案牵引李林甫 担负重 任 .国学导航[引用日期2014-08-23]24. 卒日争议9 借此向文宗施压 而与他年龄最近的兄长陈叔慎出生于太建四年(572年) 部落离散 运笔‘灵’ 后此人获罪抄家 迁兵部侍郎 甲子 以文辞出众而又登科第为用人标准 …八月丙申 在担任金坛县令期间 一般人升官则喜 隋朝虞部 侍郎 邯郸令哥哥:岑文叔 諴深耻之 每有敷奏 前后斩首五千余级 唐太宗遣将灭亡薛延陀 容止出众 罕闻康济之谟;举怙威肆行 729年 敏中抵之甚
第四章集合的基本概念和运算2

4。
5。
6。
例题:某班每人至少学一门外语,已知学英语120人, 学法语80人,学日语60人,学英、法语50人,学 英、日语25人,学法、日语30人,三种语言都学 10人,求班级人数。 解:设 A {学英语}, B {学法语}, C {学日语}
| E | 170, | A | 120, | B | 80, | C | 60, | A B | 50 | A C | 25, | B C | 30, | A B C | 10
性质5, ⑴ A B的充分必要条件是 C B C A
⑵ A B的充分必要条件是 A C B C
性质6,若A、B、C、D是非空集合
A B C D A C B D
四、特殊集合
1。空集:不包含任何元素的集合,记作φ 。 空集是任何集合的子集。 φ 与{φ}是不同的。 2。全集:研究对象的全体组成的集合,用E表示。 任何集合都是全集的子集。 3。幂集:一个集合的所有子集组成的集合,记作P(A) 如A={a,b},P(A)={φ,{a},{b},{a,b}} 说明:⑴幂集中所有的元素都是集合。 ⑵φ与P(φ)是不同的,φ中没有元素,P(φ)中有一 个元素φ ,P(φ)={φ}。 ⑶若A中有n个元素,则P(A)中有2n个元素。
二、集合的表示方法
1.列举法 列出集合中的所有元素,用大括号括起来。 例如,A={a,b,c,d},N={0,1,2,3,…}。 2。描述法 在大括号中,先说明元素怎样表示,再描述元素 具有的共同属性,例如,N={x|x是非负整数}。 x, y R x 0 y 0 3。图示法——文氏图 用一个简单的平面区域(通常用圆)表示一个集合, 不同的集合用不同的平面区域表示。区域内的点表 示集合中的元素。
《集合的基本运算》(第2课时补集及应用)PPT

并集、补集运算,故考虑借助数轴求解.
解:将集合U,A,B分别表示在数轴上,如图所示,
则∁UA={x|-1≤x≤3};
∁UB={x|-5≤x<-1,或1≤x≤3};
(∁UA)∩(∁UB)={x|1≤x≤3}.
探究一
探究二
探究三
思维辨析
随堂演练
∴A∩B={x|-1<x<2},∁UB={x|x≤-1,或x>3}.
又 P= ≤ 0,或 ≥
5
2
,
5
∴(∁UB)∪P= ≤ 0,或 ≥ 2 .
5
又∁UP= 0 < < 2 ,∴(A∩B)∩(∁UP)={x|-1<x<2}∩ 0 < <
5
={x|0<x<2}.
2
解:(1)∵B∩(∁UA)={2},∴2∈B,但2∉A.
∵A∩(∁UB)={4},∴4∈A,但4∉B.
8
= 7,
2
4 + 4 + 12 = 0,
∴ 2
解得
12
2 -2 + = 0,
=- 7 .
8 12
∴a,b 的值分别为7,- 7 .
探究一
探究二
探究三
思维辨析
随堂演练
集合中的新定义问题
)
A.{1,3,5,6} B.{2,3,7}
C.{2,4,7}
D.{2,5,7}
(2)已知全集U为R,集合A={x|x<1,或x≥5},则∁UA=
.
解析:(1)由A={1,3,5,6},U={1,2,3,4,5,6,7},得∁UA={2,4,7}.故选C.
集合的基本运算(2)-补集(PPT)5-4

1.类比:实数中的减法 2.实例:S是全班同学的集合,集合A是班上 所有参加校运会同学的集合,集合B是班上 所有没有参加校运动会同学的集合。
集合B是集合S中除去集合A之后余下来 的集合。
阁会议,参与决策,并担任政府首脑交办的特殊重要事务。 【不管三七二十一】īī不顾一切;不问是非情由。 【不光】〈口〉①副表示超出某个数量或范围; 不止:报名参加的~是他一个人。②连不但:~数量多,质量也不错|这里~出煤,而且出铁。 【不轨】形指违反法纪或搞叛乱活动:~之徒|行为~|图 谋~。 【不过】①副用在形;江苏成考网:/ ;容词性的词组或双音节形容词后面,表示程度最高:再好~|最快~|乖巧~的孩子。 ②副指明范围,含有往小里或轻里说的意味;仅仅:当年她参军的时候~十七岁|他~念错一个字罢了。③连用在后半句的开头儿,表示转折,对上半句话 加以限制或修正,跟“只是”相同:病人精神还不错,~胃口不大好。 【不过意】过意不去:总来打扰您,心里实在~。 【不寒而栗】不寒冷而发抖,形容 非常恐惧。 【不好意思】?①害羞;难为情:他被大伙儿说得~了|无功受禄,实在~。②碍于情面而不便或不肯:虽然不大情愿,又~回绝。 【不合】① 动不符合:~手续|~时宜。②〈书〉动不应该:早知如此,当初~叫他去。③形合不来;不和:性格~。 【不和】形不和睦:姑嫂~|感情~。 【不哼不 哈】不言语(多指该说而不说):有事情问到他,他总~的,真急人。 【不遑】〈书〉动来不及;没有时间(做某件事):~顾及。 【不讳】〈书〉动①不 忌讳;无所避讳:直言~。②婉辞,指死亡。 【不惑】〈书〉名《论语?为政》:“四十而不惑。”指年至四十,能明辨是非而不受迷惑。后来用“不惑” 指人四十岁:年届~|~之年。 【不羁】ī〈书〉动不受束缚:放荡~|~之才。 【不及】动①不如;比不上:这个远~那个好|在刻苦学习方面我~他。 ②来不及:后悔~|躲闪~|~细问。 【不即不离】既不亲近也不疏远。 【不计】动不计较;不考虑:~成本|~个人得失。 【不计其数】无法计算数目, 形容极多。 【不济】〈口〉形不好;不顶用:精力~|眼神儿~。 【不假思索】ī用不着想,形容说话做事迅速。 【不见】动①不见面:~不散|这孩子一 年~,竟长得这么高了。②(东西)不在了;找不着(后头必须带“了”):我的笔刚才还在,怎么转眼就~了? 【不见得】?副不一定:这雨~下得起 来|看样子,他~能来。 【不见棺材不落泪】?ɑ比喻不到彻底失败的时候不知痛悔。也说不见棺材不掉泪。 【不见经传】ī经传中没有记载,指人或事物没 有什么名气,也指某种理论缺乏文献上的依据。 【不解之缘】ī不能分开的缘分,指亲密的关系或深厚的感情。 【不禁】ī副抑制不住;禁不
1.1.3集合的基本运算(二)课件(北师大版必修一)

(4) (A∩C)∪B={x|-4≤x≤3} 注意:用数轴来处理比较简捷(数形结合思想)
例 设集合A={-4,2m-1,m2}, B={9,m-5,1-m},又A∩B={9},求A∪B? 解:(1) 若2m-1=9,得m=5,得 A={-4,9,25},B={9,0,-4}, 得A∩B={-4,9},不符合题. (2) 若m2=9,得m=3或m=-3,m=3时, A={-4,5,9},B={9,-2,-2} 违反互异性,舍去. 当m=-3时, A={-4,-7,9},B={9,-8,4} 符合题意。此时A∪B={-4,-7,9,-8,4} 由(1)(2)可知:m=-3, A∪B={-4,-7,9,-8,4}
(1)A={a,b,c,d},B={c,d },C={a,b};
(2)A={x∣x是实数},B={x ∣x是无理数},
C={x ∣x是有理数};
(3)A={x|1<x<8},B={ x|4<x<8},C={ x|1<x<4};
知识要 点
一般地,如果一个集合含有我们所研究问题中所 涉及的所有元素,那么就称这个集合为全集,通常记 作U. 通常也把给定的集合作为全集. 对于一个集合A,由全集U中不属于A的所有元素 组成的集合称为集合A相对于全集U的补集,简称为集 合A的补集.
的简洁和准确.
教学重难点
重点
全集与补集的概念.
难点
理解全集与补集的概念、符号之间的区别与联系.
新课导入
集合之间的基本关系是类比实数之间的关系 得到的,集合之间的交、并集运算同样类比实数 的运算得到。
想一想
实数有加法运算,那么
集合是否也有“减法”呢?
观察
下列各个集合,你能说出集合C与集合A,B 之间的关系吗?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合的基本运算(2)
选择题
1. 若集合A={x| - 2v xv 1} , B={x|0 vx v 2},则集合AA B=( )
A. {x| - 1 v xv 1}
B. {x| - 2v xv 1}
C. {x| - 2v x v 2}
D. {x|0 v x v 1}
2. 已知集合M={1, 2 , 3}, N={2 , 3 , 4},贝卩( )
A .M? N B. N? M C. MA N={2 , 3} D. MU N={1 , 4}
3. 已知集合M={y|y=x 2} , N={y|x=y 2},贝U MA N=( )
A. { (0, 0), (1, 1) }
B. {0, 1}
C. {y|y > 0}
D. {y|0 wyw 1}
4. 下列关系QA R=RH Q ZU N=N QU R=RJ Q QA N=N中,正确的个数是()
A. 1
B. 2
C. 3
D. 4
5. 设集合A={3 , 5 , 6 , 8}, 集合B={4 , 5 , 7 , 8},则AAB等于()
A. {3 , 4 , 5 , 6 , 7 , 8}
B. {3, 6}
C. {4 , 7}
D. {5 , 8}
6. 集合A={0 , 2 , a}, B={1 ,a2},若AU B={0 , 1, 2 , 4 , 16},则a的值为()
A. 0
B. 1
C. 2
D. 4
7. 、、 2
已知集合P={x € N|1 w xw 10},集合Q={x € R|x +x - 6=0},则PAQ等于()
A. {2}
B. {1, 2}
C. {2 , 3}
D. {1, 2 , 3}
8. 若集合A={x|1 w xw 3}, B={x|x > 2},则AAB 等于( )
A. {x|2 v xw 3}
B. {x|x > 1}
C. {x|2 w xv 3}
D. {x|x > 2}
9. 设集合S={x||x - 2| > 3} ,T={x|a vx v a+8} , SU T=R 贝U a 的取值范围是( )
A. -3 v av- 1
B. - 3w aw - 1
C. aw - 3 或a》-1
D. av- -3或a>- 1
10.设全集U是实数集R, M={x||x > 2,或x< -2} , N= {x|1 v xv 3},则图中阴影部分所表示的集合是
()A. {x|-2 v xv 1} B. {x|-2 v x v 2} C. {x|1 v x v 2} D. {x|x v 2} 二填空题
1.已知集合A={x|x > 2}, B={x|x > m},且AU B=A则实数m的取值范围是____________________
2.已知集合A={1 , 2, 3, }, B={2 , m 4} , AA B={2 , 3},贝U m _________________
3.满足条件{1 , 3} U B={1, 3 , 5}的所有集合B的个数是________________
4.若集合A={x|x w 2}、B={x|x > a}满足AA B={2},则实数a= __________________
5.设集合U={1,2,3,4} , M={1,2,3} , N={2,3,4},则C U(M A N)= ____________________
6.已知集合A={(x,y)|y=3x+2} , B={x|y=x-4},则AA B= ______________________
7.设A={x|x v 2} , B={x|x w m},且AU B=A 则实数m的取值范围是__________________
8.设A x, y |y 4x 6 , B x, y | y 5x 3 ,求AA B= _____________________________
9.设A x|1 x 2 , B x 1 x 3 ,求AU B= ________________________________ ; AA B= ________________
10.设U= {x|x<13 ,且x€ N} , A= {8 的正约数}, B= {12 的正约数},则C U A = _________________ C U B = _____________ 三解答题
1.已知A={x|x +ax+b=O}, B={x|x +cx+15=0} , AU B={3 , 5}, AA B={3},求实数 a , b , c 的值
2.已知集合A={x|x - 2>3} , B={x|2x - 3> 3x - a},求AUB
3.设集合A={ (x, y) |2x+y=1 , x, y€ R}, B={ (x, y) |a 2x+2y=a, x, y € R},若An B=?,求 a 的值
2
4.若集合S={3, a} , T={x|O v x+av 3, x € Z},且Sn T={1} , P=SU T,求集合P 的所有子集
5.设A={x|x 2+4X=0} , B={x|x 2+2 (a+1) x+a2-1=0},若An B=B 求 a 的值
6.设U=R, A= {x| —1<x<2} , B= {x|1<x<3},求An B、AU B、C u A、C u B
7.已知全集I={小于10 的正整数},其子集 A B满足(C I A)P)(C I B) {1,9} , (GA)]] B {4,6,8} , A「B {2}.求集合A B
8.已知集合A= {1 , 3 , 5} , B= {1 , 2 , x2 —1},若AU B= {1 , 2 , 3 , 5},求x 及AQB。