第6讲整数规划、非线性规划模型

合集下载

第六讲线性规划与非线性规划

第六讲线性规划与非线性规划
f=f(x); •
(2)若有非线性约束条件:c1 x 0 或c2 x 0, 则建立M
文件c.m定义函数c1 x,c2 x, 一般形式为
function [c1,c2]=c(x)
c1=…
c2=… (3)建立主程序。求解非线性规划的函数是fmincon,
调用格式为 x=fmincon(‘fun’,x0,A1,b1);
故它属于一个整数线性规划问题,这里当成一个线 性规划求解,求得最优解刚好是整数x1=9,x2=0, 故它就是该整数规划的最优解.若用线性规划解法求 得的最优解不是整数,将其取整后不一定是相应整 数规划的最优解,这样的整数规划应用专门的方法 求解.
二、非线性规划
1、二次规划

标准形式:min
z
1
xT
x1 4x2 5

x1, x2 0

改写成标准形式:min z
x1 2x2
1 2
x12
1 2
x22
s.t.
2x1 3x2 x1 4x2
6 5
0 0
0 0
x1 x2
❖ 建立M文件fun1.m
❖ 建立主程序(见MATLAB程序(feixianxingguihua1))
工费用如下表.问怎样分配车床的加工任务,才能既满足加
工工件的要求,又使加工费用最低?
车床 类型


单位工件所需加工台时数 工件 1 工件 2 工件 3
0.4
1.1
1.0
0.5
1.2
1.3
单位工件的加工费用 工件 1 工件 2 工件 3
13
9
10
11
12
8
可用台 时数
800

数模常用算法系列--整数线性规划(分枝定界法)、整数非线性规划(蒙特卡洛法)

数模常用算法系列--整数线性规划(分枝定界法)、整数非线性规划(蒙特卡洛法)

数模常⽤算法系列--整数线性规划(分枝定界法)、整数⾮线性规划(蒙特卡洛法)整数线性规划求解----分枝定界法什么是整数规划?线性规划中的变量(部分或全部)限制为整数时,称为整数规划。

若在线性规划模型中,变量限制为整数,则称为整数线性规划。

⽬前所流⾏的求解整数规划的⽅法,往往只适⽤于整数线性规划。

⽬前还没有⼀种⽅法能有效地求解⼀切整数规划。

整数规划的分类- 变量全限制为整数时,称(完全)整数规划- 变量部分限制为整数时,称混合整数规划什么是分枝定界法原理如下:设有最⼤化的整数规划问题A,与它相应的线性规划为问题B,从解问题B开始,若其最优解不符合A的整数条件,那么B的最优⽬标函数必是A的最优⽬标函数z^*的上界\overline{z};⽽A的任意可⾏解的⽬标函数值将是z^*的⼀个下界\underline z ,分枝定界法就是将B的可⾏域分成⼦区域的⽅法。

逐步减⼩\overline z和增⼤\underline z最终求到z^*本质就是个分治回溯,逼近最⼤值的算法。

Matlab算法如下:(强烈警告,(不会验证)由于⽐较懒,并未对算法正确性验证,思路上验证了⼀下没问题就码上来了,如果有错,请⼀定联系~~)% c,A,Aeq,Beq,LB,UB,是linprog函数的相关参数,知道了它们就可以求出对应的线性规划最优解,% now是⽬前已经知道的整数解的最⼤值function y = control(c,A,Aeq,Beq,LB,UB,now)ret = 0;[x,fval] = linprog(c,A,Aeq,Beq,LB,UB); % x是最优解的解向量,fval是对应的函数值if fval < nowy = fval;return;end % 如果得到的当前最优解fval⼩于已知的now,那说明最优整数解不在这个区间,则剪枝返回。

for i = 1 : length(x)if rem(x(i),1) ~= 0 % rem(x,1)如果返回值不为0,则表⽰是⼩数。

非线性整数规划模型(LINGO代码实现)

非线性整数规划模型(LINGO代码实现)

⾮线性整数规划模型(LINGO代码实现)⾮线性整数规划模型LINGO讲解分析:第⼀步:确定决策变量问题是确定调运⽅案,使得总运输费⽤最⼩。

⽽总运输费⽤=货物运量*货物单价,题⽬给了货物单价了,我们求货物运量即可,这⾥的货物运量则是我们的决策变量。

第⼆步:确定⽬标函数和约束条件上图第⼀⾏就是我们的⽬标函数,下⾯三⾏是我们的约束条件,在满⾜约束条件的前提下,软件会不断遍历Xij所有可能的值,然后z也会根据Xij的变化⽽产⽣不同的值,这个时候⽤⼀个min函数取所有可能值当中的最⼩值,即可。

第三步:⽤LINGO代码实现model:title 最少运费问题;sets:!集合的定义,WH是集合的名字,W1..W6是集合的长度,⼀般写成1..6,相当于创建了⼀个能放六个元素的容器WH,是抽象的,是虚⽆的,是⼀种声明,告诉我们“:”后⾯的变量是⼀个什么类型的变量,显然,后⾯的AI是⼀个确确实实有六个数的数组,是具体的,是实在WH/W1..W6/:AI;!集合的名称、集合内的成员、集合的属性(可以看成是与改集合有关的变量或常量,相当与数组);VD/V1..V8/:DJ;links(WH,VD):C,X;!以WH和VD为基础,衍⽣集合。

相当于把两个向量结合在⼀起,形成⼀个⼆维数组,有⾏和列,C和X这两个变量是实在的具体的⼆维数组,只不过后⾯C我们赋值了,X是通过系统根据约束条件和⽬标函数⾃⼰赋值的;endsetsdata:!数据段;AI=60,55,51,43,41,52;DJ=35,37,22,32,41,32,43,38;C=6,2,6,7,4,2,5,94,9,5,3,8,5,8,25,2,1,9,7,4,3,37,6,7,3,9,2,7,12,3,9,5,7,2,6,55,5,2,2,8,1,4,3;enddatamin=@sum(links(I,J):c(i,j)*x(i,j)); !⽬标函数.links我们上线提到了,是⼀个6X8的集合名;@for(WH(i):@sum(VD(j):x(i,j))<=AI(I));!约束条件.@for⼀出,你就要知道这⼀⾏写的就是约束条件了;@for(vd(j):@sum(WH(i):x(i,j))=DJ(j));!约束条件.;end。

运筹学模型的类型

运筹学模型的类型

运筹学模型的类型运筹学模型是指通过数学方法来描述和解决复杂问题的一种工具。

根据问题的性质和要求,运筹学模型可以分为以下几种类型:1. 线性规划模型(Linear Programming Model,简称LP):线性规划是一种优化问题,它的目标是在满足一些约束条件下,使某个线性函数取得最大或最小值。

线性规划模型广泛应用于生产调度、资源分配、物流运输等领域。

2. 整数规划模型(Integer Programming Model,简称IP):整数规划是线性规划的扩展,它要求决策变量只能取整数值。

整数规划模型常用于生产调度、排产计划、网络设计等问题。

3. 非线性规划模型(Nonlinear Programming Model,简称NLP):非线性规划是一种优化问题,它的目标函数和约束条件都可以是非线性的。

非线性规划模型广泛应用于经济学、金融学、工程学等领域。

4. 动态规划模型(Dynamic Programming Model,简称DP):动态规划是一种优化方法,它将一个复杂问题分解为若干个子问题,并逐步求解这些子问题。

动态规划模型常用于生产调度、资源分配、投资决策等问题。

5. 排队论模型(Queuing Theory Model,简称QT):排队论是一种研究等待线性的数学理论,它可以用来描述和分析顾客到达、服务时间、系统容量等因素对系统性能的影响。

排队论模型广泛应用于交通运输、通信网络、医疗卫生等领域。

6. 决策树模型(Decision Tree Model,简称DT):决策树是一种分类和回归的方法,它可以将一个问题分解为若干个子问题,并逐步求解这些子问题。

决策树模型常用于金融风险评估、医学诊断、市场营销等领域。

总之,不同类型的运筹学模型适用于不同的问题领域和求解目标,选择合适的模型可以帮助我们更好地解决实际问题。

常见数学建模模型

常见数学建模模型

常见数学建模模型一、线性规划模型线性规划是一种常用的数学建模方法,它通过建立线性函数和约束条件,寻找最优解。

线性规划可以应用于各种实际问题,如生产调度、资源分配、运输问题等。

通过确定决策变量、目标函数和约束条件,可以建立数学模型,并利用线性规划算法求解最优解。

二、整数规划模型整数规划是线性规划的一种扩展形式,它要求决策变量为整数。

整数规划模型常用于一些离散决策问题,如旅行商问题、装箱问题等。

通过引入整数变量和相应的约束条件,可以将问题转化为整数规划模型,并利用整数规划算法求解最优解。

三、非线性规划模型非线性规划是一类目标函数或约束条件中存在非线性项的优化问题。

非线性规划模型常见于工程设计、经济优化等领域。

通过建立非线性函数和约束条件,可以将问题转化为非线性规划模型,并利用非线性规划算法求解最优解。

四、动态规划模型动态规划是一种通过将问题分解为子问题并以递归方式求解的数学建模方法。

动态规划常用于求解具有最优子结构性质的问题,如背包问题、最短路径问题等。

通过定义状态变量、状态转移方程和边界条件,可以建立动态规划模型,并利用动态规划算法求解最优解。

五、排队论模型排队论是一种研究队列系统的数学理论,可以用于描述和优化各种排队系统,如交通流、生产线、客户服务等。

排队论模型通常包括到达过程、服务过程、队列长度等要素,并通过概率和统计方法分析系统性能,如平均等待时间、系统利用率等。

六、图论模型图论是一种研究图结构和图算法的数学理论,可以用于描述和优化各种实际问题,如网络优化、路径规划、社交网络等。

图论模型通过定义节点、边和权重,以及相应的约束条件,可以建立图论模型,并利用图算法求解最优解。

七、随机模型随机模型是一种考虑不确定性因素的数学建模方法,常用于风险评估、金融建模等领域。

随机模型通过引入随机变量和概率分布,描述不确定性因素,并利用概率和统计方法分析系统行为和性能。

八、模糊模型模糊模型是一种用于处理模糊信息的数学建模方法,常用于模糊推理、模糊控制等领域。

(完整word版)整数规划的数学模型及解的特点

(完整word版)整数规划的数学模型及解的特点

整数规划的数学模型及解的特点整数规划IP (integer programming ):在许多规划问题中,如果要求一部分或全部决策变量必须取整数。

例如,所求的解是机器的台数、人数、车辆船只数等,这样的规划问题称为整数规划,简记IP 。

松弛问题(slack problem):不考虑整数条件,由余下的目标函数和约束条件构成的规划问题称为该整数规划问题的松弛问题。

若松弛问题是一个线性规化问题,则该整数规划为整数线性规划(integer linear programming)。

一、整数线性规划数学模型的一般形式∑==nj jj x c Z 1min)max(或中部分或全部取整数n j nj i jij x x x mj ni x b xa ts ,...,,...2,1,...,2,10),(.211==≥=≥≤∑=整数线性规划问题可以分为以下几种类型1、纯整数线性规划(pure integer linear programming ):指全部决策变量都必须取整数值的整数线性规划。

有时,也称为全整数规划.2、混合整数线性规划(mixed integer liner programming):指决策变量中有一部分必须取整数值,另一部分可以不取整数值的整数线性规划。

3、0—1型整数线性规划(zero —one integer liner programming ):指决策变量只能取值0或1的整数线性规划。

1 解整数规划问题0—1型整数规划0-1型整数规划是整数规划中的特殊情形,它的变量仅可取值0或1,这时的变量xi 称为0-1变量,或称为二进制变量.⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤+≥+≤-+=且为整数0,5210453233max 2121212121x x x x x x x x x x z0—1型整数规划中0—1变量作为逻辑变量(logical variable ),常被用来表示系统是否处于某一特定状态,或者决策时是否取某个方案。

数学建模-数学规划模型

数学建模-数学规划模型
建立数学模型
将决策变量、目标函数和约束条件用数学方程表示出来,形成线性规划模型。
线性规划的求解方法
单纯形法
单纯形法是线性规划最常用的求解方法,它通过不断迭代和调整决策 变量的值,逐步逼近最优解。
对偶法
对偶法是利用线性规划的对偶性质,通过求解对偶问题来得到原问题 的最优解。
分解法
分解法是将一个复杂的线性规划问题分解为若干个子问题,分别求解 子问题,最终得到原问题的最优解。
混合法
将优先级法和权重法结合起来,既考虑目标的优先级又考虑目标的 权重,以获得更全面的优化解。
多目标规划的求解方法
约束法
通过引入约束条件,将多目标问题转化为单目标问题求解。常用的约束法包括线性约束 、非线性约束等。
分解法
将多目标问题分解为若干个单目标问题,分别求解各个单目标问题,然后综合各个单目 标问题的解得到多目标问题的最优解。
特点
多目标规划问题通常具有多个冲突的目标, 需要权衡和折衷不同目标之间的矛盾,因此 求解难度较大。多目标规划广泛应用于经济 、管理、工程等领域。
多目标规划的建模方法
优先级法
根据各个目标的重要程度,给定不同的优先级,然后结合优先级 对目标进行优化。
权重法
给定各个目标的权重,将多目标问题转化为加权单目标问题,通过 求解加权单目标问题得到多目标问题的最优解。
数学建模-数学规划 模型
目录
• 数学规划模型概述 • 线性规划模型 • 非线性规划模型 • 整数规划模型 • 多目标规划模型
01
CATALOGUE
数学规划模型概述
定义与分类
定义
数学规划是数学建模的一种方法,通 过建立数学模型描述和解决优化问题 。
分类

数学建模常用模型及代码

数学建模常用模型及代码

数学建模常用模型及代码
一.规划模型
1.线性规划
线性规划与非线性规划问题一般都是求最大值和最小值,都是利用最小的有限资源来求最大利益等,一般都利用lingo工具进行求解。

点击进入传送门
2.整数规划
求解方式类似于线性规划,但是其决策变量x1,x2等限定都是整数的最优化问题。

传送门
3. 0-1规划
决策变量只能为0或者为1的一类特殊的整数规划。

n个人指派n项工作的问题。

传送门
4.非线性规划
目标函数或者存在约束条件函数是决策变量的非线性函数的最优化问题。

传送门
5.多目标规划
研究多于一个的目标函数在给定区域上的最优化。

把求一个单目标,在此单目标最优的情况下将其作为约束条件再求另外一个目标。

传送门
6.动态规划
运筹学的一个分支。

求解决策过程最优化的过程。

传送门
二. 层次分析法
是一种将定性和定量相结合的,系统化的,层次化的分析方法,主要有机理分析法和统计分析法。

传送门
三.主成分分析
指标之间的相关性比较高,不利于建立指标遵循的独立性原则,指标之间应该互相独立,彼此之间不存在联系。

传送门。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、模型准备 该问题是在原料数量一定的限制条件下,求商店生产三种口味 蛋糕各多少时,可获得最大收益. 二、模型假设 1.假设在生产过程中没有材料的浪费. 2. 假设生产的面包能全部售出, 且不考虑影响销售价格的因素. 三、变量假设 设商店生产草莓、蓝莓、柠檬三种口味的蛋糕的数量分别为
x1 , x2 , x3 ,获得的总收益为 R 元.
x=intvar(1,2); C=[240 378]; a=[1 0;0 1;1 1];b=[8 6 10]; f=C*x'; F=set(0<=x<=inf); F=F+set(a*x'<=b')+set(96*x(1)+120*x(2)>=720); solvesdp(F,f) double(f)
double(x)




最优化问题中的所有变量均为整数时,这类 问题称为整数规划问题。
如果线性规划中的所有变量均为整数时,称 这类问题为线性整数规划问题。 整数规划可分为线性整数规划和非线性整数 规划 ,以及混合整数规划等。 如果决策变量的取值只能为0或1,则这样的 规划问题称为0-1规划。
double(f)
double(x)
非线性规划
非线性规划问题的一般数学模型:
min
f ( x) h j ( x) 0, j 1, 2, , l.
s.t. gi ( x) 0, i 1, 2,, m,
其中, x E n ,
f (x) 为目标函数,
g i ( x), h j ( x) 为约束函数,这些函数中至少有
最优化模型(2)
一、一般的线性规划模型 二、整数规划模型
三、非线性规划模型
运用最优化方法解决最优化问题的一般 方法步骤如下:
①前期分析:分析问题,找出要解决的目标,约束条件, 并确立最优化的目标。
②定义变量,建立最优化问题的数学模型,列出目标函 数和约束条件。 ③针对建立的模型,选择合适的求解方法或数学软件。 ④编写程序,利用计算机求解。 ⑤对结果进行分析,讨论诸如:结果的合理性、正确性, 算法的收敛性,模型的适用性和通用性,算法效率与 误差等。
三、模型的分析与建立 目标:获得的总收益最大. 目标函数:总收益为 R 2 x1 3x2 4 x3 . 约束条件: 1.受面粉数量的限制: 20x1 30x2 40x3 6000 2.受鸡蛋数量的限制: 5x1 8x2 12x3 2000
综上分析,得到该问题的线性规划模型
用YALMIP编程求解程序如下:
x=intvar(1,3); f=sum(0.2*(x.^2)')+sum(50*x)+[12 8 4]*x'-1280; A=[1 0 0;1 1 0;1 1 1];b=[40 100 180]; F=set(0<=x<=100); F=F+(A*x'>=b'); solvesdp(F,f); double(f) double(x)
练习: 【汽车安排模型】 丰顺汽车运输队有 8 辆载重量为 6t 的 A 型卡车与 6 辆载重量为 10t 的 B 型卡车,有 10 名驾驶员。 此车队承包了每天至少搬运 720t 蔬菜的任务。已 知每辆卡车每天往返的次数为 A 型卡车 16 次,B 型卡车 12 次。每辆卡车每天往返的成本费为 A 型 车 240 元,B 型车 378 元。则每天派出 A 型车与 B 型车各多少辆运输队所花的成本最低。
C1 50 xi 0.2 xi 2 ;存贮费用: C2 4 2x1 x2 140 .
3 i 1
约束条件: 1.受第一季度需求限制: x1 40 ; 2.受第二季度需求限制: x1 x2 100 ; 3.受第三季度需求限制: x1 x2 x3 180 ; 4. 受每季度生产能力限制: xi 100, i 1, 2,3 .
投资最少: min
收益最大: max 约束条件为:
f1 ( x1 , x2 ,..., xn ) ai xi
i 1 m
m
f 2 ( x1 , x2 ,..., xn ) ci xi
i 1
m ai xi a i 1 x (1 x ) 0, i 1, 2,...m i i
max z k (mx1 nx2 )
ax1 c s.t. bx2 c k ( x1 x2 ) d x1 , x2 0且为整数
引例2.资源分配问题:
某个中型的百货商场要求售货人员每周工作5 天,连续休息2天,工资200元/周,已知对售货人 员的需求经过统计分析如下表,问如何安排可使 配备销售人员的总费用最少?
多目标规划
引例1.投资问题 某公司在一段时间内有a(亿元)的资金可用于建厂投资。
若可供选择的项目记为1,2,…,m。而且一旦对第i个项目投
资就用去ai亿元;而这段时间内可得收益ci亿元。问如何 确定最佳的投资方案?
1 对第i个项目投资 xi 0 不对第i个项目投资
最佳投资方案:投资最少,收益最大!
引例2:生产问题 某工厂生产两种产品,产品A每单位利润为10元,而 产品B每单位利润为8元;产品A每单位需3小时装配时间 而B为2小时,每周总装配有效时间为120小时。工厂允许 加班,但加班生产出来的产品利润要减去1元。根据最近 的合同,厂商每周最少的向用户提供两种产品各30单位。 要求:①必须遵守合同;②尽可能少加班;③利润最大。 问应怎样安排生产? x1:每周正常时间生产得A产品的数量;
问题 1 【产品生产模型】 乐乐玩具工厂生产两种玩具,玩具车的利润为 10 元/个,洋娃娃的利润为 8 元/个;玩具车每个需 要 3 小时装配时间,而洋娃娃为 2 小时.每周总装 配有效时间为 120 小时.工厂允许加班,但加班生 产出来的玩具每个利润要减去 1 元.而两种玩具每 周的需求量均为 30 个.问应怎样安排生产才能使 工厂的总利润最大并且使得工人尽可能少加班.
例1
某钢厂两个炼钢炉同时各用一种方法炼钢。
第一种炼法每炉用a小时,第二种用b小时(包
括清炉时间)。假定这两种炼法,每炉出钢都是
k公斤,而炼1公斤钢的平均燃料费第一法为m元,
第二法为n元。若要求在c小时内炼钢公斤数不少
于d,试列出燃料费最省的两种方法的分配方案 的数学模型。
设用第一种炼法炼钢x1炉,第二种炼钢x2炉
一、模型准备 该问题要求在完成每周两种玩具生产任务条件 下, 对每种玩具在正常生产时间和加班时间生产的 数量作统筹安排,使得满足以下两个条件:获得的 利润最大,且加班时间尽量少. 二、模型假设 1.假设每周生产产品能全部销售. 2.不考虑生产过程中其他各种因素对加工时间 的影响.
max R 2x1 3x2 4x3
20x1 30x 2 40x3 6000 5 x 8 x 12x 2000 1 2 3 s.t. x1 , x 2 , x3 0 x1 , x 2 , x3 Z
用YALMIP编程求解程序如下:
x=intvar(1,3); %生成3个整数型变量 f=[2 3 4]*x'; %目标函数 F=set(0<=x<=inf); %非负约束条件 F=F+set([20 30 40]*x'<=6000)+set([5 8 12]*x'<=2000); %其他约束条件 solvesdp(F,-f)
一、 问题前期分析 该问题是要求在满足卡车数量,往返次数,司机数量等限制条 件下完成运输任务所需的最小运输成本。 二、 模型假设 1. 假设卡车不能超载。 2. 假设卡车往返次数不受驾驶速度等其他因素影响。 3. 假设运输成本只与车辆数量有关,与车次无关。 4. 不考虑聘请外面的驾驶员。
变量假设: 假设每天派出 x1 辆 A 型车和 x2 辆 B 型车花费成本为 C 元。 一、 模型的分析与建立 目标函数:求运输的总成本最小。 运输总成本为: C 240x1 378x2 受 A 型车数量限制: x1 8 受 B 型车数量限制: x2 6 受司机数量限制: x1 x2 10 要完成每天运输任务: 16 6 x1 12 10 x2 720
综上分析,得到该问题的线性规划模型
min C 240x1 378x2
x1 8 x 6 2 s.t. x1 x2 10 96 x 120 x 720 2 1 x1 , x2 0, x1 , x2 Z
用YALMIP编程求解程序如下:
x2:每周加班时间生产得A产品的数量;
x3:每周正常时间生产得B产品的数量; x4:每周加班时间生产得B产品的数量;
目标函数(有两个):
max 10 x1 9 x2 8x3 7 x4 min 3x2 2 x4
x1 x2 30 x x 30 3 4 s.t. 3x1 2 x3 120 xi 0, i 1, 2,3, 4
综上分析,得到该问题的线性规划模型
min C 0.2 xi 2 58 x1 54 x2 560
i 1
3
x1 40 x x 100 1 2 s.t. . x1 x2 x3 180 xi 100, xi Z , i 1, 2,3
一个是非线性函数。
引例 1 【季度交货模型】 彩虹电视机生产厂向阳光电器商行每季度提供彩电,按合同规定, 其交货数量和日期是:第一季度末交 40 台,第二季末交 60 台,第 三季末交 80 台.工厂的最大生产能力为每季 100 台,每季的生产 费用是 f ( x) 50x 0.2 x 2 (元) ,此处 x 为该季生产彩电的台 数.若工厂生产的多,多余的彩电可移到下季向用户交货,这样, 工厂就需支付存贮费,每台彩电每季的存贮费为 4 元.则该厂每季 应生产多少台彩电,才能既满足交货合同,又使工厂所花费的费用 最少.
相关文档
最新文档