河海大学自控原理 实验五 连续系统串联校正
自动控制实验—控制系统串联校正

控制系统串联校正一、实验目的1.了解和掌握串联校正的分析和设计方法。
2.研究串联校正环节对系统稳定性及渡过程的影响。
二、实验内容1.设计串联超前校正,并验证。
2.设计串联滞后校正,并验证。
三、实验步骤1.熟悉 HHMN-1 电子模拟机的使用方法。
将各运算放大器接成比例器,通电调零。
断开电源,按照系统结构图和传递函数计算电阻和电容的取值,并按照模拟线路图搭接线路,不用的运算放大器接成比例器。
2.将 D/A1 与系统输入端 Ui 连接,将 A/D1 与系统输出端 Uo连接。
3.在 Windows XP 桌面用鼠标双击“MATLAB”图标后进入,在命令行处键入“autolab”进入实验软件系统。
4.在系统菜单中选择实验项目,选择“实验三”,在窗口左侧选择“实验模型”。
5.分别完成不加校正,加入超前校正,加入滞后校正的实验。
6.绘制以上三种情况时系统的波特图。
7.采用示波器(Scope)观察阶跃响应曲线。
观测实验结果,记录实验数据,绘制实验结果图形,完成实验报告。
四、实验设备1.HHMN1-1 型电子模拟机一台。
2.PC 机一台。
3.数字式万用表一块。
五、数据分析1.校正环节传递函数超前校正Gc (s)=aTS+1(a>1)TS+1给定a=2.44 , T=0.26 ,则Gc (s)=0.63S+10.26S+1滞后校正Gc (s)=bTS+1(b<1)TS+1给定b=0.12 , T=83.33,则Gc (s)=10S+183.33S+12.系统模拟运算电路图,各电阻、电容取值图1 控制系统传递函数图2 系统模拟电路图各原件参数取值如下表:表格 1 参数取值1若实验中不用第一个运算放大器,则各元件参数取值如下表:表格 2 参数取值23.校正前后阶跃响应曲线和波特图图表 3 校正前阶跃响应曲线图表 4 校正前波特图图表 5 超前校正阶跃响应曲线图表 6 超前校正波特图图表7 滞后校阶跃响应曲线图表8 滞后校正波特图4.计算截止频率和稳定裕度表格 3 截止频率和稳定裕度实验值5.分析实验结果(1)超前校正提供一个超前相角,闭环系统的相角裕度增大,系统的快速性和稳定性得以提高;(2)滞后校正使得幅值增益衰减,从而提高系统稳态精度和稳定性,但是降低了系统的快速性。
自动控制实验报告五-连续系统串联校正

自动控制实验报告五-连续系统串联校正实验介绍本次实验是针对连续系统的串联校正实验,目的是使控制系统能够精确地跟踪给定输入信号。
具体地,要求通过串联校正的方式,将系统的稳态误差控制在一个很小的范围内。
为此,本次实验将对校正器进行串联配置,然后测试系统并进行基本的数据分析。
实验原理首先,需要明确串联校正的概念。
所谓串联校正,就是将校正器和系统连接起来,以提高控制系统的性能。
串联校正实现的基本思想是,先将校正器的控制信号与系统输入信号串联起来,通过对校正器进行调整,来改变系统的特性,以便使系统的输出信号与给定输入信号精确匹配。
具体来说,要完成串联校正,需要如下步骤:1.测量系统的开环特性,并进行基本的分析。
2.将校正器和系统进行串联,校正器的输出信号作为输入信号,系统的输出信号作为反馈信号。
3.根据反馈信号调整校正器的参数,使系统具有更好的稳态性能。
4.再次测量系统的闭环特性,检验串联校正后的效果。
具体的实现步骤和公式可参考连续系统校正实验报告。
实验过程实验步骤1.首先进行系统的稳态误差测量,记录输出信号与给定信号之间的稳态误差。
2.将校正器与系统进行串联,根据实验要求设定校正器的参数。
3.测试校正后的系统,记录输出信号与给定信号之间的稳态误差,与前一次进行对比。
实验结果实验结果如下表所示:测量项目原始系统校正后系统稳态误差0.2 0.02由上表可知,经过串联校正后,系统的稳态误差从0.2减少到了0.02,已经达到了实验的预期。
实验通过本次实验,我们掌握了连续系统的串联校正方法,了解了校正器与系统的串联关系,掌握了相应的实验操作和数据分析技术。
同时,我们还了解了校正器的参数调整对系统运行性能的影响,并进一步提高了自己的实际操作能力。
自动控制原理实验报告-线性系统串联校正设计

实验五线性系统串联校正设计实验原理:(1)串联校正环节原理串联校正环节通过改变系统频率响应特性,进而改善系统的动态或静态性能。
大致可以分为(相位)超前校正、滞后校正和滞后-超前校正三类。
超前校正环节的传递函数如下Tαs+1α(Ts+1),α>1超前校正环节有位于实轴负半轴的一个极点和一个零点,零点较极点距虚轴较近,因此具有高通特性,对正频率响应的相角为正,因此称为“超前”。
这一特性对系统的穿越频率影响较小的同时,将增加穿越频率处的相移,因此提高了系统的相位裕量,可以使系统动态性能改善。
滞后校正环节的传递函数如下Tαs+1Ts+1,α<1滞后校正环节的极点较零点距虚轴较近,因此有低通特性,附加相角为负。
通过附加低通特性,滞后环节可降低系统的幅值穿越频率,进而提升系统的相位裕量。
在使系统动态响应变慢的同时提高系统的稳定性。
(2)基于Baud图的超前校正环节设计设计超前校正环节时,意图让系统获得最大的超前量,即超前网络的最大相位超前频率等于校正后网络的穿越频率,因此设计方法如下:①根据稳态误差要求确定开环增益。
②计算校正前系统的相位裕度γ。
③确定需要的相位超前量:φm=γ∗−γ+(5°~12°) ,γ∗为期望的校正后相位裕度。
④计算衰减因子:α−1α+1= sin φm。
此时可计算校正后幅值穿越频率为ωm=−10lgα。
⑤时间常数T =ω√α。
(3)校正环节的电路实现构建待校正系统,开环传递函数为:G(s)=20s(s+0.5)电路原理图如下:校正环节的电路原理图如下:可计算其中参数:分子时间常数=R1C1,分母时间常数=R2C2。
实验记录:1.电路搭建和调试在实验面包板上搭建前述电路,首先利用四个运算放大器构建原系统,将r(t)接入实验板AO+和AI0+,C(t)接入AI1+,运算放大器正输入全部接地,电源接入±15V,将OP1和OP2间独立引出方便修改。
基于另外两运算放大器搭建校正网络,将所有电容值选为1uF,所有电阻引出方便修改。
连续系统串联校正

单位阶跃响应图
利用单位阶跃响应波形图可以估算出:
3)实验结果
实验得到的系统单位阶跃响应图如下:
测量得到
4.滞后超前校正特性
1)理论分析
加入滞后超前校正网络的系统波特图如下图所示:
计算得到穿越频率 ,所以相角裕量
2)仿真分析
用MATLAB进行仿真得到滞后超前校正模块的波特图如下所示:
加入校正后的系统波特图和单位阶跃响应如下图所示:
从上表可以看出,超调量的仿真与实际值之间存在的误差较小,其中滞后超前校正的相对误差较大,但绝对误差很小。而调整时间的部分误差很大,部分误差很小,分析如下:
1)测量误差:在测量超调量时,由于是测量的最高点与稳态值的差,而最高点容易确定,因此测量的值较准确。并且由于超调一般较大,所以较小的绝对测量误差对准确性影响较小。在测量稳态时间时,测量点已经接近稳态,这时的阶跃响应曲线几乎和时间轴平行。所以在确定稳态点时,输出量的微小变化就会引起时间的大幅变化,这样稳态点的选择就比较容易有较大误差,造成调整时间的误差较大。
2)仿真分析
用MATLAB仿真得到的系统波特图和单位阶跃响应如下图所示:
波特图
ቤተ መጻሕፍቲ ባይዱ单位阶跃响应
利用单位阶跃响应波形图可以估算出:
3)实验结果
实际得到的单位阶跃响应波形如下图所示:
实际测量得到
2.超前校正特性
1)理论分析
由上述分析可知,系统固有部分稳定性较差,由波特图可以看出幅频特性曲线以 的斜率穿过零点。为了提高系统稳定性,加入超前校正使曲线以 斜率过零点。
模拟线路图如图3-4。观测滞后超前校正加入后的阶跃响应,记录超调量 和过渡过程时间 。
三、实验结果与分析
1.系统固有部分特性
自动控制串联校正实验报告

实验五线性定常系统的串联校正班级:姓名:学号:实验指导老师:成绩:实验目的:1、对系统性能进行分析,选择合适的校正方式,设计校正器模型。
2、通过仿真实验,理解和验证所加校正装置的结构、特性和对系统性能的影响;3、通过模拟实验部分进一步理解和验证设计和仿真结果,进而掌握对系统的实时调试技术。
实验内容1、系统开环传递函数为G0(s)=1/s(s+1)校正前系统的波特图:Gm =Inf Pm =12.7580 Weg =Inf Wep =4.4165由此可得,系统相角欲度r=12.758,穿越频率Wc=4.4165rad/s均低于指标要求校正前闭环系统的单位阶跃响应曲线:由图可得,校正前系统的单位阶跃响应参数如下:最大超调量为70%,调整时间为Ts=5.78s.源程序代码如下:num = [20];den = [1 1 0];g = tf(num,den)Nyquist(g)bode(g)margin(g)[Gm,Pm,Weg,Wep] = Margin(g)gf = feedback(g,1)step(gf)2、经过理论计算得到校正器模型:Gc(s)=(0.38s+1)/(0.046s+1)校正后系统的波特图为Gm =Inf Pm =59.1872 Weg =Inf Wep =7.5393 校正后的系统相角欲度为r=59.1872,穿越角频率Wc=7.5393rad/s,符合性能指标要求。
校正前后系统的波特图比较:校正后闭环系统的单位阶跃响应由图可得,校正后闭环系统的单位阶跃响应参数如下:最大超调量为15%,调整时间Ts=0.744s。
系统的稳定性和快速性得到了提高。
源程序代码如下:num = [20]den = [1 1 0]g0 = tf(num,den)gc = tf([0.38 1],[0.046 1]);g = g0 * gc;Bode(g,g0)margin(g)[Gm,Pm,Weg,Wep] = margin(g)gf = feedback(g,1);figure;step(gf)3、模拟部分3.1 根据给定的实验模型搭接校正前的模拟电路图根据传递函数绘制系统模拟电路图,搭接后系统传递函数为G0(s)=19.6/s*(s+1)在试验台上搭接模拟电路完毕后,使用模拟示波器观测校正前系统的阶跃响应,其响应曲线如下图所示:从图中可以看出,模拟校正前网络的阶跃响应参数为:最大超调量为68.6%,调整时间为Ts=6.185s3.2 搭建校正后系统的模拟电路图,校正环节传递函数为:Gc(s)=(0.47s+1)/(1+0.039s)在试验台上搭接校正器的模拟电路后,并引入原系统,用模拟示波器观测校正后系统的阶跃响应,其响应曲线如图所示:由图可知,校正后系统阶跃响应参数如下:最大超调量为:9%,调整时间Ts=0.344s。
(完整word版)自动控制原理线性系统串联校正实验报告五..(word文档良心出品)

武汉工程大学实验报告专业电气自动化班号指导教师姓名同组者无
SIMULINK仿真模型:
单位阶跃响应波形:
分析:由以上阶跃响应波形可知,校正后,系统的超调量减小,调节时间变短,稳定性
单位阶跃响应:
单位阶跃响应:
分析:由以上仿真结果知,校正后,系统由不稳定变为稳定,系统的阶跃响应波形由发散
单位阶跃响应:
单位阶跃响应:
由以上仿真结果知,校正后,系统由不稳定变为稳定,系统的阶跃响应波形由发要求:正文用小四宋体,1.5倍行距,图表题用五号宋体,图题位于图下方,表题位于表上方。
自控实验报告控制系统串联校正

自动控制原理实验报告(III)一、实验名称:控制系统串联校正二、实验目的1. 了解和掌握串联校正的分析和设计方法。
2. 研究串联校正环节对系统稳定性及过渡过程的影响。
三、实验内容1. 设计串联超前校正,并验证。
2. 设计串联滞后校正,并验证。
四、实验原理1. 系统结构如图3-1图3-1其中Gc(s) 为校正环节,可放置在系统模型中来实现,也可使用模拟电路的方式由模拟机来实现。
2. 系统模拟电路如图3-2图3-2各电阻电容取值R3=2MΩ R4=510KΩ R5=2MΩC1=0.47μF C2=0.47μF3. 未加校正时Gcs=14. 加串联超前校正时Gcs=aTs+1Ts+1 (a >1)给定 a = 2.44 , T = 0.26 , 则 Gcs=0.63s+10.26s+15. 加串联滞后校正时Gcs=bTs+1Ts+1(0<b<1)给定b = 0.12 , T = 83.33, 则Gcs=10s+183.33s+1五、数据记录未加校正超前校正滞后校正ts实测值/s 5.90 2.3515.24 ts理论值/s 5.41 1.9215.14γ/°25.546.855.7ωc/rad∙s-1 2.11 2.430.48(1)未加校正(2)超前校正(3)滞后校正3. 系统波特图(1)未加校正环节系统开环传递函数Gs=4s2+s(2)串联超前校正系统开环传递函数Gs=2.52s+40.26s3+1.26s2+s(3)串联滞后校正系统开环传递函数Gs=40s+483.33s3 + 84.33s2+s六、数据分析1、无论是串入何种校正环节,或者是否串入校正环节,系统最终都会进入稳态,即三个系统都是稳定系统。
2、超前校正:系统比未加校正时调节时间短,即系统快速性变好了,而且超调量也减小了。
从频率角度来看,戒指频率减小,相位稳定域度增大,系统稳定性变好。
3、滞后校正:系统比未加校正时调节时间长,即系统快速性变差了,但是超调量减小了很多,甚至比加串联超前校正时的超调还小。
自控实验说明及参考答案

实验说明及参考答案实验一典型环节及其阶跃响应一、实验说明典型环节的概念对系统建模、分析和研究很有用,但应强调典型环节的数学模型都是对各种物理系统元、部件的机理和特性高度理想化以后的结果,重要的是,在一定的条件下,典型模型的确能在一定程度上忠实地描述那些元、部件物理过程的本质特征。
模拟典型环节是有条件的,即是将运算放大器视为满足以下条件的理想放大器:1.输入阻抗为∞,进入运算放大器的电流为零,同时输出阻抗为零;2.电压增益为∞;3.通频带为∞;4.输入和输出之间呈线性;在实际模拟环节注意:1.实际运算放大器输出幅值受其电源限制是非线性的,实际运算放大器是有惯性的;2.对比例环节、惯性环节、积分环节、比例积分环节和振荡环节,只要控制了输入量的大小或是输入量施加的时间的长短(对积分或比例积分环节),不使其输出在工作期间内达到饱和,则非线性因素对上述环节特性的影响可以避免。
但对模拟比例微分环节和微分环节的影响则无法避免,其模拟输出只能达到有限的最高饱和值。
3.实际运放有惯性,它对所有模拟惯性环节的暂态响应都有影响,但情况又有较大的不同。
二、实验参考曲线1.比例环节 2. 惯性环节3.积分环节 4. 比例微分环节实验二二阶系统阶跃响应实验数据表:1.取ωn=10rad/s,即令R=100KΩ,C=1uf;分别取ζ=0、0.25、0.5、1,及取R1=100K2.取ωn=100rad/s,即令R=100KΩ,C=0.1uf;分别取ζ=0、0.25、0.5、1,及取R1=100KΩ,R2分别等于0、50KΩ、100KΩ、200KΩ。
3.实验参考曲线如图所示(实验时每次只有一条曲线)实验三控制系统的稳定性分析一、实验说明:(1)熟悉闭环系统稳定和不稳定现象,并加深理解线性系统稳定性只与其结构和参量有关,而与外作用无关;(2)老斯稳定判据的应用;(3)了解系统开环增益与其时间常数的关系,进而理解人为地增大某时间常数(使各时间常数在数值上错开)是提高系统临界开环增益地一种有效方法;(4)在实验中,要求实验前计算不同时间常数配合下的系统临界开环增益,并与实验结果对比分析、讨论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自动控制理论实验报告
实验题目连续系统串联校正
姓名:班级:学号:指导老师:
同组学生:时间:2013-4-16
一、实验目的
1. 加深理解串联校正装置对系统动态性能的校正作用。
2. 对给定系统进行串联校正设计,并通过模拟实验检验设计的正确性。
二、实验仪器
1.EL-AT-II型自动控制系统实验箱一台
2.计算机一台
三、实验内容
1.串联超前校正
(1)系统模拟电路图如图5-1,图中开关S断开对应未校情况,接通对应超前校正。
图5-1 超前校正电路图
(2)系统结构图如图5-2
图5-2 超前校正系统结构图
图中校正前,Gc(s)=2,校正后,Gc(s)=2(0.055s+1)/(0.005s+1)
自动控制理论实验报告
四、实验步骤
1.启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。
2.测试计算机与实验箱的通信是否正常,通信正常继续。
如通信不正常查找原因使通信正
常后才可以继续进行实验。
超前校正:
3.连接被测量典型环节的模拟电路(图5-1)。
电路的输入U1接A/D、D/A卡的DA1输出,
电路的输出U2接A/D、D/A卡的AD1输入。
检查无误后接通电源。
4.开关s放在断开位置。
5.选中 [实验课题→连续系统串联校正→超前校正] 菜单项,鼠标单击将弹出参数设置
窗口。
系统加入阶跃信号。
参数设置完成后鼠标单击确认测量系统阶跃响应,并记录超
调量 p和调节时间ts。
6.开关s接通,重复步骤5,将两次所测的波形进行比较。
并将测量结果记入表中。
五、实验报告
1.计算串联校正装置的传递函数Gc(s)和校正网络参数。
2.画出校正后系统的对数坐标图,并求出校正后系统的ω′c及ν′。
3.比较校正前后系统的阶跃响应曲线及性能指标,说明校正装置的作用。
六、思考题
1.如何测量稳态速度误差?怎样检验静态速度误差系数是否满足期望值?
2.除超前校正装置外,还有什么类型校正装置?它们的特点是什么?如何选用校正装置的类型?
3.有源校正装置和无源校正装置各有何特点?
自动控制理论实验报告。