第二章 热力学第一定律
热学课件 第2章 热力学第一定律

C Q
dT
常用的热容量是
① 定容热容量 Cv和定压热容量 Cp
Cv
Q
dT
v
Cp
Q
dT
p
②比热容 c:单位质量的热容量 . 单位: J mg1K 1
③摩尔热容 Cm :1 mol物质的热容. 单位: J mol1K 1
由此,系统在某一变化(n)过程中其传递热量则为
Qn
Tf Ti
CndT
由 PV RT
微分得:
p p1 1
p2 0V
1
PdV VdP RdT (1)
2
VV
2
对理想气体准静态绝热过程,根据笫一定律,有
Q dU - W CV ,mdT pdV 0 (2)
(1), (2)联立, 消去dT
绝热指数:
(CV ,m R) dV dp 0
CV ,m
V
p
C p,m CV ,m R
)T
V
( dp dV
)Q
p V
p p T
Q
0
>1, 绝热线比等温线陡.(为什么?)
A
等温线
绝热线
C
B
V
VV
1
2
归纳:多方过程的一般表示
对于一摩尔理想气体所进行的任一微小过程 , 有
dU CV ,mdT
Q CmdT 和 W pdV 代入热力学第一定律 Q dU pdV
得 (Cm Cv,m )dT pdV
U U (T ) --焦耳定律
实际上,焦耳实验及其得出焦耳定律对理想气体来说,作为 理想气体的定义条件是严格成立的。但对于实际气体,它的成 立不仅道理上无法接受,而且实验本身也是存在问题的。
第二章 热力学第一定律

T (B, ,T)
£K r Hm (T)
标准摩尔燃烧焓[变]的定义 在温度 T 物质 B 完全氧化( T)表示 叫标准摩尔燃烧焓 g H2O(l)的 T)计算
£K r Hm £K cHm £K r Hm B
-
)成相同温度下指定产物时的标准摩尔焓[变] 用
£K cHm
(B
指定产物 CO2 由
£K c Hm
物理化学学习指导
第二章 热力学第一定律
第二章 热力学第一定律
一. 基本概念及公式
1 热力学基本概念
(1)系统和环境 系统——热力学研究的对象(是大量分子 外的周围部分存在边界 环境——与系统通过物理界面(或假想的界面)相隔开并与系统密切相关的周围部分 根据系统与环境之间发生物质的质量与能量的传递情况 系统分为三类: 原子 离子等物质微粒组成的宏观集合体) 系统与系统之
H = Qp 适用于真实气体 理想气体 液体
T2 T1
∆H = ∫ nC p ,m dT
T1
T2
固体定压过程 理想气体任意 p
V
T 变化过程
∆U = ∫ nCV ,m dT = nC v ,m (T2 − T1 ) ∆H = ∫ nC p ,m dT = nC p ,m (T2 − T1 )
T1 T2
体积功 功有多种形式 通常涉及的是体积功 它是系统发生体积变化时的功 定义为
δW = − p su dV
式中 psu 为环境的压力
W = ∑ δW = − ∫ p su dV
V2 V1
对恒外压过程
psu = 常数
W = − p su (V2 − V1 ) W = − ∫ pdV
V1 V2
对可逆过程 因 p =psu
第二章热力学第一定律

所研究的 物质对象
系统与环境
物质进出 能量得失 √ √
封闭系统 隔离系统
√
状态及状态函数
系统有p, V, T, 组成, 内能等等宏观性质, 系统内的每个粒子 又有结构, 运动情况和粒子间相互作用等微观性质. 系统的宏观 性质有些是各粒子微观性质的某种平均作用, 如温度是分子热 运动的平均强度; 有些则是粒子微观性质的总体表现, 如压力是 分子运动碰撞容器壁面时对单位面积壁面的总垂直力.
状态及状态函数
系统的状态 是系统所有宏观性质的综合表现. 具有单值对应的函数关系 (a) 系统所有的性质一定, 状态就一定; (实际上当系统中物质量及组成, 温度, 压力(或体积) 一定时, 状态便可确定) (b) 状态一定, 系统所有的性质均一定. 因此, 宏观性质又称为状态函数 状态函数的基本性质——状态函数法的基础. • 其微小变化值可用数学上的全微分表示,如dT, dp, dV… • 其增量只与系统的始态和终态有关, 与具体变化途径无关
系统的宏观性质简称性质, 有的可以测量, 有的不可以测量. 性质可分为如下两大类:
系统的性质
{ 强度性质 无空间上的加和性: T,
T p T p
广延性质 有空间上的加和性: n, V ,U, H ,S ,G …
p ,Vm , Um …
nL VL UL SL nR VR UR SR
两者的关系:广延性质的 摩尔量是(准)强度性质, 如:摩尔体积 Vm 等.
{p
su
}
W
p始
一粒粒取走砂粒 (剩 余 砂 粒 相 当 前 述 一个重物)
V终
p始
V始
第2章热力学第一定律

技术功:技术上可以利用的功
1 2 wt c gz wi 2
q u w
wt w pv w p2 v2 p1v1
可逆过程
wt pdv p1v1 p2v2 pdv d pv vdp
2 2 2 2 1 1 1 1
第二章 热力学第一定律
本章要求
理解热力学第一定律的实质—能量守恒定律 掌握流动功,轴功及技术功的概念 注意热力学能,焓的引入及定义
掌握热力学第一定律能量方程的基本表达式 及稳定流动能量方程
本章学习流程
热力学第一定律的提出
热力系能量的组成
能量之间的传递和转化 + 焓
闭口系能量方程 + 开口系能量方程 (第一定律数学表达式)
热力学能只取决于热力系内部的状态,且具有 可加性,是一个具有广延性质的状态参数
2
1
du u 2 u1
du 0
2u 2u Tv vT
u u du dT dv T v v T
二.外储存能
工质在参考坐标系中作为一个整体,因有宏观 速度而具有动能,因有高度差而具有位能
热力学能:是指储存于热力系内部的能量. 用U表示,单位是J或 kJ,单位质量工质的热力 学能称为比热力学能,用u表示,单位是J/kg或 kJ/Kg
热力学能是工质的状态参数,完全取决于工 质的初态和终态,与过程的途径无关
热力学能为两个独立状态参数的函数: u=f(T,v)或u=f(T,p)或u=f(p,v)
能量方程式的应用
确定研究对象—选好热力系统
写出所研究热力系对应的能量方程
针对具体问题,分析系统与外界的相互作用, 作出某些假设和简化,使方程简单明了 求解简化后的方程,解出未知量
热工流体第二章 热力学第一定律

第二章 热力学第一定律第一节 第一定律的实质及热力学能和总能能量守恒与转换定律是自然界的基本规律之一,它指出:自然界中的一切物质都具有能量,能量不可能被创造,也不能被消灭;但能量可以从一种形态转变为另一种形态,且在能量的转化过程中能量总量不变。
热力学第一定律是能量守恒与转换定律在热现象中的应用。
它确定了热力过程中热力系统与外界进行能量交换时,各种形态能量数量上的守恒关系。
一、热力学能热力学能是与物质内部粒子的微观运动和粒子的空间位置有关的能量。
它包括分子移动、转动、粒子震动运动的内动能和分子间由于相互作用力的存在而具有的内位能,故又称内能。
内动能取决于分子热运动,是温度的函数,而内位能取决于分子间的距离,是比体积的函数,即u = f ( T, v )二、总能除热力学能外,工质的总能量还包括工质在参考坐标系中作为一个整体,因有宏观运动速度而具有动能、因有不同高度而具有位能。
前一种能量称之为内部储存能,后两种能量则称之为外部储存能。
我们把内部储存能和外部储存能的总和,即热力学能与宏观运动动能和位能的总和,叫做工质的总储存能,简称总能。
即p k E U E E =++ (2-1)E---总能; U---热力学能; E k ---宏观动能; E p ---宏观位能。
第二节 第一定律的基本能量方程及工质的焓一、焓在有关热力计算总时常有U+pV 出现,为了简化公式和计算,把它定义为焓,用符号H 表示,即H=U+pV (2-2)1kg工质的焓值称为比焓,用h表示,即h=u+pv (2-3)焓的单位是J,比焓的单位是J/kg。
焓是一个状态参数,在任一平衡状态下,u、p和v都有一定得值,因而焓h也有一定的值,而与达到这一状态的路径无关。
当1kg工质通过一定的界面流入热力系统时,储存于它内部的热力学能当然随着也进入到系统中,同时还把从外部功源获得的推动功pv带进了系统。
因此系统中因引进1kg工质而获得的总能量是热力学能与推动功之和(u+pv),即比焓。
第二章 热力学第一定律

闭口与稳流开口的能量方程
闭口 稳流开口
q = ∆u + w
q = ∆h + wt
等价
容积变化功w 技术功wt 轴功ws 推进功∆ 推进功∆(pv) 几种功的关系? 几种功的关系?
几种功的关系
1 2 wt = ∆cf + g∆z + ws 2
q = ∆h + wt = ∆u +∆( pv) + w t
1 2 2 Q = (U2 −U1) + ( p2V2 − pV1) + m(cf 2 − cf 2 ) + mg(z2 − z1) +Ws 1 2
焓(Enthalpy) 的引入 )
定义: 定义:h = u + pv H = U + pV
1、焓是状态量 、 2、一般焓只计算其变化量△h 、 3、对流动工质,焓代表能量(内能 推进功 、对流动工质, 代表能量 内能 推进功) 内能+推进功 对静止工质, 不代表能量 对静止工质,焓不代表能量 4、物理意义:开口系中随工质流动而携带 物理意义:开口系中随工质流动而携带 取决于热力状态的能量 能量。 的、取决于热力状态的能量。
可逆(准静态 过程闭口系能量方程 可逆 准静态)过程闭口系能量方程 准静态
可逆过程容 可逆过程容 积变化功: 积变化功: 闭口系统能 量方程: 量方程:
δw = pdv δq = du + δw
δq = du + pdv q = ∆ u + ∫ pdv
注意公式应用条件
例2 - 1 如图所示,闭口系内的一定量气体由状态1 如图所示 , 闭口系内的一定量气体由状态 1 经 1a2 变化至状态2 吸热70kJ, 同时对外做功25kJ,, 70kJ 25kJ 变化至状态 2 , 吸热 70kJ , 同时对外做功 25kJ ,, 试问: 工质若由1 变化到2 试问:(1)工质若由1经1b2变化到2时,吸热为 90kJ 则对外做功是多少? kJ, 90kJ , 则对外做功是多少 ? ( 2 ) 若外界对气体 做功30kJ, 迫使它从状态2 30kJ 返回到状态1 做功 30kJ , 迫使它从状态 2 经 2c1 返回到状态 1 , 则此返回过程是吸热过程还是放热过程? 则此返回过程是吸热过程还是放热过程?其值为 多少? 多少?
第2章热力学第一定律

功
定义:
种类:
除温差以外的其它不平衡势差所引起 的系统与外界传递的能量.
1.膨胀功W: 在力差作用下,通过系统容积变化与外界传递的能量。
膨胀功是热变功的源泉 单位:l J=l Nm 规定: 系统对外作功为正,外界对系统作功为负。
2 轴功W: 通过轴系统与外界传递的机械功 注意:
刚性闭口系统轴功不可能为正,轴功来源于能量转换
热量
定义:
在温差作用下,系统与外界通过界面传递的能量。
规定: 系统吸热热量为正,系统放热热量为负 单位: kJ 或 kcal 且l kcal=4.1868kJ 特点:
是传递过程中能量的一种形式,与热力过程有关
• 当热力系与外界之间温度不等而发生热接
触时,彼此将进行能量的交换。热力系与 外界之间依靠温差传递的能量称为热。 • 热和功是物系在与外界相互作用的过程中 传递的能量,传热和作功是热力系与外界 传递能量的两种方式。它们是过程量而不 是状态量,因此说“物体具有多热量”及 “物体具有多少功量”都是错误的。 • 在热力学中规定:热力系吸热时热量取正, 放热时取负号。在法定计量单位中,热量 的单位为焦耳,单位符号J。单位质量的物 体与外界交换的热量称为比热量。
准静态 pdv d ( pv) wt
wt pdv d ( pv) pdv ( pdv vdp) vdp
wt vdp
wt vdp
q du pdv 热一律解析式之一 准静态 q dh vdp 热一律解析式之二
技术功在示功图上的表示
少了推进功
Q
Q + min(u + c2/2 + gz)in - mout(u + c2/2 + gz)out - Wnet = dEcv
第二章 热力学第一定律

(二)热力学第一定律
热力学第一定律实质就是能量守恒和转换 定律在热现象上的应用。 表述1:热可以变为功,功也可以变为热;一 定量的热消灭,必产生一定量的功;消耗一 定量的功时,必出现与之相应数量的热。
表述2:第一类永动机是造不成的
First Law of Thermodynamics
In 1843, at the age of 25, James Prescott Joule did a series of careful experiments to prove the equivalence of heat and work.
A p V
dl
对推进功的说明
1、与宏观流动有关,流动停止,推进功不存在 2、作用过程中,工质仅发生位置变化,无状态变化
3、w推=pv与所处状态有关,是状态量 4、并非工质本身的能量(动能、位能)变化引起, 而由外界(泵与风机)做出,流动工质所携带的能量
可理解为:由于工质的进出,外界与系统之
间所传递的一种机械功,表现为流动工质进 出系统使所携带和所传递的一种能量
4、物理意义:开口系中随工质流动而携带的、取决 于热力状态的能量。
三、稳定流动能量方程
Energy balance for steady-flow systems
稳定流动条件
(P22)
1、
•
•
•
mout min m
2、
•
Q Const
min
uin 1 2
c
2 in
gzin
3、
•
•
Wnet ConstWs
三、总能
热力系统的储存能: 储存于热力系统的能量。 (1)内部储存能———热力学能 (2)外部储存能———宏观动能,宏观位能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理化学练习题第二章热力学第一定律一、选择题1、下列叙述中不具状态函数特征的是:()(A)系统状态确定后,状态函数的值也确定(B)系统变化时,状态函数的改变值只由系统的初终态决定(C)经循环过程,状态函数的值不变(D)状态函数均有加和性2、下列叙述中,不具可逆过程特征的是:()(A)过程的每一步都接近平衡态,故进行得无限缓慢(B)沿原途径反向进行时,每一小步系统与环境均能复原(C)过程的初态与终态必定相同(D)过程中,若做功则做最大功,若耗功则耗最小功3、如图,将CuSO4水溶液置于绝热箱中,插入两个铜电极,以蓄电池为电源进行电解,可以看作封闭体系的是:()(A)绝热箱中所有物质(B)两个铜电极(C)蓄电池和铜电极(D) CuSO4水溶液4、在一个绝热刚瓶中,发生一个放热的分子数增加的化学反应,那么:()(A) Q > 0,W > 0,∆U > 0 (B) Q = 0,W = 0,∆U < 0(C) Q = 0,W = 0,∆U = 0 (D) Q < 0,W > 0,∆U < 05、在下列关于焓的描述中,正确的是()(A)因为ΔH=QP,所以焓是恒压热(B)气体的焓只是温度的函数(C)气体在节流膨胀中,它的焓不改变(D)因为ΔH=ΔU+Δ(PV),所以任何过程都有ΔH>0的结论6、在标准压力下,1mol石墨与氧气反应生成1mol二氧化碳的反应热为Δr H ,下列哪种说法是错误的? ()(A) ΔH 是CO2(g)的标准生成热(B) ΔH =ΔU(C) ΔH 是石墨的燃烧热(D) ΔU <ΔH7、在标准状态下,反应C2H5OH(l)+3O2(g) →2CO2(g)+3H2O(g)的反应焓为Δr H mθ, ΔC p>0, 下列说法中正确的是()(A)Δr H mθ是C2H5OH(l)的标准摩尔燃烧焓(B)Δr H mθ〈0(C)Δr H mθ=ΔrUmθ(D)Δr H mθ不随温度变化而变化8、下面关于标准摩尔生成焓的描述中,不正确的是()(A)生成反应中的单质必须是稳定的相态单质(B)稳态单质的标准摩尔生成焓被定为零(C)生成反应的温度必须是298.15K(D)生成反应中各物质所达到的压力必须是100KPa9、在一个绝热钢瓶中,发生一个放热的分子数增加的化学反应,那么:()(A) Q > 0,W > 0,∆U > 0 (B)Q = 0,W = 0,∆U < 0(C) Q = 0,W = 0,∆U = 0 (D) Q < 0,W > 0,∆U < 010、非理想气体进行绝热自由膨胀时,下述答案中哪一个是错误的? ( )(A) Q=0 (B) W=0 (C) ΔU=0 (D) ΔH=011、下列表示式中正确的是( )(A)恒压过程ΔH=ΔU+pΔV (B)恒压过程ΔH=0(C)恒压过程ΔH=ΔU+VΔp (D)恒容过程ΔH=012、理想气体等温反抗恒外压膨胀,则( )(A)Q>W (B)Q<W (C)Q=W (D)Q=△U13、当理想气体其温度由298K升高到348K,经(1)绝热过程和(2)等压过程,则两过程的()(A)△H1>△H2 W1<W2(B)△H1<△H2 W1>W2(C)△H1=△H2 W1<W2(D)△H1=△H2 W1>W214、当理想气体从298K,2×105Pa 经历(1)绝热可逆膨胀和(2)等温可逆膨胀到1×105Pa时,则( )(A)△H1<△H2 W1>W2(B)△H1>△H2 W1<W2(C)△H1<△H2 W1<W2(D)△H1>△H2 W1>W215、对于封闭体系,在指定始终态间的绝热可逆途径可以有:( )(A) 一条(B) 二条(C) 三条(D) 三条以上16、实际气体绝热恒外压膨胀时,其温度将:( )(A) 升高(B) 降低(C) 不变(D) 不确定17、功的计算公式为W=nC v,m(T2-T1),下列过程中不能用此式的是()(A)理想气体的可逆绝热过程(B)理想气体的绝热恒外压过程(C)实际气体的绝热过程(D)凝聚系统的绝热过程18、凡是在孤立体系中进行的变化,其ΔU和ΔH的值一定是:( )(A) ΔU> 0 , ΔH > 0 (B) ΔU= 0 , ΔH = 0(C) ΔU< 0 , ΔH < 0 (D) ΔU= 0 , ΔH大于、小于或等于零不确定19、一定量的理想气体从同一始态出发,分别经(1) 等温压缩,(2) 绝热压缩到具有相同压力的终态,以H1,H2分别表示两个终态的焓值,则有:( )(A) H1> H2 (B) H1= H2 (C) H1< H2 (D) H1>=H220、将H2(g)与O2以2:1的比例在绝热刚性密闭容器中完全反应,则该过程中应有()(A)ΔT=0 (B)Δp=0 (C)ΔU=0 (D)ΔH=021、刚性绝热箱内发生一化学反应,则反应体系为( )(A)孤立体系(B)敞开体系(C)封闭体系(D)绝热体系22、理想气体可逆绝热膨胀,则下列说法中正确的是( )(A)焓总是不变(B)内能总是增加(C)焓总是增加(D)内能总是减少23、关于等压摩尔热容和等容摩尔热容,下面的说法中不正确的是( )(A)C p,m与C v,m不相等,因等压过程比等容过程系统多作体积功(B)C p,m–C v,m=R既适用于理想气体体系,也适用于实际气体体系(C)C v,m=3/2R适用于单原子理想气体混合物(D)在可逆相变中C p,m和C v,m都为无限大24、下列哪个过程的dT≠0,dH=0?( )(A)理想气体等压过程(B)实际气体等压过程(C)理想气体等容过程(D)实际气体节流膨胀过程25、隔离系统内发生一变化过程,则系统的:(A)热力学能守恒,焓守恒(B)热力学能不一定守恒,焓守恒(C)热力学能守恒,焓不一定守恒(D)热力学能、焓均不一定守恒二、判断题1、体系在某过程中向环境放热,则体系的内能减少。
错2恒温过程的Q一定是零。
()3、经历任意一个循环过程时,系统从环境吸收的热等于系统对外所做的功()对4尽管Q和W都是途径函数,但(Q+W)的数值与途径无关。
()5、由于热力学能是状态函数,则理想气体的状态改变时,其热力学能一定跟着改变()错6、封闭体系经历一个不作其它功的等压过程,其热量只决定于体系的初终态()对7在绝热、密闭、坚固的容器中发生化学反应,△U一定为零,△H不一定为零。
()8不可逆过程就是过程发生后,系统不能再复原的过程。
()9、因△H = Q p所以只有等压过程才有△H。
()都适用。
()10、理想气体,不管是恒压过程,还是恒容过程,公式⎰=HC∆dTp三、计算题1、0.01m3氧气由273K,1MPa经过(1)绝热可逆膨胀(2)对抗外压p=0.1MPa做绝热不可逆膨胀,气体最后压力均为0.1MPa,求两种情况所做的功。
(氧气的C p,m=29.36J·K-1·mol-1)2、10mol的理想气体分别经过下述(a)和(b)两个过程,在673K从 1.8×10-3m3等温膨胀到2.4×10-3m3,试计算其膨胀功W及体系所吸收的热Q。
(a)可逆恒温膨胀;(b)对抗外压为2.026×105Pa的等温膨胀。
3、在298.2K,101325Pa时有0.5molZn与过量稀硫酸反应,生成氢气和硫酸锌,已知此反应放热为7.155×104J,试计算:(1)上述过程中Q,W,ΔU,ΔH 的值;(2)若上述反应在密闭容器中发生,求Q,W,ΔH,ΔU的值。
4、将1kg水过冷到-5℃,在101.325kPa下,加入极少量的冰屑.使过冷水迅速结冰,并使冰与水的混合物的温度迅速升至冰点,冰的熔化热为333.5J ·g -1,0℃至-5℃水的比热为4.238J ·K -1,求结出冰的质量。
5、已知水在100℃时的蒸发热为2259.36J ·g -1,则在100℃时蒸发30g 水,系统的Q ,W ,ΔH ,为多少?6、将1mol 单原子理想气体,在1.013×105Pa 下从298K 加热到373K ,再恒温可逆膨胀至体积增加一倍,最后绝热可逆膨胀至温度为308K ,求全过程的W ,Q ,ΔU ,ΔH 。
7、1molO 2由0.1MPa ,300K 恒压加热到1000K ,求过程的Q 、W 、△U 及△H 。
已知:C p,m (O 2)=(31.64+3.39×10-3T-3.77×10-5T 2)J ·K -1·mol -18、1mol 单原子分子理想气体B ,由300K , 100.0kPa 经一可逆过程到达终态,压力为200.0kPa ,过程的Q =1000.0J , ΔH=2078.5J (1)计算终态的温度、体积及过程的W , ΔU 。
(2)假设气体先经等压可逆过程,然后经等温可逆过程到达终态,此过程的Q,W,ΔU,ΔH 是多少? 9、298K 时,1molCO 与0.5mol 的O 2按下式反应CO+1/2O 2==CO 2,生成1mol 的CO 2,已知:CO 2的C p.m =38.49J ·K ·mol -1;Δf H m ø(CO 2,298K)=-393.5kJ ·mol -1;Δf H m ø(CO ,298K)=-110.45kJ ·mol -1。
求 (1)298K 时,Δr U m ø,Δr H m ø,Q ,W ;(2)若在绝热恒容反应器中进行,求终态最高温度T 2。
10、计算298 K 下,CO(g)和CH 3OH(g)的标准生成焓,并计算反应CO(g)+2H 2(g)=CH 3OH(g)的标准焓变。
已知如下燃烧焓数据:Δc H m $(298 K)(CH 3OH(g))=-763.9 kJ·mol -1 (1)Δc H m $(298 K)(C(s))=-393.5 kJ·mol -1 (2)Δc H m $(298 K)(H 2(g))=-285.8 kJ·mol -1 (3)Δc H m $(298 K)(CO(g))=-283.0 kJ·mol -1 (4)第三章 热力学第二定律一、选择题1、如图,可表示理想气体卡诺循环的示意图是: ( )(A) 图⑴(B)图⑵(C)图⑶(D) 图⑷2、工作在393K和293K的两个大热源间的卡诺热机,其效率约为()(A) 83%(B) 25%(C) 100%(D) 20%3、不可逆循环过程中,体系的熵变值()(A) 大于零(B) 小于零(C)等于零(D)不能确定4、将1 mol 甲苯在101.325 kPa,110 ℃(正常沸点)下与110 ℃的热源接触,使它向真空容器中汽化,完全变成101.325 kPa 下的蒸气。