第6章自动控制系统的综合与校正

合集下载

控制工程基础- 第6章 控制系统校正

控制工程基础- 第6章 控制系统校正

arctan 1 2
tr
n 1 2
tp
n
1 2
ts
3
n
或4
n
% exp( ) 100%
1 2
控制工程基础
控制系统校正的基本概念
二阶系统的频域性能指标
c n 1 4 4 2 2
arctan
2
1 4 4 2 2
p n 1 2 2
1
Mp
2
1 2
b n 1 2 2 2 4 2 2 4
控制工程基础
控制系统校正的基本概念
(2) 滞后校正装置 校正装置输出信号在相位上落后于输入信号,即
校正装置具有负的相角特性,这种校正装置称为滞后 校正装置,对系统的校正称为滞后校正(积分校正)。 主要改善系统的静态性能。 (3) 滞后-超前校正装置
若校正装置在某一频率范围内具有负的相角特性, 而在另一频率范围内却具有正的相角特性,这种校正 装置称滞后-超前校正装置,对系统的校正称为滞后超前校正(积分-微分校正)。
2. 频域性能指标
(1) 开环频域指标
开环截止频率ωc (rad/s) ; 相角裕度γ;
幅值裕度Lg 。 (2) 闭环频域指标
谐振频率ωp ; 谐振峰值 Mp ;
频带宽度ωb。
控制工程基础
控制系统校正的基本概念
3. 各类性能指标之间的关系 各类性能指标是从不同的角度表示系统的性能,它们之间
存在必然的内在联系。对于二阶系统,时域指标和频域指标之 间能用准确的数学式子表示出来。它们可统一采用阻尼比ζ和 无阻尼自然振荡频率ωn来描述。 二阶系统的时域性能指标
经变换后接入系统,形成一条附加的、对干扰的影响进 行补偿的通道。
控制工程基础

(完整版)自动控制原理课后习题及答案

(完整版)自动控制原理课后习题及答案

第一章 绪论1-1 试比较开环控制系统和闭环控制系统的优缺点.解答:1开环系统(1) 优点:结构简单,成本低,工作稳定。

用于系统输入信号及扰动作用能预先知道时,可得到满意的效果。

(2) 缺点:不能自动调节被控量的偏差。

因此系统元器件参数变化,外来未知扰动存在时,控制精度差。

2 闭环系统⑴优点:不管由于干扰或由于系统本身结构参数变化所引起的被控量偏离给定值,都会产生控制作用去清除此偏差,所以控制精度较高。

它是一种按偏差调节的控制系统。

在实际中应用广泛。

⑵缺点:主要缺点是被控量可能出现波动,严重时系统无法工作。

1-2 什么叫反馈?为什么闭环控制系统常采用负反馈?试举例说明之。

解答:将系统输出信号引回输入端并对系统产生控制作用的控制方式叫反馈。

闭环控制系统常采用负反馈。

由1-1中的描述的闭环系统的优点所证明。

例如,一个温度控制系统通过热电阻(或热电偶)检测出当前炉子的温度,再与温度值相比较,去控制加热系统,以达到设定值。

1-3 试判断下列微分方程所描述的系统属于何种类型(线性,非线性,定常,时变)?(1)22()()()234()56()d y t dy t du t y t u t dt dt dt ++=+(2)()2()y t u t =+(3)()()2()4()dy t du t ty t u t dt dt +=+ (4)()2()()sin dy t y t u t tdt ω+=(5)22()()()2()3()d y t dy t y t y t u t dt dt ++= (6)2()()2()dy t y t u t dt +=(7)()()2()35()du t y t u t u t dt dt =++⎰解答: (1)线性定常 (2)非线性定常 (3)线性时变 (4)线性时变 (5)非线性定常 (6)非线性定常 (7)线性定常1-4 如图1-4是水位自动控制系统的示意图,图中Q1,Q2分别为进水流量和出水流量。

第六章 自动控制系统的综合与校正 答案

第六章 自动控制系统的综合与校正 答案

第六章习题答案1.答:需要校正的控制系统可分为被控对象、控制器和检测环节三个部分。

各装置除其中放大器的增益可调外,其余的结构和参数是固定的。

在系统中引进一些附加装置来改变整个系统的特性,以满足给定的性能指标,这种为改善系统的静、动态性能而引入系统的装置,称为校正装置。

而校正装置的选择及其参数整定的过程,就称为自动控制系统的校正问题。

根据校正装置在系统中的安装位置,及其和系统不可变部分的连接方式的不同,通常可分成三种基本的校正方式:串联校正、反馈校正、复合校正。

2.答:串联校正是设计中最常使用的,通常需要安置在前向通道的前端,主要适用于参数变化敏感性较强的场合。

设计较简单,容易对信号进行各种必要的变换,但需注意负载效应的影响。

3.答:反馈校正的设计相对较为复杂。

显著的优点是可以抑制系统的参数波动及非线性因素对系统性能的影响。

另外,元件也往往较少。

4.答:通过增加一对相互靠得很近并且靠近坐标原点的开环零、极点,使系统的开环放大倍数提高,以改善系统稳态性能。

5.答:通过加入一个相位引前的校正装置,使之在穿越频率处相位引前,以增加系统的相位裕量,这样既能使开环增益足够大,又能提高系统的稳定性,以改善系统的动态特性。

6.解:(1)根据误差等稳态指标的要求,确定系统的开环增益K(2)画出伯德图,计算未校正系统GO (j ω )的相位裕量(3)由要求的相角裕度γ,计算所需的超前相角(4)计算校正网络系数(5)确定校正后系统的剪切频率202)2(4lim )(lim 00==+⋅==→→K s s K s s sG K s o s v )15.0(20)2(40)(++=ωωωωωj j j j j G o =︒=+︒=⇒=17)(1807.6c o c ωϕγω︒=︒+︒-︒=+-=385175000εγγϕ2.438sin 138sin 1sin 1sin 1=︒-︒+-+==m m ϕϕα2.62.4lg 10lg 10-=-=-=∆αm L 9===T m c αωω(6)确定超前网络的转角频率ω1、ω2(7)画出校正后的伯德图,验算相角稳定裕度(画图略)(8)验算其它性能指标(9)写出校正装置的传递函数(10)提出实现形式,并确定网络参数7. 解:(1)根据给定的稳定误差或误差系数,确定系统的开环增益(2)确定未校正系统的相角稳定裕量(3)选择新的ωc4.182.4941.42.49121=⨯=======αωαωαωωm m T T 1054.01227.014.18141.42.41]11[1)(++=⎪⎪⎪⎪⎭⎫ ⎝⎛++=++=s s s s Ts s G c αα1054.01227.0)15.0(20)()()(++⋅+==s s s s s G s G s G c s 11=C 227101227.0611=⨯==-C T R 7112.4227112=-=-=αR R 5)15.0)(1(lim )(lim 00==++==→→K s s s sK s sG K s o s v )15.0)(1(5)(++=s s s s G o ︒-=⇒=⇒=201.20)(γωωc L(4)计算校正网络系数(5)选择校正网络的交接频率(6)画出校正后伯德图,验算相角裕度是否满足要求(7) 验算其它性能指标(8)写出校正装置的传递函数(9)提出实现形式,并确定网络参数8. 解:(1)根据给定的稳态误差或误差系数,确定系统的开环增益(2)确定未校正系统的相位裕量和增益裕量︒=︒+︒=︒-+=521240)205(2γγ12225.05525.090180-=⇒︒=--︒-︒=s arctg arctg c c ωωγ1086.9lg 201lg 20lg 20lg 20)(22≈=⇒-+==∆βωβωc C K L 1.055.05122====c ωτω01.0101.0121====βωβτω1s 1001s 10s G c ++=)(12=C 10010110622=⨯==-C T R 900)1(21=-=αR R 375)13757.0237(lim )(lim 2200=+⨯+==→→s s s sK s sG K s s s v 375=K )13757.0237(375)(22+⨯+=s s s s G s 25=c ω︒35=γ(3)超前校正环节(4)滞后校正环节在ω处滞后校正引起的滞后足够小 校正后开环传递函数(5)确定校正装置参数025.022=αT 2512)3548(=+-=m ϕcm ωω=5.225sin 125sin 1sin 1sin 12==︒-︒+-+=m m ϕϕα063.0255.222===m T ωα⎪⎭⎫ ⎝⎛++=⎪⎪⎪⎪⎭⎫ ⎝⎛++=1025.01063.05.21111)(22222s s s T s T s G c ααdB K L L a c s c s 5.29845.25lg 20lg 20)()(lg 2021=+-=+-=∆=αωω7.291=a ⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⋅+⨯+==1s 8551s 201s 02501s 06301s 37570237s s 375s G s G s G 22c s ....).()()()((6)校验略 422=R 422=R 5653=R 204=R 11=C 102=C。

自动控制6第六章控制系统的综合与校正

自动控制6第六章控制系统的综合与校正

复合校正
同时采用串联校正和反馈校正的方法,对系 统进行综合校正,以获得更好的性能。
数字校正
利用数字技术对控制系统进行校正,具有灵 活性和高精度等优点。
02 控制系统性能指标及评价
控制系统性能指标概述
稳定性
准确性
系统受到扰动后,能否恢复到原来的 平衡状态或达到新的平衡状态的能力。
系统稳态误差的大小,反映了系统的 控制精度。
针对生产线上的各种工 艺要求,设计相应的控 制策略,如顺序控制、 过程控制等。
系统校正方法
根据生产效率和产品质 量要求,采用适当的校 正方法,如PID参数整定、 自适应控制等。
仿真与实验验证
通过仿真和实验手段, 验证综合与校正后的工 业自动化生产线控制系 统的稳定性和效率。
控制系统综合与校正的注
06 意事项与常见问题解决方 案
仿真与实验验证
通过仿真和实验手段,验证综合与校正后 的导弹制导控制系统的精确性和可靠性。
系统校正方法
针对导弹制导控制系统的性能要求,采用 适当的校正方法,如串联校正、反馈校正 等。
实例三
01
02
03
04
控制系统结构
分析工业自动化生产线 控制系统的组成结构, 包括传感器、执行机构、 PLC等部分。
控制策略设计
考虑多变量解耦控制
对于多变量控制系统,可以考虑采 用解耦控制策略,降低各变量之间 的相互影响,提高系统控制精度。
加强系统鲁棒性设计
考虑系统不确定性因素,加强 系统鲁棒性设计,提高系统对 各种干扰和变化的适应能力。
THANKS FOR WATCHING
感谢您的观看
控制系统综合与校正的注意事项
明确系统性能指标

自动控制原理_吴怀宇_第六章控制系统的校正与设计

自动控制原理_吴怀宇_第六章控制系统的校正与设计

扰动补偿 输入补偿
自动控制原理
按扰动补偿的复合控制系统如图6-3所示。
N(s)
+
Gn (s)
R(s) + E(s)
+
G1 (s)
G2 (s)
C(s)
-
图6-3 按扰动补偿的复合控制系统
自动控制原理
按给定补偿的复合控制系统如图6-4所示。
Gr ( s)
R( s) E( s)
+
G( s )
+
C( s)
自动控制原理
6.4.1 超前校正
基本原理:利用超前校正网络的相角超前特性去增大系 统的相角裕度,以改善系统的暂态响应。 用频率特性法设计串联超前校正装置的步骤:
(1)根据给定的系统稳态性能指标,确定系统的开环增益 ;
K)绘制在确定的 值下系统的伯德图,并计算其相角裕 (2 度 ; K 0
(3)根据给定的相角裕度 ,计算所需要的相角超前量 0
m
60º
40º
20º
1
0 4 8 12 14 20

图6-16 最大超前相角 m 与 的关系
自动控制原理
6.3.2 滞后校正装置 相位滞后校正装置可用图6-17所示的RC无源网络实现, 假设输入信号源的内阻为零,输出负载阻抗为无穷大,可 求得其传递函数为:
G c ( s) s zc s 1 1 s 1 ( ) s pc s 1 ( ) s 1
自动控制原理
与相位超前网络类似,相位滞后网络的最大滞后角位于
1 与 1 的几何中心处。
图6-21还表明相位滞后校正网络实际是一低通滤波器, 值 它对低频信号基本没有衰减作用,但能削弱高频噪声, 10 较为适宜。 愈大,抑制噪声的能力愈强。通常选择 一般可取

第6章 控制系统的校正及综合

第6章   控制系统的校正及综合
W
(s ) =
100 s + 1 s 10
A(ω c ) ≈
100
ωc
ωc
10
=1
ω c = 31.6
31.6 γ (ω c ) = 180° + − 90° − arctan = 17.5° 10
6.2 串联校正
Bode图如下图所示 图如下图所示
6.2 串联校正
γd
γd
频率特性为
jω T + 1 Wc ( jω ) = ⋅ γ d jω T + 1 1
γd
6.2 串联校正
校正电路的Bode图如下:
ω 2 = γ d ω1
ωmax = ω1 ⋅ ω2,ϕ max γ d −1 = arcsin γ d +1
6.2 串联校正
引前校正的设计步骤:
(1)根据稳态误差的要求确定系统开环放大系数,绘制 Bode图,计算出未校正系统的相位裕量和增益裕量。 (2)根据给定相位裕量,估计需要附加的相角位移。 (3)根据要求的附加相角位移确定γd。 (4)确定1/Td 和γd/Td ,使校正后中频段(穿过零分贝线) 斜率为-20dB/十倍频,并且使校正装置的最大移相角 出现在穿越频率的位置上。 (5)计算校正后频率特性的相位裕量是否满足给定要求, 如不满足须重新计算。 (6)计算校正装置参数。
6.2 串联校正
校正电路的Bode图:
6.2 串联校正
例6-3 一系统的开环传递函数为
K W (s ) = s (s + 1 )(s + 2 )
试确定滞后-引前校正装置, 试确定滞后-引前校正装置,使系统满足 下列指标: 下列指标:速度误差系数 K v = 10,相位裕 量 γ (ωc ) = 50°,增益裕量 GM ≥10dB 。

数学建模自动控制自动控制系统的校正公开课一等奖优质课大赛微课获奖课件

数学建模自动控制自动控制系统的校正公开课一等奖优质课大赛微课获奖课件

机械网络
C1 C 2 ,T C2
C2
K2
Ts 1
Gc (s) Ts 1
阻容网络
R1 R2 R2
,T
R2C2
第13页
自动控制原理 无源阻容网络
第六章 自动控制系统的校正
滞后-超前校正网络
机械网络
R1 R2
R2
T1 R1C1 T2 R2 C2
K1 K2
K2
T1
C1 K1
T2
C2 K2
系统相位和增益裕量分 别为17°和+∞分贝
1.系统稳定 2.稳态误差满意 3.瞬态响应不满意
改变高频部分, c
超前校正
第17页
自动控制原理
第六章 自动控制系统的校正
第18页
自动控制原理
第六章 自动控制系统的校正
(3)拟定需要增长最大相位超 前角m
50 17 33 m 5 38
补偿c增长造成 Gs(j )相位滞后
K
5
Gs (s)
s(s
5 1)(0.5s
1)
第24页
自动控制原理
第六章 自动控制系统的校正
(2)拟定未校正系统相位裕量和增益裕量
20
1.须增长相位裕 量较大
2.c附近Gs(j) 相角减小不久
3.未提出频宽要求
滞后校正
第25页
自动控制原理
第六章 自动控制系统的校正
第26页
自动控制原理
第六章 自动控制系统的校正
➢执行元件: 受被控对象功率要求和所需能源形式、工作 ➢ 条件限制。伺服电动机、液压/气动伺服马达等;
➢测量元件: 依赖于被控制量形式。电位器、热电偶、测 ➢ 速发电机以及各类传感器等;

自动控制原理第六章

自动控制原理第六章

G(s)

K0 K p (Ti s 1) Ti s2 (Ts 1)
表明:PI控制器提高系统的型号,可消除控制系统对斜 坡输入信号的稳态误差,改善准确性。
校正前系统闭环特征方程:Ts2+s+K0=0 系统总是稳定的
校正后系统闭环特征方程:TiTs3 Ti s2 K p K0Ti s K p K0 0
调节时间 谐振峰值
ts

3.5
n
Mr
2
1 ,
1 2
0.707
谐振频率 r n 1 2 2 , 0.707
带宽频率 b n 1 2 2 2 4 2 4 4 截止频率 c n 1 4 4 2 2
相角裕度
arctan
低频段:
开环增益充分大, 满足闭环系统的 稳态性能的要求。
中频段:
中频段幅频特性斜 率为 -20dB/dec, 而且有足够的频带 宽度,保证适当的 相角裕度。
高频段:
高频段增益尽 快减小,尽可 能地削弱噪声 的影响。
常用的校正装置设计方法 -均仅适用最小相位系统
1.分析法(试探法)
特点:直观,物理上易于实 现,但要求设计者有一定的 设计经验,设计过程带有试 探性,目前工程上多采用的 方法。
列劳思表:
s3 TiT
K p K0Ti
s2 Ti
K pK0
s1 K p K0 (Ti T )
s0 K p K0
若想使系统稳定,需要Ti>T。如果 Ti 太小,可能造成系 统的不稳定。
5.比例-积分-微分(PID)控制规律
R( s )
E(s)
C(s)
K
p (1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Wc
(s)
(R1
R2Cs 1 R2 )Cs
1
Ts 1
iTs 1
i
R1 R2 R2
>1
T = R2C
Wc ( j)
jT 1 jiT 1
校正电路的伯德图如图6-9所示。
图6-8 相位滞后网络
(2)在初步设计时,常采用伯德(Bode)图来校正系统。
(3)用频率法校正控制系统时,通常是以频率指标来衡量和调整系统的暂态性 能,因而是一种间接的方法。
需要校正的几种基本类型如图6-1所示。
6.1.3 控制系统的性能指标
应根据系统工作的控制系统的性能指标实际需要来确定,对不同系统有所侧重, 如调速系统对平稳性和稳定性精度要求较高,而随动系统则侧重于快速性要求。
0 = − 0 + = 5°~ 20°
(3)根据给定相位裕量,估计需要的附加相角位移,求出超前网络必须提 供的相位超前量。
(4)计算校正网络系数。
m 0
d
1 sinm 1 sinm
(5)确定超前校正装置的交接频率1和2,使校正后中频段(穿过零分贝线)
斜率为−20(dB/dec),并且使校正装置的最大移相角出现在穿越频率c的位置
常用的性能指标有时域指标和频域指标,时域指标主要有超调量、调节时间ts和 稳态误差ess等,频域指标主要有相位裕量、穿越频率 c和谐振峰值Mr等。
6.1.4 控制系统的校正方式
根据校正装置在系统中的安装位置及其和系统固有部分的连接方式,通常 可分成3种基本的校正方式。
1.串联校正
如图6-2所示,这种形式中,校正装置与被控对象等不可变部分串联,因 此常称为串联校正。这是最常用的一种校正形式。这种方式简单、容易实 现。为避免功率损失,串联校正装置通常放在前向通道中能量较低的部位 ,可采用有源或无源校正网络构成。
arctan
46.32 21.6
arctan
46.32 99.36
52.8°
所得结果满足系统的要求
(6)串联校正s
1
99.36
6.2.2 串联滞后校正(PI校正)
1.相位滞后网络
应用图6-8所示的无源阻容网络,就能实现相位滞后所需的特性。它的传递函
数为 频率特性为
>c,则原系统相角位移将更负些,故max
应相应地加大。今取max=40°,于是可写出
max
=
arcsin d d
1 1
40°
图6-7 例6-1系统的伯德图
(3)由
sin 40° d 1 0.64 d 1
解得
d = 4.6
(4)假设系统校正后的穿越频率为校正装置两交接频率1和2的几何中点 (考虑到max是在两交接频率的几何中点),
第6章 自动控制系统的综合与校正
6.1 控制系统综合与校正概述
6.1.1 控制系统校正的概念
需要校正的控制系统通常可分为被控对象、控制器和检测环节3个部分。各 装置除其中放大器的增益可调外,其余的结构和参数是固定的。
当控制系统的静态、动态性能不能满足实际工程中要求的性能指标时,可以在 系统中引入一些附加装置和元件,人为地改变系统的结构和性能,使之满足要 求的性能指标,这种措施称为校正,引入的附加装置称为校正装置,除校正装 置以外的部分,包括被控对象及控制器,称为固有部分。
因此,控制系统的校正,就是按给定的固有部分的特性和对系统提出的性 能指标要求,选择与设计校正装置。而校正装置的选择及其参数整定的过 程,就称为自动控制系统的校正问题。
6.1.2 控制系统的校正方法 用频率法校正有以下特点。
(1)用频率法校正控制系统,主要是改变频率特性形状,使之具有合适的高频、 中频、低频特性和稳定裕量,以得到满意的闭环品质。
W (s) 100
s
s 10
1
因为
A(c )
100
c
c
10
1
c = 31.6
所以
(c
)
180°
90°
arctan
31.6 10
17.5°
伯德图如图6-7所示
(2)根据系统相位裕量 (c)≥50°的要求,微 分校正电c路最大相角位移应为
max ≥50°− 17.5°= 32.5°
考虑
' c
图6-4 复合校正
6.2 串 联 校 正
6.2.1 串联超前校正(PD校正)
1.相位超前网络
利用相位超前网络或PD控制器进行串联校正的基本原理,是利用相位超前网络 或PD控制器的相位超前特性。应用图6-5所示的无源阻容网络,就能实现所需 要的相位超前特性。
它的传递函数为
Wc (s)
1
d
R2Cs 1 R2C s 1

c 12 1 d

100 c
A(c )
1
c
c 10
1
解得
1 = 21.6 2 = 99.36 c = 46.32
校正后的系统传递函数为
Wc (s)W (s)
100
s 21.6
1
s
s 10
1
s 99.36
1
(5)校验校正后相位裕量
(c
)
180°
90°
arctan
46.32 10
2.反馈校正 如图6-3所示,校正装置位于局部反馈回路中,故称为反馈校正。反馈校 正可以改造被反馈包围的环节特性,抑制这些环节的参数波动或非线性因 素对系统性能的不利影响。采用此种校正方式,信号从高功率点流向低功 率点,所以一般采用无源网络。
图6-3 反馈校正
3.复合校正 如图6-4所示,反馈控制与前馈控制并用,称为前馈补偿,亦称为复合 校正。按其所取的输入性质的不同,可以分成按给定的前馈校正[如图64(a)所示]和按扰动的前馈校正[如图6-4(b)所示]。
d
图6-5 相位超前网络
d
R1 R2 R1
1
频率特性为
Wc ( j)
1
d
jT jT
1 1
校正电路的伯德图如图6-6所示。
d
图6-6 超前校正电路的伯德图
图中
2 = d1
max 1 2
max
arcsin d d
1 1
2.用频率法设计超前校正网络
利用频率法进行超前校正的设计步骤大致如下。
(1)根据稳态性能指标确定系统的开环增益K。 (2)绘制在确定K值下的伯德图,计算出未校正系统的相位裕量。
上。
(6)计算校正后频率特性的相位裕量是否满足给定要求,如不满足须重新计算。
(7)提出实现形式,并确定校正装置参数。
【例6-1】现有一控制系统的传递函数为
W s K
s
s 10
1
要求校正后的系统稳态速度误差系数Kv≥100,相位裕量 (c)≥50°,试确 定校正装置传递函数。
解:(1)由稳态指标的要求可计算出放大系数K=100。其传递函数为
相关文档
最新文档