数学冀教版七年级下第八章测试题
冀教版七年级数学下册第八章综合测试卷含答案

冀教版七年级数学下册第八章综合测试卷一、选择题(1~10题每题3分,11~16题每题2分,共42分) 1.【2022·嘉兴】计算a 2·a =( )A .aB .3aC .2a 2D .a 32.【教材P 71例1变式】计算(-x 5)2的结果是( )A .x 7B .-x 7C .x 10D .-x 103.下列运算正确的是( )A .x 6÷x 3=x 2B .(a -b )2=a 2-b 2C .(-a 2)3=-a 6D .3a 2·2a 3=6a 64.【2022·西城区校级期中】成人体内成熟的红细胞的平均直径一般为0.000 007 245 m ,可以用科学记数法表示为( ) A .7.245×10-5 m B .7.245×106 mC .7.724 5×10-4 mD .7.245×10-6 m5.在下列式子中,不能用平方差公式计算的是( )A .(m -n )(-m +n )B .()x 3-y 3()x 3+y 3C .(-a -b )(a -b )D .()c 2-d 2()d 2+c 26.在算式a m +n ÷( )=a m -2中,括号内的代数式应是( )A .a m +n -2B .a n -2C .a m +n +3D .a n +27.若(a m b n )2=a 8b 6,则m 2-2n 的值是( )A .10B .52C .20D .328.【教材P 98复习题B 组T 3变式】已知a +b =m ,ab =-4,化简(a -2)(b -2)的结果是( ) A .6 B .2m -8C .2mD .-2m9.若3x =4,9y =7,则3x -2y 的值为( )A .47 B .74C .-3D .2710.如图所示,从边长为a 的正方形内去掉一个边长为b 的小正方形,然后将剩余的部分剪拼成一个长方形,上述操作过程所验证的等式是( ) A .(a -b )2=a 2-2ab +b 2 B .a 2-b 2=(a +b )(a -b ) C .(a +b )2=a 2+2ab +b 2 D .a 2+ab =a (a +b )11.如果x +m 与x +3的乘积中不含x 的一次项,那么m 的值为( )A .-3B .3C .0D .112.若a =-0.32,b =(-3)-2,c =⎝ ⎛⎭⎪⎫-13-2,d =⎝ ⎛⎭⎪⎫-130,则( )A .a <b <c <dB .a <b <d <cC .a <d <c <bD .c <a <d <b13.若(-a 2)·(-a )2·(-a )m >0,则( )A .m 为奇数B .m 为偶数C .a >0,m 为奇数D .a >0,m 为偶数14.如图,正方形卡片A 类、B 类和长方形卡片C 类各若干张,如果要拼一个长为(2a +3b ),宽为(a +2b )的大长方形,则需要A 类、B 类和C 类卡片的张数分别为( )A .2,8,5B .3,8,6C .3,7,5D .2,6,715.若规定一种运算:a ※b =ab +a -b ,其中a ,b 为常数,则a ※b +(b -a )※b等于( ) A .a 2-bB .b 2-bC .b 2D .b 2-a16.【2022·宁波期末】如图,将两张长为a ,宽为b 的长方形纸片按图(1),图(2)两种方式放置,图(1)和图(2)中两张长方形纸片重叠部分分别记为①和②,正方形ABCD 未被这两张长方形纸片覆盖部分用阴影表示,图①和图②中阴影部分的面积分别记为S 1和S 2.若知道下列条件,仍不能求S 1-S 2值的是( )A.长方形纸片长和宽的差B.长方形纸片的周长和面积C.①和②的面积差D.长方形纸片和①的面积差二、填空题(17,18题每题3分,19题4分,共10分)17.【中考·佛山】计算:(a3)2·a3=________.18.【2022·益阳】已知m,n同时满足2m+n=3与2m-n=1,则4m2-n2的值是________.19.设某个长方形的长和宽分别为a和b,周长为14,面积为10,则(a+b)2=________,a2+b2=________.三、解答题(20,21题每题8分,22~25题每题10分,26题12分,共68分) 20.【教材P97复习题A组T4变式】计算下列各题.(1)(-2x2y)2·(-2xy);(2)4(x+1)2-(2x+5)(2x-5).21.【2021·南充】先化简,再求值:(2x+1)(2x-1)-(2x-3)2,其中x=-1.22.【2022·沭阳县模拟】计算:(1)已知a m=2,a n=3,求a2m-n的值;(2)已知2×8x×16=253,求x的值.23.【教材P98复习题B组T3改编】已知m+n=5,mn=3.(1)求m2+n2的值;(2)求(m-2)(n-2)的值.24.【教材P85习题A组T5变式】王老师家买了一套新房,其结构如图所示(单位:米).他打算将卧室铺木地板,其余部分铺地砖.(1)铺木地板和铺地砖的面积分别是多少平方米?(2)如果地砖的价格为每平方米x元,木地板的价格为每平方米3x元,那么王老师需要花多少钱?25.如图①,边长为a的大正方形角上有一个边长为b的小正方形.(1)用含字母的代数式表示图①中阴影部分的面积为________;(2)将图①的阴影部分沿斜线剪开后,拼成了一个如图②的长方形,用含字母的代数式表示此长方形的长为________,宽为________,面积为____________;(3)比较(1)、(2)中的结果,请你写出一个熟悉的公式:________________;(4)用你所得的公式解决下列问题:①计算:10.2×9.8;②若4x2-9y2=10,2x+3y=2,求2x-3y的值.26.【探究题】探索:(x-1)(x+1)=x2-1;(x-1)(x2+x+1)=x3-1;(x-1)(x3+x2+x+1)=x4-1;(x-1)(x4+x3+x2+x+1)=x5-1;……(1)试写出第五个等式;(2)试求26+25+24+23+22+2+1的值;(3)判断22 024+22 023+22 022+…+22+2+1的值的个位数字是几.答案一、1.D 2.C 3.C 4.D 5.A 6.D7.A 点拨:∵(a m b n )2=a 2m b 2n =a 8b 6,∴m =4,n =3.∴m 2-2n =42-2×3=16-6=10.8.D 点拨:因为a +b =m ,ab =-4,所以(a -2)(b -2)=ab +4-2(a +b )=-4+4-2m =-2m .9.A 点拨:3x -2y =3x ÷32y =3x ÷9 y =47. 10.B11.A 点拨:(x +m )(x +3)=x 2+(3+m )x +3m ,因为乘积中不含x 的一次项,所以m +3=0,所以m =-3. 12.B 13.C14.D 点拨:长为(2a +3b ),宽为(a +2b )的大长方形的面积为(2a +3b )×(a +2b )=2a 2+7ab +6b 2,∵A 类卡片的面积为a 2,B 类卡片的面积为b 2,C 类卡片的面积为ab ,∴需要A 类卡片2张,B 类卡片6张,C 类卡片7张.故选D. 15.B 点拨:a ※b +(b -a )※b =ab +a -b +b (b -a )+(b -a )-b =b 2-b . 16.D 点拨:如图,设矩形的两边长分别为a ,b ,阴影部分的长分别为x ,y ,则a +x =b +y ,即a -b =y -x . ∴S 1=x 2+y 2,S 2=2xy .∴S 1-S 2=x 2+y 2-2xy =(x -y )2=(a -b )2=(a +b )2-4ab . ∵矩形的面积是ab ,矩形的周长是2(a +b ), 故A ,B 是正确的.又∵①的面积是(b -x )(a -y ),②的面积是(a -x )(b -y ),(b -x )(a -y )-(a -x )(b -y )=(a -b )(y -x )=(a -b )2,故③正确,故选D. 二、17.a 9 18.3 19.49;29三、20.解:(1)(-2x 2y )2·(-2xy )=4x 4y 2·(-2xy )=-8x 5y 3.(2)4(x +1)2-(2x +5)(2x -5) =4(x 2+2x +1)-(4x 2-25) =4x 2+8x +4-4x 2+25 =8x +29.21.解:原式=4x 2-1-(4x 2-12x +9)=4x 2-1-4x 2+12x -9 =12x -10. ∵x =-1,∴12x -10=12×(-1)-10=-22. 22.解:(1)当a m =2,a n =3时,a 2m -n =a 2m ÷a n =(a m )2÷a n =22÷3 =4÷3 =43.(2)∵2×8x ×16=253, ∴2×23x ×24=253, ∴21+3x +4=253, 则1+3x +4=53, 解得x =16.23.解:(1)∵m +n =5,mn =3,∴m 2+n 2 =(m +n )2-2mn =52-2×3 =25-6 =19.(2)∵m+n=5,mn=3,∴原式=mn-2m-2n+4=mn-2(m+n)+4=3-2×5+4=3-10+4=-3.24.解:(1)卧室的面积是2b(4a-2a)=4ab(平方米).卫生间、厨房、客厅的面积和是b·(4a-2a-a)+a·(4b-2b)+2a·4b=ab+2ab +8ab=11ab(平方米).即铺木地板的面积是4ab平方米,铺地砖的面积是11ab 平方米.(2)11ab·x+4ab·3x=11abx+12abx=23abx(元).即王老师需要花23abx元钱.25.解:(1)a2-b2(2)a+b;a-b;(a+b)(a-b)(3)(a+b)(a-b)=a2-b2(4)①原式=(10+0.2)×(10-0.2)=102-0.22=100-0.04=99.96.②因为4x2-9y2=(2x+3y)(2x-3y),2x+3y=2,所以2×(2x-3y)=10,所以2x-3y=5.26.解:(1)(x-1)(x5+x4+x3+x2+x+1)=x6-1.(2)26+25+24+23+22+2+1=(2-1)×(26+25+24+23+22+2+1)=27-1=127.(3)22 024+22 023+22 022+...+22+2+1=(2-1)×(22 024+22 023+22 022+ (22)2+1)=22 025-1.2,22,23,…,2n(n为正整数)的个位数字是以2,4,8,6四个数字为一个循环.2 025÷4=506……1,所以22 025的个位数字是2,所以22 025-1的个位数字是1,即22 024+22 023+22 022+…+22+2+1的值的个位数字是1.。
冀教版数学七年级下册8章专项训练试题及答案

专训1运用幂的运算法则巧计算的常见类型名师点金:同底数幂的乘法、幂的乘方、积的乘方和同底数幂的除法等运算是整式乘除运算的基础,同底数幂的除法是同底数幂的乘法的逆运算,要熟练掌握这些运算法则,并能利用这些法则解决有关问题.运用同底数幂的乘法法则计算题型1底数是单项式的同底数幂的乘法1.计算:(1)a2·a3·a;(2)-a2·a5;(3)a4·(-a)5.题型2底数是多项式的同底数幂的乘法2.计算:(1)(x+2)3·(x+2)5·(x+2);(2)(a-b)3·(b-a)4;(3)(x-y)3·(y-x)5.题型3同底数幂的乘法法则的逆用3.(1)已知2m=32,2n=4,求2m+n的值.(2)已知2x=64,求2x+3的值.运用幂的乘方法则计算题型1直接运用幂的乘方法则求字母的值4.已知273×94=3x,求x的值.题型2 逆用幂的乘方法则求字母式子的值5.已知10a =2,10b =3,求103a+b 的值.题型3 运用幂的乘方解方程6.解方程:⎝⎛⎭⎫34x -1=⎝⎛⎭⎫9162.运用积的乘方法则进行计算题型1 逆用积的乘方法则计算7.用简便方法计算:(1)⎝⎛⎭⎫-1258×0.255×⎝⎛⎭⎫578×(-4)5; (2)0.1252 017×(-82 018).题型2 运用积的乘方法则求字母式子的值8.若|a n |=12,|b|n =3,求(ab)4n 的值.运用同底数幂的除法法则进行计算题型1 运用同底数幂的除法法则计算9.计算:(1)x10÷x4÷x4;(2)(-x)7÷x2÷(-x)3;(3)(m-n)8÷(n-m)3.题型2运用同底数幂的除法求字母的值10.已知(x-1)x2÷(x-1)=1,求x的值.答案1.解:(1)a 2·a 3·a =a 6.(2)-a 2·a 5=-a 7.(3)a 4·(-a)5=-a 9.2.解:(1)(x +2)3·(x +2)5·(x +2)=(x +2)9.(2)(a -b)3·(b -a)4=(a -b)3·(a -b)4=(a -b)7.(3)(x -y)3·(y -x)5=(x -y)3·[-(x -y)5]=-(x -y)8.3.解:(1)2m +n =2m ·2n =32×4=128. (2)2x +3=2x ·23=8·2x =8×64=512. 4.解:273×94=(33)3×(32)4=39×38=317=3x ,所以x =17.5.解:103a +b =103a ·10b =(10a )3·10b =23×3=24. 6.解:由原方程得⎝⎛⎭⎫34x -1=⎣⎡⎦⎤⎝⎛⎭⎫3422, 所以⎝⎛⎭⎫34x -1=⎝⎛⎭⎫344, 所以x -1=4,解得x =5.7.解:(1)原式=⎝⎛⎭⎫-758×⎝⎛⎭⎫145×⎝⎛⎭⎫578×(-4)5 =⎣⎡⎦⎤⎝⎛⎭⎫-758×⎝⎛⎭⎫578×[⎝⎛⎭⎫145×(-4)5] =⎝⎛⎭⎫-75×578×⎣⎡⎦⎤14×(-4)5 =1×(-1)=-1.(2)原式=⎝⎛⎭⎫182 017×(-82 017×8) =⎝⎛⎭⎫182 017×(-82 017)×8=-⎝⎛⎭⎫18×82 017×8 =-1×8=-8.8.解:因为|a n |=12,|b|n =3, 所以(ab)4n =a 4n ·b 4n =(a n )4·(b n )4=(|a n |)4·(|b|n )4=⎝⎛⎭⎫124×34=116×81=8116.9.解:(1)x 10÷x 4÷x 4=x 2.(2)(-x)7÷x 2÷(-x)3=-x 7÷x 2÷(-x 3)=x 2.(3)(m -n)8÷(n -m)3=(n -m)8÷(n -m)3=(n -m)5.10.解:由原方程得(x -1)x2-1=1,分三种情况:①当x 2-1=0且x -1≠0时,(x -1)x2-1=1,此时x =-1.②当x -1=1时,(x -1)x2-1=1,此时x =2.③当x -1=-1且x 2-1为偶数时,(x -1)x2-1=1.此种情况无解.综上所述,x 的值为-1或2.专训2 常见幂的大小比较技巧及幂的运算之误区名师点金:1.对于幂,由于它包含底数、指数、幂三种量,因此比较大小的类型有:比较幂的大小,比较指数的大小,比较底数的大小.2.幂的相关运算法则种类较多,彼此之间极易混淆,易错易误点较多,主要表现在混淆运算法则,符号辨别不清,忽略指数“1”等.1.幂的大小比较的技巧比较幂的大小方法1 指数比较法1.已知a =8131,b =2741,c =961,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .a <b <cD .b >c >a方法2 底数比较法2.350,440,530的大小关系是( )A .350<440<530B .530<350<440C .530<440<350D .440<530<350方法3 作商比较法3.已知P =999999,Q =119990,那么P ,Q 的大小关系是( ) A .P >Q B .P =QC .P <QD .无法比较比较指数的大小4.已知x a =3,x b =6,x c =12(x >0),那么下列关系正确的是( )A .a +b >cB .2b <a +cC .2b =a +cD .2a <b +c比较底数的大小5.已知a ,b ,c ,d 均为正数,且a 2=2,b 3=3,c 4=4,d 5=5,那么a ,b ,c ,d 中最大的数是( )A .aB .bC .cD .d2.幂的运算之误区混淆运算法则6.【中考·德州】下列运算正确的是( )A .(a 2)m =a 2mB .(2a)3=2a 3C .a 3·a -5=a -15D .a 3÷a -5=a -2 7.下列运算中,结果是a 6的是( )A .a 2·a 3B .a 12÷a 2C .(a 3)3D .(-a)68.计算:(1)(a 3)2+a 5;(2)a 4·a 4+(a 2)4+(-4a 4)2.符号辨别不清9.计算⎝⎛⎭⎫-12ab 23的结果是( ) A.18a 3b 6 B.18a 3b 5 C .-18a 3b 5 D .-18a 3b 6 10.化简(-x)5·(-x)4,结果正确的是( )A .-x 20B .x 20C .x 9D .-x 911.计算:(1)(-a 2)3; (2)(-a 3)2;(3)[(-a)2]3; (4)a·(-a)2·(-a)7.忽略指数“1”12.下列算式中,正确的是()A.a3·a2=a6B.x3·x5=x8C.x·x4=x4D.y7·y7=y49不能灵活运用整体思想13.化简:(1)(x+y)5÷(-x-y)2÷(x+y);(2)(a-b)9÷(b-a)4÷(a-b)3.不能灵活运用转化思想14.(1)若3x+2y-3=0,求27x·9y的值;(2)已知3m=6,9n=2,求32m-4n+1的值.答案1.A点拨:因为a=8131=(34)31=3124,b=2741=(33)41=3123,c=961=(32)61=3122,而124>123>122,所以3124>3123>3122,即a>b>c,故选A.本题采用的是指数比较法.将比较大小的各个幂的底数化为相同的底数,然后根据指数的大小关系确定出幂的大小.2.B点拨:因为350=(35)10=24310,440=(44)10=25610,530=(53)10=12510,而125<243<256,所以12510<24310<25610,即530<350<440,故选 B.本题采用的是底数比较法.将比较大小的各个幂的指数化为相同的指数,然后根据底数的大小关系确定出幂的大小.3.B点拨:因为PQ=999999×990119=(9×11)9999×990119=99×119999×990119=1,所以P=Q,故选B.本题采用的是作商比较法.当a>0,b>0时,利用“若ab>1,则a>b;若ab=1,则a=b;若ab<1,则a<b”比较.4.C点拨:因为x a=3,x b=6=2×3,x c=12=22×3,而(2×3)2=3×(22×3),所以(x b)2=x a·x c,即x2b=x a+c.又因为x>0,所以2b=a+c,故选C.5.B点拨:直接比较四个数的大小较繁琐,可两个两个地比较,确定最大的数.因为(a2)3=a6=23=8,(b3)2=b6=32=9,所以a6<b6,所以a<b.因为(b3)4=b12=34=81,(c4)3=c12=43=64,所以b12>c12,所以b>c.因为(b3)5=b15=35=243,(d5)3=d15=53=125,所以b15>d15,所以b>d.综上可知,b是最大的数,故选B.6.A7.D8.解:(1)(a3)2+a5=a6+a5.(2)a4·a4+(a2)4+(-4a4)2=a8+a8+16a8=18a8.9.D10.D11.解:(1)(-a2)3=-a6.(2)(-a3)2=a6.(3)[(-a)2]3=a6.(4)a·(-a)2·(-a)7=a·a2·(-a7)=-a10.12.B13.解:(1)原式=(x+y)5÷(x+y)2÷(x+y)=(x+y)2.(2)原式=(a-b)9÷(a-b)4÷(a-b)3=(a-b)2.14.解:(1)27x·9y=(33)x·(32)y=33x·32y=33x+2y,因为3x+2y-3=0,所以3x+2y=3,所以原式=33=27.(2)32m-4n+1=32m÷34n×31=(3m)2÷(32n)2×3=(3m)2÷(9n)2×3=36÷4×3=27.专训1乘法公式的应用名师点金:在乘法公式中添括号的“两种技巧”:(1)当两个三项式相乘,且它们只含相同项和相反项时,常常需通过添括号把相同项、相反项分别结合,一个化为“和”的形式,一个化为“差”的形式,然后利用平方差公式计算.(2)当一个三项式进行平方时,常常需通过添括号把其中两项看成一个整体,然后利用完全平方公式计算.直接活用公式1.计算:(1)(x2+1)2-4x2;(2)(2x+1)2-(2x+5)(2x-5);(3)(x+y)2-4(x+y)(x-y)+4(x-y)2.交换位置应用公式2.计算:(1)(-2x -y)(2x -y);(2)⎝⎛⎭⎫12-2x 2⎝⎛⎭⎫-2x 2-12; (3)(-2a +3b)2.添括号后整体应用公式3.灵活运用乘法公式进行计算:(1)⎝⎛⎭⎫12m -n -22; (2)(a +2b -c)(a -2b -c).连续应用公式4.计算:(1)(a -b)(a +b)(a 2+b 2)(a 4+b 4);(2)(3m -4n)(3m +4n)(9m 2+16n 2).逆向应用公式5.(1)计算:(a 2-b 2)2-(a 2+b 2)2;(2)已知(6x -3y)2=(4x -3y)2,xy ≠0,求y x的值.变形后应用公式6.(1)计算:①1992; ②982-101×99.(2)已知x +y =3,xy =-7,求:①x 2+y 2的值;②x 2-xy +y 2的值;③(x -y)2的值.(3)已知a +1a=3,求⎝⎛⎭⎫a -1a 2的值.答案1.解:(1)原式=x 4+2x 2+1-4x 2=x 4-2x 2+1.(2)原式=4x 2+4x +1-(4x 2-25)=4x 2+4x +1-4x 2+25=4x +26.(3)原式=(x 2+2xy +y 2)-4(x 2-y 2)+4(x 2-2xy +y 2)=x 2+2xy +y 2-4x 2+4y 2+4x 2-8xy +4y 2=x 2-6xy +9y 2.2.解:(1)原式=(-y -2x)(-y +2x)=y 2-4x 2.(2)原式=⎝⎛⎭⎫-2x 2+12⎝⎛⎭⎫-2x 2-12 =4x 4-14. (3)原式=(3b -2a)2=9b 2-12ab +4a 2.3.解:(1)原式=⎣⎡⎦⎤⎝⎛⎭⎫12m -n -22 =⎝⎛⎭⎫12m -n 2-4⎝⎛⎭⎫12m -n +4 =14m 2-mn +n 2-2m +4n +4. (2)原式=[(a -c)+2b][(a -c)-2b]=(a -c)2-4b 2=a 2-2ac +c 2-4b 2.4.解:(1)原式=(a 2-b 2)(a 2+b 2)(a 4+b 4)=(a 4-b 4)(a 4+b 4)=a 8-b 8.(2)原式=(9m 2-16n 2)(9m 2+16n 2)=81m 4-256n 4.5.解:(1)原式=[(a 2-b 2)+(a 2+b 2)][(a 2-b 2)-(a 2+b 2)]=2a 2·(-2b 2)=-4a 2b 2.(2)由题意得 (6x -3y)2-(4x -3y)2=0,[(6x -3y)+(4x -3y)][(6x -3y)-(4x -3y)]= 0,(10x -6y)·2x = 0,20x 2-12xy = 0,20x 2= 12xy ,因为xy ≠0,所以x ≠0,所以y x =53. 6.解:(1)①原式=(200-1)2=2002-400+12=40 000-400+1=39 601.②原式=(100-2)2-(100+1)×(100-1)=1002-400+22-1002+12=-395.(2)①x 2+y 2=(x +y)2-2xy=32-2×(-7)=23.②x 2-xy +y 2=(x +y)2-3xy=32-3×(-7)=30.③(x -y)2=(x +y)2-4xy=32-4×(-7)=37.(3)因为a +1a =3,所以⎝⎛⎭⎫a +1a 2=9,即a 2+2+1a 2=9, 所以a 2+1a 2=9-2=7,所以⎝⎛⎭⎫a -1a 2=a 2-2+1a 2=7-2=5.专训2 活用乘法公式进行计算的六种技巧名师点金:乘法公式是指平方差公式和完全平方公式,公式可以正用,也可以逆用.在使用公式时,要注意以下几点:(1)公式中的字母a ,b 可以是任意一个式子;(2)公式可以连续使用;(3)要掌握好公式中各项的关系及整个公式的结构特点;(4)在运用公式时要学会运用一些变形技巧.巧用乘法公式的变形求式子的值1.已知(a +b)2=7,(a -b)2=4.求a 2+b 2和ab 的值.2.已知x +1x =3,求x 4+1x 4的值.巧用乘法公式进行简便运算3.计算:(1)1982; (2)2 0042;(3)2 0172-2 016×2 018;(4)1002-992+982-972+…+42-32+22-12.巧用乘法公式解决整除问题4.试说明:(n +4)2-(n -3)2(n 为正整数)能被7整除.应用乘法公式巧定个位数字5.试求(2+1)(22+1)(24+1)…(232+1)+1的个位数字.巧用乘法公式解决复杂问题(换元法)6.计算20 182 017220 182 0162+20 182 0182-2的值.7.王老师在一次团体操队列队形设计中,先让全体队员排成一方阵(行与列的人数一样多的队形,且总人数不少于25人),人数正好够用,然后再进行各种队形变化,其中一个队形需分为5人一组,手执彩带变换队形,在讨论分组方案时,有人说现在的队员人数按5人一组分将多出3人,你说这可能吗?答案1.解:(a +b)2=a 2+2ab +b 2=7,(a -b)2=a 2-2ab +b 2=4,所以a 2+b 2=12×(7+4)=12×11=112, ab =14×(7-4)=14×3=34. 2.解:因为x +1x =3,所以⎝⎛⎭⎫x +1x 2=x 2+1x 2+2=9, 所以x 2+1x 2=7,所以⎝⎛⎭⎫x 2+1x 22=x 4+1x 4+2=49, 所以x 4+1x 4=47. 3.解:(1)原式=(200-2)2=2002-800+4=39 204.(2)原式=(2 000+4)2=2 0002+16 000+16=4 016 016.(3)原式=2 0172-(2 017-1)×(2 017+1)=2 0172-(2 0172-12)=2 0172-2 0172+1=1.(4)原式=()1002-992+(982-972)+…+(42-32)+(22-12)=(100+99)×(100-99)+(98+97)×(98-97)+…+(4+3)×(4-3)+(2+1)×(2-1) =100+99+98+97+…+4+3+2+1=100×(100+1)2=5 050.4.解:(n +4)2-(n -3)2=n 2+8n +16-(n 2-6n +9)=14n +7=7(2n +1).因为n 为正整数,所以2n +1为正整数,所以(n +4)2-(n -3)2能被7整除.5.解:(2+1)(22+1)(24+1)…(232+1)+1=(2-1)(2+1)(22+1)(24+1)…(232+1)+1=(22-1)(22+1)(24+1)…(232+1)+1=…=(264-1)+1=264=(24)16=1616.因此个位数字是6.6.解:设20 182 017=m,则原式=m2(m-1)2+(m+1)2-2=m2(m2-2m+1)+(m2+2m+1)-2=m2 2m2=1 2.7.解:人数可能为(5n)2,(5n+1)2,(5n+2)2,(5n+3)2,(5n+4)2(n为正整数).(5n)2=5×5n2;(5n+1)2=25n2+10n+1=5(5n2+2n)+1;(5n+2)2=25n2+20n+4=5(5n2+4n)+4;(5n+3)2=25n2+30n+9=5(5n2+6n+1)+4;(5n+4)2=25n2+40n+16=5(5n2+8n+3)+1.由此可见,无论哪一种情况,总人数按每组5人分,要么不多出人数,要么多出的人数是1或4,不可能是3.专训3整体思想在整式乘法运算中的应用名师点金:解决某些数学问题时,把一组数或一个式子看作一个整体进行处理,不仅可以简化解题过程,而且还能拓宽思路,培养创新意识,体现了数学中的一种重要思想——整体思想.这一思想在整式的乘法运算中体现明显,在解题中应用较多,要引起重视.幂的运算中的整体思想1.已知2x+3y-3=0,求3·9x·27y的值.乘法公式运算中的整体思想类型1化繁为简整体代入2.已知a =38x -20,b =38x -18,c =38x -16, 求式子a 2+b 2+c 2-ab -ac -bc 的值.类型2 变形后整体代入3.已知x +y =4,xy =1,求式子(x 2+1)(y 2+1)的值.4.已知a -b =b -c =35,a 2+b 2+c 2=1,求ab +bc +ca 的值.5.已知a 2+a -1=0,求a 3+2a 2+2 018的值.6.已知(2 016-a)(2 018-a)=2 017,求(2 016-a)2+(2 018-a)2的值.多项式乘法运算中的整体思想类型1数字中的换元7.若M=123 456 789×123 456 786,N=123 456 788×123 456 787,试比较M与N的大小.类型2多项式中的换元8.计算:(a1+a2+…+a n-1)(a2+a3+…+a n-1+a n)-(a2+a3+…+a n-1)(a1+a2+…+a n)(n≥3,且n为正整数).答案1.解:3·9x ·27y =3·(32)x ·(33)y =3·32x ·33y =31+2x +3y .因为2x +3y -3=0,所以2x +3y =3,所以原式=31+3=34=81. 点拨:本题运用了整体思想和转化思想.2.解:由a =38x -20,b =38x -18,c =38x -16,可得a -b =-2,b -c =-2,c -a =4.从而a 2+b 2+c 2-ab -ac -bc =12[(a -b)2+(b -c)2+(c -a)2]=12×[(-2)2+(-2)2+42]=12×24=12.3.解:(x 2+1)(y 2+1)=x 2y 2+x 2+y 2+1=(xy)2+(x +y)2-2xy +1.把x +y =4,xy =1整体代入得12+42-2×1+1=16,即(x 2+1)(y 2+1)=16.4.解:由a -b =b -c =35,可以得到a -c =65.由(a -b)2+(b -c)2+(a -c)2=2(a 2+b 2+c 2)-2(ab +bc +ac),得到ab +bc +ca =(a 2+b 2+c 2)-12[(a -b)2+(b -c)2+(a -c)2].将a 2+b 2+c 2,a -b ,b -c 及a -c 的值整体代入,可得ab +bc +ca =1-12×[(35)2+⎝⎛⎭⎫352+⎝⎛⎭⎫652]=1-12×5425=-225. 5.解:因为a 2+a -1=0,①所以将等式两边都乘a ,可得a 3+a 2-a =0.②将①②相加得a 3+2a 2-1=0,即a 3+2a 2=1.所以a 3+2a 2+2 018=1+2 018=2 019.6.解:(2 016-a)2+(2 018-a)2=[(2 016-a)-(2 018-a)]2+2(2 016-a)(2 018-a)=(-2)2+2×2 017=4+4 034=4 038.点拨:本题运用乘法公式的变形x 2+y 2=(x -y)2+2xy ,结合整体思想求解,使计算简便.7. 解:设123 456 788=a ,则123 456 789=a +1,123 456 786=a -2,123 456 787=a -1.从而M =(a +1)(a -2)=a 2-a -2,N =a(a -1)=a 2-a.所以M -N =(a 2-a -2)-(a 2-a)=-2<0,所以M <N.8.解:设a 2+a 3+…+a n -1=M ,则原式=(a 1+M)(M +a n )-M(a 1+M +a n )=a 1M +a 1a n +M 2+a n M -a 1M -M 2-a n M =a 1a n .点拨:本题如果按正常展开的方式来运算显然是很复杂的.这一类带“…”的题中,往往蕴藏着重要的技巧,而发现技巧的关键是观察.因此在解决这类问题时,不要忙于解答,而要冷静观察,寻找解决问题的突破口.比如这一题,在观察时能发现a 2+a 3+…+a n这个式子在每一个因式中都存在.因此,可以考虑将这个式子作为一个整体,设为M,-1问题就简化了,体现了整体思想的运用.。
冀教版初一数学下册《第8章达标检测卷》(附答案)

冀教版初一数学下册第八章达标检测卷一、选择题(每题3分,共30分)1.二元一次方程x -2y =3有无数多个解,下列四组值中不是该方程的解的是( ) A .⎩⎪⎨⎪⎧x =0,y =-32 B .⎩⎪⎨⎪⎧x =1,y =1 C .⎩⎪⎨⎪⎧x =3,y =0 D .⎩⎪⎨⎪⎧x =-1,y =-2 2.下列方程组中,是二元一次方程组的是( )A .⎩⎪⎨⎪⎧x +13=1,y =x 2B .⎩⎪⎨⎪⎧3x -y =5,2y -z =6C .⎩⎪⎨⎪⎧x 5+y 2=1,xy =1D .⎩⎪⎨⎪⎧x 2=3,y -2x =43.用代入法解方程组⎩⎪⎨⎪⎧2y -3x =1,x =y -1,下面的变形正确的是( )A .2y -3y +3=1B .2y -3y -3=1C .2y -3y +1=1D .2y -3y -1=14.已知⎩⎪⎨⎪⎧x =2,y =1是方程组⎩⎪⎨⎪⎧ax +by =5,bx +ay =1的解,则a -b 的值是( ) A .-1 B .2 C .3 D .45.以⎩⎪⎨⎪⎧y =-x +2,y =x -1的解为坐标的点(x ,y)在( )A .第一象限B .第二象限C .第三象限D .第四象限6.如图,AB ⊥BC ,∠ABD 的度数比∠DBC 的度数的2倍少15°,设∠ABD 与∠DBC 的度数分别为x°,y°,根据题意,下列方程(第6题)组正确的是( )A .⎩⎪⎨⎪⎧x +y =90,x =y -15B .⎩⎪⎨⎪⎧x +y =90,x =2y -15 C .⎩⎪⎨⎪⎧x +y =90,x =15-2y D .⎩⎪⎨⎪⎧x +y =90,x =2y +157.如果方程x +2y =-4,2x -y =7,y -kx +9=0有公共解,则k 的解是( )A .-3B .3C .6D .-68.如果关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +y =3a ,x -y =9a 的解是二元一次方程2x -3y +12=0的一个解,那么a 的值是( )A .34B .-47C .74D .-439.甲、乙两人各买了相同数量的信封和信笺,甲每发出一封信只用1张信笺,乙每发出一封信用3张信笺,结果甲用掉了所有的信封,但余下50张信笺,而乙用掉了所有的信笺,但余下50个信封,则甲、乙两人买的信笺张数、信封个数分别为( )A .150,100B .125,75C .120,70D .100,150 10.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现在仓库里有m 张长方形纸板和n 张正方形纸板,如果做两种纸盒若干个,恰好使库存的纸板用完,则m +n 的值可能是( )A .2 015B .2 016C .2 017D .2 018(第10题)二、填空题(每题3分,共30分)11.把方程5x -2y +12=0写成用含x 的代数式表示y 的形式为________.12.已知(n -1)x |n|-2y m -2 018=0是关于x ,y 的二元一次方程,则n m =________.13.方程组⎩⎪⎨⎪⎧x +y =12,y =2的解为________.14.在△ABC 中,∠A -∠B =20°,∠A +∠B =140°,则∠A =________,∠C =________.15.已知⎩⎪⎨⎪⎧x =2,y =1是二元一次方程组⎩⎪⎨⎪⎧mx +ny =7,nx -my =1的解,则m +3n 的立方根为________. 16.定义运算“*”,规定x*y =ax 2+by ,其中a ,b 为常数,且1*2=5,2*1=6,则2*3=________.17.如图,小强和小红一起搭积木,小强所搭的“小塔”的高度为23 cm ,小红所搭的“小树”的高度为22 cm .设每块A 型积木的高为x cm ,每块B 型积木的高为y cm ,则x =________,y =________.(第17题)(第20题)18.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,每袋货物都是一样重,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那么我所负担的就是你的两倍;如果我给你一袋,那么我们才恰好驮的一样多!”驴子原来所驮货物为________袋.19.若x ,y 是方程组⎩⎪⎨⎪⎧3y +2x =100-2a ,3y -2x =20的解,且x ,y ,a 都是正整数.①当a ≤6时,方程组的解是________;②满足条件的所有解的个数是________.20.如图①所示,在边长为a 的大正方形中剪去一个边长为b 的小正方形,再将图中的阴影部分剪拼成一个长方形,如图②所示,这个拼成的长方形的长为30,宽为20,则图②中Ⅱ部分的面积是________.三、解答题(21题12分,25题10分,26题14分,其余每题8分,共60分)21.解方程组:(1)⎩⎪⎨⎪⎧x -2y =3,3x +y =2; (2)⎩⎨⎧x 3-y2=6,x -y 2=9;(3)⎩⎪⎨⎪⎧3(x +y )-4(x -y )=6,x +y 2-x -y 6=1; (4)⎩⎪⎨⎪⎧x -y +z =0,4x +2y +z =0,25x +5y +z =60.22.已知关于x ,y 的方程组⎩⎪⎨⎪⎧mx +ny =7,2mx -3ny =4的解为⎩⎪⎨⎪⎧x =1,y =2,求m ,n 的值.23.对于x ,y 定义一种新运算“Ø”,xØy =ax +by ,其中a ,b 是常数,等式右边是通常的加法和乘法运算.已知3Ø5=15,4Ø7=18,求1Ø1的值.24.某村粮食专业队去年计划生产水稻和小麦共150 t ,实际完成了170 t .其中水稻超产15%,小麦超产10%.问:该专业队去年实际生产水稻、小麦各多少吨?25.小明和小刚同时解方程组⎩⎪⎨⎪⎧ax +by =26,cx +y =6.(第25题)根据小明和小刚的对话,试求a ,b ,c 的值.26.电脑中有一种游戏——蜘蛛纸牌,开始游戏前有500分的基本分,游戏规则如下:①操作一次减x分;②每完成一列加y分.有一次小明在玩这种“蜘蛛纸牌”游戏时,随手用表格记录了两个时段的电脑显示:(1)通过列方程组,求x,y的值;(2)如果小明最终完成此游戏(即完成10列),分数是1 182,问他一共操作了多少次?参考答案与解析一、1.B 2.D 3.A 4.D5.A 点拨:方程组的解为⎩⎨⎧x =32,y =12,x ,y 均为正数,所以点(x ,y)在第一象限.6.B7.B 点拨:解方程组⎩⎪⎨⎪⎧x +2y =-4,2x -y =7,得⎩⎪⎨⎪⎧x =2,y =-3.把x =2,y =-3代入y -kx +9=0,得-3-2k +9=0,解得k =3.故选B .8.B9.A 点拨:设他们每人买了x 个信封和y 张信笺.由题意得⎩⎪⎨⎪⎧y -x =50,x -y 3=50,解得⎩⎪⎨⎪⎧x =100,y =150.故选A .10.A二、11.y =52x +6 12.-113.⎩⎪⎨⎪⎧x =10,y =2 14.80°;60° 15.2 16.10 点拨:根据题中的新定义化简已知等式得⎩⎪⎨⎪⎧a +2b =5,4a +b =6.解得⎩⎪⎨⎪⎧a =1,b =2.则2*3=4a +3b =4+6=10.17.4;5 点拨:根据题意得⎩⎪⎨⎪⎧2x +3y =23,3x +2y =22,解得⎩⎪⎨⎪⎧x =4,y =5.18.5 点拨:设驴子原来所驮货物为x 袋,骡子原来所驮货物为y 袋,则依题意有⎩⎪⎨⎪⎧2(x -1)=y +1,x +1=y -1,解得⎩⎪⎨⎪⎧x =5,y =7.19.①⎩⎪⎨⎪⎧x =17,y =18 点拨:解方程组可得⎩⎨⎧x =20-a2,y =20-a3,又x ,y ,a 均为正整数且a ≤6,所以a =6.故x =17,y =18.②6 点拨:当a =6,12,18,24,30,36时,x ,y ,a 均为正整数.20.100 点拨:根据题意得出⎩⎪⎨⎪⎧a +b =30,a -b =20,解得⎩⎪⎨⎪⎧a =25,b =5,故Ⅱ部分的面积是5×20=100.三、21.解:(1)⎩⎪⎨⎪⎧x -2y =3,①3x +y =2,②由①,得x =3+2y.③将③代入②,得9+6y +y =2, 即y =-1.将y =-1代入③,得x =3-2=1.所以原方程组的解为⎩⎪⎨⎪⎧x =1,y =-1.(2)⎩⎨⎧x 3-y2=6,①x -y2=9,②②-①,得23x =3,解得x =92.将x =92代入①得32-y2=6,解得y =-9.所以原方程组的解为⎩⎪⎨⎪⎧x =92,y =-9.(3)⎩⎪⎨⎪⎧3(x +y )-4(x -y )=6,①x +y 2-x -y 6=1,②②×6,得3(x +y)-(x -y)=6,③ ①-③,得-3(x -y)=0,即x =y.将x =y 代入③,得3(x +x)-0=6,即x =1.所以y =1.所以原方程组的解为⎩⎪⎨⎪⎧x =1,y =1.(4)⎩⎪⎨⎪⎧x -y +z =0,①4x +2y +z =0,②25x +5y +z =60.③②-①,得3x +3y =0,④ ③-①,得24x +6y =60,⑤ ④⑤组成方程组得⎩⎪⎨⎪⎧3x +3y =0,24x +6y =60,解得⎩⎨⎧x =103,y =-103.将⎩⎨⎧x =103,y =-103代入①,得z =-203.所以原方程组的解为⎩⎪⎨⎪⎧x =103,y =-103,z =-203.22.解:将⎩⎪⎨⎪⎧x =1,y =2代入方程组得⎩⎪⎨⎪⎧m +2n =7,2m -6n =4.解得⎩⎪⎨⎪⎧m =5,n =1.23.解:由题意,得⎩⎪⎨⎪⎧3a +5b =15,4a +7b =18,解得⎩⎪⎨⎪⎧a =15,b =-6.∴1Ø1=15×1+(-6)×1=9.24.解:设计划生产水稻x t ,小麦y t ,依题意,得⎩⎪⎨⎪⎧x +y =150,15%x +10%y =170-150.解得⎩⎪⎨⎪⎧x =100,y =50. 则实际生产水稻(1+15%)×100=115(t), 实际生产小麦(1+10%)×50=55(t).所以该专业队去年实际生产水稻115 t 、小麦55 t.25.解:把⎩⎪⎨⎪⎧x =4,y =-2,⎩⎪⎨⎪⎧x =7,y =3代入方程组的第1个方程中得⎩⎪⎨⎪⎧4a -2b =26,7a +3b =26.解得⎩⎪⎨⎪⎧a =5,b =-3.再把⎩⎪⎨⎪⎧x =4,y =-2代入方程cx +y =6中,得4c +(-2)=6,所以c =2.故a =5,b =-3,c =2.26.解:(1)依题意得⎩⎪⎨⎪⎧2y -66x =634-500,5y -102x =898-500.解得⎩⎪⎨⎪⎧x =1,y =100.(2)设他一共操作了a 次,则10×100-a ×1=1 182-500,解得a =318.答:他一共操作了318次.。
冀教版七年级下册数学第八章 整式乘法含答案

冀教版七年级下册数学第八章整式乘法含答案一、单选题(共15题,共计45分)1、下列计算不正确的是()A.a 2÷a 0•a 2=a 4B.a 2÷(a 0•a 2)=1C.(a+b)2•(a+b)3 =a 5+b 5D.(a+b)•(a-b)=a 2-b 22、下列计算正确的是()A. a 2+ a 2= a 4B.( a 2)3= a 6C.(3 a)•(2 a)=6a D.3 a- a=33、下列运算正确的是()A. B. C. D.4、计算(x3y)2÷(2xy)2的结果应该是()A. B. C. y D. y5、(x﹣3)(2x+1)=2x2+mx+n,则m,n的值分别是()A.5,﹣3B.﹣5,3C.﹣5,﹣3D.5,36、若a2﹣kab+9b2是完全平方式,则常数k的值为()A.±6B.12C.±2D.67、下列计算正确的是()A.a 2+a 3=a 5B.a 2·a 3=a 6C.(a 2)3=a 6D.(ab)2=ab 28、下列运算正确的是()A.2a+2a=2a²B.a²·a 3=a 6C.(-3a 4)²=-9a 8D.a 6÷a²=a 49、计算的结果是( )A. B. C. D.10、下列运算正确的是()A.a 2+a 2=a 4B.(-b 2)3=-b 6C.2x•2x 2=2x 3D.(m-n)2=m 2-n 211、下列运算正确的是()A.x 4•x 3=x 12B.(x 3)2=x 9C.x 4÷x 3=xD.x 3+x 4=x 712、下列运算正确的是()A.(ab)2=ab 2B.a 2·a 3=a 6C. =4D. ×=13、下列运算正确的是()A. B. C. D.14、在下列多项式中,与-x-y相乘的结果为x2-y2的多项式是( )A.x-yB.x+yC.–x+yD.–x-y15、下列运算正确的是()A. B. C. D.二、填空题(共10题,共计30分)16、一个容量为16GB的便携式U盘的内存全部用来储数码照片,若每张照片文件大小为211KB,则这个U盘可以存储这样的数码照片________张.(16GB=224KB,用2为底的幂表示结果)17、已知下列等式:;①;②;③;④……由此规律,则________.18、已知10m=2,10n=3,则103m+2n=________.19、若x+y=5,x-y=1,则式子x2-y2的值是________.20、利用乘法公式计算:________.21、若 3x(x+1)=mx2+nx,则 m+n=________.22、若5x=12,5y=4,则5x-y=________23、当m=________时,x m﹣2•x m+3=x9成立.24、已知a+ = ,则a- =________25、计算或化简下列各题:⑴a2+a2+a2=________⑵a2·a3=________;⑶x·x4÷x2=________;⑷(2a)3=________;⑸(π-1)0=________;⑹(-2xy)(3x2y-2x+1)=________;三、解答题(共5题,共计25分)26、计算:27、甲、乙两人共同计算一道整式乘法:(2x+a)(3x+b),由于甲抄错了第一个多项式中a前面的符号,得到的结果为6x2+18x+12;由于乙漏抄了第二个多项中的x的系数,得到的结果为2x2+2x﹣12,请你计算出a、b的值各是多少,并写出这道整式乘法的正确结果.28、将多项式(x﹣2)(x2+ax﹣b)展开后不含x2项和x项.试求:2a2﹣b的值.29、已知a,b,c是的三边长,且满足=,=,求的周长.30、已知2×8x×16=223,求x的值.参考答案一、单选题(共15题,共计45分)1、C2、B3、A4、B5、C7、C8、D9、A10、B11、C12、D13、B14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、三、解答题(共5题,共计25分)27、28、29、。
冀教版七年级数学下册第八章达标测试卷附答案

冀教版七年级数学下册第八章达标测试卷一、选择题(1~10题每题3分,11~16题每题2分,共42分)1.下列运算正确的是()A.3-2=9 B.(-2)0=0C.2a2·a3=2a6D.(a2)3=a62.计算(-2)-3的相反数是()A.-6 B.1 8C.-18D.83.下列算式中,结果等于x10的是()A.x2·x2·x2·x2·x2B.x2+x2+x2+x2+x2C.x2·x5D.x6+x44.已知a=2-1,b=(π-3)0,c=(-1)5,则a,b,c的大小关系为() A.a>b>c B.b>a>cC.c>a>b D.b>c>a5.下列等式中正确的个数是()①a5+a5=a10;②(-a)6·(-a)3·a=a10;③-a4·(-a)5=a20;④25+25=26.A.0个B.1个C.2个D.3个6.已知x2-4x-1=0,则代数式x(x-4)+1的值为()A.2 B.1 C.0 D.-1 7.若(x+1)(x-3)=x2+ax+b,则a,b的值分别是()A.a=2,b=3B.a=-2,b=-3C.a=-2,b=3D.a=2,b=-38.当m为正整数时,计算x m-1x m+1(-2x m)2的结果为()A.-4x4m B.2x4mC.-2x4m D.4x4m9.如果4x2-9y2=(-2x-3y)(M),那么M表示的式子为() A.-2x+3y B.2x-3yC.-2x-3y D.2x+3y10.若x,y均为正整数,且2x+1·4y=128,则x+y的值为() A.3 B.5C.4或5 D.3或4或511.如果(2x-18)(x+p)的乘积中不含x的一次项,那么p等于() A.-1 B.3C.-9 D.912.今天数学课上,老师讲了单项式乘以多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-3xy(4y-2x-1)=-12xy2+6x2y+□,□的地方被钢笔墨水弄污了,你认为□处应该是()A.3xy B.(-3xy)C.(-1) D.113.已知a=96,b=314,c=275,则a,b,c的大小关系是() A.a>b>c B.a>c>bC.c>b>a D.b>c>a14.新亚商城春节期间,开设一种摸奖游戏,中一等奖的机会为20万分之一,用科学记数法表示为()A.2×10-5B.5×10-6C.5×10-5D.2×10-615.已知2n=a,5n=b,40n=c,那么a,b,c之间满足的等量关系是() A.c=ab B.c=ab3C.c=a2b2D.c=a3b16.如图,将面积为a2的小正方形与面积为b2的大正方形放在一起(a>0,b>0),则三角形ABC的面积是()(第16题)A.13b 2B.12b 2 C .b 2 D .2b 2二、填空题(17题3分,其余每空2分,共11分)17.已知m +2n +2=0,则2m ·4n 的值为________.18.已知(2a -3)a +3=1,2b =18,则a =______,(b +4)a =________.19.已知6x =192,32y =192,则x ,y 两数和与两数积的关系是________,(-2 020)(x-1)(y -1)-2=________.三、解答题(20题8分,21~23题每题9分,24~25题每题10分,26题12分,共67分)20.计算:(1)(3x +1)(x 2+3x -4);(2)(2x -3y )(4x 2-9y 2)(-2x -3y ).21.简便计算:(1)982;(2)6(7+1)(72+1)(74+1)(78+1)+1.22.已知将(x3+mx+n)(x2-3x+4)展开的结果不含x3和x2项.(m,n为常数)(1)求m,n的值;(2)求(m+n)(m2-mn+n2)的值.23.如图所示,有一块相邻两边长分别为(m+3n)米和(2m+n)米的长方形土地,现准备在这块土地上修建一个长为(m+2n)米,宽为(m+n)米的游泳池,剩余部分修建成休息区域.(1)请用含m和n的代数式表示休息区域的面积;(结果要化简)(2)若m=10,n=20,求休息区域的面积;(3)若游泳池面积和休息区域面积相等,且n≠0,求此时游泳池的长与宽的比值.(第23题)24.(1)你能求出(a-1)(a99+a98+a97+…+a2+a+1)的值吗?遇到这样的问题,我们可以先从简单的情况入手,分别计算下列各式的值.(a-1)(a+1)=________________;(a-1)(a2+a+1)=________________;(a-1)(a3+a2+a+1)=________________;由此我们可以得到:(a-1)(a99+a98+a97+…+a2+a+1)=_______________________________________________________________.(2)利用(1)的结论,完成下面的计算:2199+2198+2197+…+22+2+1.25.(1)若m2+n2=13,m+n=3,求mn的值.(2)请仿照上述方法解答下列问题:若(a-b-2 017)2+(2 019-a+b)2=5,求代数式2 019(a-b-2 017)(2 019-a+b)的值.26.【阅读理解】我们常将一些公式变形,以简化运算过程.如,可以把公式“(a+b)2=a2+2ab+b2”变形成a2+b2=(a+b)2-2ab或2ab =(a+b)2-(a2+b2)等形式,运用于下面这个问题的解答:问题:若x满足(20-x)(x-30)=10,求(20-x)2+(x-30)2的值.我们可以作如下解答:设a=20-x,b=x-30,则(20-x)(x-30)=ab=10,a+b=(20-x)+(x-30)=20-30=-10.所以(20-x)2+(x-30)2=a2+b2=(a+b)2-2ab=(-10)2-2×10=80.请根据你对上述内容的理解,解答下列问题:(1)若x满足(80-x)(x-70)=-10,则(80-x)2+(x-70)2的值为________.(2)若x满足(2 020-x)2+(2 017-x)2=4 051,求(2 020-x)(2 017-x)的值.(3)如图,将正方形EFGH叠放在正方形ABCD上,重叠部分(四边形LFKD)是一个长方形,AL=8,CK=12.沿着LD,KD所在直线将正方形EFGH分割成四个部分,若四边形ELDN和四边形DKGM恰好为正方形,且它们的面积之和为400,求长方形NDMH的面积.(第26题)答案一、1.D 2.B 3.A 4.B 5.B 6.A7.B 8.D 9.A 10.C 11.D 12.A13.C 14.B 15.D16.B 点拨:因为将面积为a 2的小正方形与面积为b 2的大正方形放在一起,且a >0,b >0,所以AM =GM =AF =FG =a ,BG =CG =CH =BH =b , 所以三角形ABC 的面积=S 正方形AFGM +S 正方形BGCH +S 三角形AMB -S 三角形AFC -S 三角形BHC =a 2+b 2+12a (b -a )-12a (a +b )-12b 2 =a 2+b 2+12ab -12a 2-12a 2-12ab -12b 2=12b 2.故选B.二、17.14 18.1或2或-3;119.相等;-12 020 点拨:由6x =192,32y =192,得6x =192=32×6,32y =192=32×6,所以6x -1=32,32y -1=6,所以(6x -1)y -1=6,所以(x -1)(y -1)=1,即xy =x +y .三、20.解:(1)原式=3x 3+9x 2-12x +x 2+3x -4=3x 3+10x 2-9x -4.(2)原式=-(4x 2-9y 2)(4x 2-9y 2)=-16x 4+72x 2y 2-81y 4.21.解:(1)982=(100-2)2=1002-2×100×2+22=10 000-400+4=9 604.(2)6(7+1)(72+1)(74+1)(78+1)+1=(7-1)(7+1)(72+1)(74+1)(78+1) +1=716-1+1=716.22.解:(1)(x 3+mx +n )(x 2-3x +4)=x 5-3x 4+4x 3+mx 3-3mx 2+4mx +nx 2-3nx +4n=x 5-3x 4+(4+m )x 3+(n -3m )x 2+(4m -3n )x +4n ,由题意得⎩⎨⎧4+m =0,n -3m =0,解得⎩⎨⎧m =-4,n =-12.(2)(m +n )(m 2-mn +n 2)=m 3+n 3,当m =-4,n =-12时,(m +n )(m 2-mn +n 2)=m 3+n 3=(-4)3+(-12)3=-64-1 728=-1 792.23.解:(1)由题意可得,(m +3n )(2m +n )-(m +2n )(m +n )=2m 2+7mn +3n 2-m 2-3mn -2n 2=m 2+4mn +n 2,即休息区域的面积是(m 2+4mn +n 2)平方米.(2)当m =10,n =20时,m 2+4mn +n 2=102+4×10×20+202=1 300,即若m =10,n =20,则休息区域的面积是1 300平方米.(3)由题意可得,(m +2n )(m +n )=m 2+4mn +n 2,即m 2+3mn +2n 2=m 2+4mn +n 2,整理,得n 2=mn ,因为n ≠0,所以n =m ,所以(m +2n )∶(m +n )=3m ∶2m =32.即此时游泳池的长与宽的比值是32.24.解:(1)a 2-1;a 3-1;a 4-1;a 100-1(2)2199+2198+2197+…+22+2+1=(2-1)×(2199+2198+2197+…+22+2+1)=2200-1.25.解:(1)把m +n =3两边平方,得(m +n )2=9,即m 2+n 2+2mn =9,把m 2+n 2=13代入,得2mn =-4,即mn =-2.(2)因为[(a -b -2 017)+(2 019-a +b )]2=22=4,所以(a -b -2 017)2+(2 019-a+b)2+2(a-b-2 017)(2 019-a+b)=4,把(a-b-2 017)2+(2 019-a+b)2=5代入,得(a-b-2 017)(2 019-a+b)=-1 2,故2 019(a-b-2 017)(2 019-a+b)=2 019-12=-4 038.26.解:(1)120(2)设a=2 020-x,b=2 017-x,则a-b=2 020-x-2 017+x=3,所以(2 020-x)(2 017-x)=ab=12[a2+b2-(a-b)2]=12(4 051-9)=2 021.(3)设LD=a,DK=b,则AD=8+a,DC=b+12.由题意知,8+a=b+12,a2+b2=400,所以a-b=4. 因为(a-b)2+2ab=a2+b2,所以42+2ab=400,所以ab=192.所以长方形NDMH的面积为ab=192.。
冀教版数学七年级下册第八章达标检测试题及答案

第八章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.二元一次方程x -2y =3有无数多个解,下列四组值中不是该方程的解的是( )A .⎩⎪⎨⎪⎧x =0,y =-32 B .⎩⎪⎨⎪⎧x =1,y =1 C .⎩⎪⎨⎪⎧x =3,y =0 D .⎩⎪⎨⎪⎧x =-1,y =-2 2.下列方程组中,是二元一次方程组的是( )A .⎩⎪⎨⎪⎧x +13=1,y =x 2B .⎩⎪⎨⎪⎧3x -y =5,2y -z =6C .⎩⎪⎨⎪⎧x 5+y 2=1,xy =1D .⎩⎪⎨⎪⎧x 2=3,y -2x =43.用代入法解方程组⎩⎪⎨⎪⎧2y -3x =1,x =y -1,下面的变形正确的是( )A .2y -3y +3=1B .2y -3y -3=1C .2y -3y +1=1D .2y -3y -1=14.已知⎩⎪⎨⎪⎧x =2,y =1是方程组⎩⎪⎨⎪⎧ax +by =5,bx +ay =1的解,则a -b 的值是( ) A .-1 B .2 C .3 D .45.以⎩⎪⎨⎪⎧y =-x +2,y =x -1的解为坐标的点(x ,y)在( )A .第一象限B .第二象限C .第三象限D .第四象限6.如图,AB ⊥BC ,∠ABD 的度数比∠DBC 的度数的2倍少15°,设∠ABD 与∠DBC 的度数分别为x°,y°,根据题意,下列方程(第6题)组正确的是( )A .⎩⎪⎨⎪⎧x +y =90,x =y -15B .⎩⎪⎨⎪⎧x +y =90,x =2y -15 C .⎩⎪⎨⎪⎧x +y =90,x =15-2y D .⎩⎪⎨⎪⎧x +y =90,x =2y +15 7.如果方程x +2y =-4,2x -y =7,y -kx +9=0有公共解,则k 的解是( ) A .-3 B .3 C .6 D .-68.如果关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +y =3a ,x -y =9a 的解是二元一次方程2x -3y +12=0的一个解,那么a 的值是( )A .34B .-47C .74D .-439.甲、乙两人各买了相同数量的信封和信笺,甲每发出一封信只用1张信笺,乙每发出一封信用3张信笺,结果甲用掉了所有的信封,但余下50张信笺,而乙用掉了所有的信笺,但余下50个信封,则甲、乙两人买的信笺张数、信封个数分别为( )A .150,100B .125,75C .120,70D .100,15010.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现在仓库里有m 张长方形纸板和n 张正方形纸板,如果做两种纸盒若干个,恰好使库存的纸板用完,则m +n 的值可能是( )A .2 015B .2 016C .2 017D .2 018(第10题)二、填空题(每题3分,共30分)11.把方程5x -2y +12=0写成用含x 的代数式表示y 的形式为________.12.已知(n -1)x |n|-2y m -2 018=0是关于x ,y 的二元一次方程,则n m =________.13.方程组⎩⎪⎨⎪⎧x +y =12,y =2的解为________.14.在△ABC 中,∠A -∠B =20°,∠A +∠B =140°,则∠A =________,∠C =________.15.已知⎩⎪⎨⎪⎧x =2,y =1是二元一次方程组⎩⎪⎨⎪⎧mx +ny =7,nx -my =1的解,则m +3n 的立方根为________.16.定义运算“*”,规定x*y =ax 2+by ,其中a ,b 为常数,且1*2=5,2*1=6,则2*3=________.17.如图,小强和小红一起搭积木,小强所搭的“小塔”的高度为23 cm ,小红所搭的“小树”的高度为22 cm .设每块A 型积木的高为x cm ,每块B 型积木的高为y cm ,则x =________,y =________.(第17题)(第20题)18.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,每袋货物都是一样重,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那么我所负担的就是你的两倍;如果我给你一袋,那么我们才恰好驮的一样多!”驴子原来所驮货物为________袋.19.若x ,y 是方程组⎩⎪⎨⎪⎧3y +2x =100-2a ,3y -2x =20的解,且x ,y ,a 都是正整数.①当a ≤6时,方程组的解是________;②满足条件的所有解的个数是________.20.如图①所示,在边长为a 的大正方形中剪去一个边长为b 的小正方形,再将图中的阴影部分剪拼成一个长方形,如图②所示,这个拼成的长方形的长为30,宽为20,则图②中Ⅱ部分的面积是________.三、解答题(21题12分,25题10分,26题14分,其余每题8分,共60分) 21.解方程组:(1)⎩⎪⎨⎪⎧x -2y =3,3x +y =2; (2)⎩⎨⎧x 3-y2=6,x -y 2=9;(3)⎩⎪⎨⎪⎧3(x +y )-4(x -y )=6,x +y 2-x -y 6=1; (4)⎩⎪⎨⎪⎧x -y +z =0,4x +2y +z =0,25x +5y +z =60.22.已知关于x ,y 的方程组⎩⎪⎨⎪⎧mx +ny =7,2mx -3ny =4的解为⎩⎪⎨⎪⎧x =1,y =2,求m ,n 的值.23.对于x ,y 定义一种新运算“Ø”,xØy =ax +by ,其中a ,b 是常数,等式右边是通常的加法和乘法运算.已知3Ø5=15,4Ø7=18,求1Ø1的值.24.某村粮食专业队去年计划生产水稻和小麦共150 t ,实际完成了170 t .其中水稻超产15%,小麦超产10%.问:该专业队去年实际生产水稻、小麦各多少吨?25.小明和小刚同时解方程组⎩⎪⎨⎪⎧ax +by =26,cx +y =6.(第25题)根据小明和小刚的对话,试求a ,b ,c 的值.26.电脑中有一种游戏——蜘蛛纸牌,开始游戏前有500分的基本分,游戏规则如下:①操作一次减x分;②每完成一列加y分.有一次小明在玩这种“蜘蛛纸牌”游戏时,随手用表格记录了两个时段的电脑显示:(1)(2)如果小明最终完成此游戏(即完成10列),分数是1 182,问他一共操作了多少次?答案一、1.B 2.D 3.A 4.D5.A 点拨:方程组的解为⎩⎨⎧x =32,y =12,x ,y 均为正数,所以点(x ,y)在第一象限.6.B7.B 点拨:解方程组⎩⎪⎨⎪⎧x +2y =-4,2x -y =7,得⎩⎪⎨⎪⎧x =2,y =-3.把x =2,y =-3代入y -kx +9=0,得-3-2k +9=0,解得k =3.故选B .8.B9.A 点拨:设他们每人买了x 个信封和y 张信笺.由题意得⎩⎪⎨⎪⎧y -x =50,x -y 3=50,解得⎩⎪⎨⎪⎧x =100,y =150.故选A .10.A二、11.y =52x +6 12.-113.⎩⎪⎨⎪⎧x =10,y =2 14.80°;60° 15.2 16.10 点拨:根据题中的新定义化简已知等式得⎩⎪⎨⎪⎧a +2b =5,4a +b =6.解得⎩⎪⎨⎪⎧a =1,b =2.则2*3=4a +3b =4+6=10.17.4;5 点拨:根据题意得⎩⎪⎨⎪⎧2x +3y =23,3x +2y =22,解得⎩⎪⎨⎪⎧x =4,y =5.18.5 点拨:设驴子原来所驮货物为x 袋,骡子原来所驮货物为y 袋,则依题意有⎩⎪⎨⎪⎧2(x -1)=y +1,x +1=y -1,解得⎩⎪⎨⎪⎧x =5,y =7. 19.①⎩⎪⎨⎪⎧x =17,y =18 点拨:解方程组可得⎩⎨⎧x =20-a2,y =20-a3,又x ,y ,a 均为正整数且a ≤6,所以a =6.故x =17,y =18.②6 点拨:当a =6,12,18,24,30,36时,x ,y ,a 均为正整数.20.100 点拨:根据题意得出⎩⎪⎨⎪⎧a +b =30,a -b =20,解得⎩⎪⎨⎪⎧a =25,b =5,故Ⅱ部分的面积是5×20=100.三、21.解:(1)⎩⎪⎨⎪⎧x -2y =3,①3x +y =2,②由①,得x =3+2y.③将③代入②,得9+6y +y =2, 即y =-1.将y =-1代入③,得x =3-2=1.所以原方程组的解为⎩⎪⎨⎪⎧x =1,y =-1.(2)⎩⎨⎧x 3-y2=6,①x -y2=9,②②-①,得23x =3,解得x =92.将x =92代入①得32-y2=6,解得y =-9.所以原方程组的解为⎩⎪⎨⎪⎧x =92,y =-9.(3)⎩⎪⎨⎪⎧3(x +y )-4(x -y )=6,①x +y 2-x -y 6=1,②②×6,得3(x +y)-(x -y)=6,③①-③,得-3(x -y)=0,即x =y.将x =y 代入③,得3(x +x)-0=6,即x =1.所以y =1.所以原方程组的解为⎩⎪⎨⎪⎧x =1,y =1.(4)⎩⎪⎨⎪⎧x -y +z =0,①4x +2y +z =0,②25x +5y +z =60.③ ②-①,得3x +3y =0,④ ③-①,得24x +6y =60,⑤ ④⑤组成方程组得⎩⎪⎨⎪⎧3x +3y =0,24x +6y =60,解得⎩⎨⎧x =103,y =-103.将⎩⎨⎧x =103,y =-103代入①,得z =-203.所以原方程组的解为⎩⎪⎨⎪⎧x =103,y =-103,z =-203.22.解:将⎩⎪⎨⎪⎧x =1,y =2代入方程组得⎩⎪⎨⎪⎧m +2n =7,2m -6n =4.解得⎩⎪⎨⎪⎧m =5,n =1.23.解:由题意,得⎩⎪⎨⎪⎧3a +5b =15,4a +7b =18,解得⎩⎪⎨⎪⎧a =15,b =-6.∴1Ø1=15×1+(-6)×1=9.24.解:设计划生产水稻x t ,小麦y t ,依题意,得⎩⎪⎨⎪⎧x +y =150,15%x +10%y =170-150.解得⎩⎪⎨⎪⎧x =100,y =50. 则实际生产水稻(1+15%)×100=115(t), 实际生产小麦(1+10%)×50=55(t).所以该专业队去年实际生产水稻115 t 、小麦55 t.25.解:把⎩⎪⎨⎪⎧x =4,y =-2,⎩⎪⎨⎪⎧x =7,y =3代入方程组的第1个方程中得⎩⎪⎨⎪⎧4a -2b =26,7a +3b =26.解得⎩⎪⎨⎪⎧a =5,b =-3. 再把⎩⎪⎨⎪⎧x =4,y =-2代入方程cx +y =6中,得4c +(-2)=6,所以c =2.故a =5,b =-3,c =2.26.解:(1)依题意得⎩⎪⎨⎪⎧2y -66x =634-500,5y -102x =898-500.解得⎩⎪⎨⎪⎧x =1,y =100.(2)设他一共操作了a 次,则10×100-a ×1=1 182-500,解得a =318.答:他一共操作了318次.。
整式的乘除 冀教版数学七年级下册单元测试(含答案)

七年级下册数学冀教版第八章整式的乘除时间:60分钟满分:100分一、选择题(本大题共12小题,每小题3分,共36分.每小题给出的四个选项中,只有一项是符合题目要求的)1.下列计算正确的是()A.a·a2=a2B.(x3)2=x5C.(2a)2=4a2D.(x+1)2=x2+12.如图是小明的测试卷,则他的成绩为()A.25分B.50分C.75分D.100分3.一个长方体的长、宽、高分别为3a-4,2a,a,它的体积等于()A.3a3-4a2B.a2C.6a3-8aD.6a3-8a24.式子(2a-b)(-b+2a)的运算结果正确的是()A.4a2-4ab+b2B.4a2+4ab+b2C.2a2-b2D.4a2-b25.若(x2-mx+1)(x-1)中x2项的系数为零,则常数m的值是()A.-2B.-1C.1D.26.若ab2=-6,则-ab(a2b5-ab3-b)的值为()A.216B.246C.-216D.1747.计算5(6+1)(62+1)(64+1)+1的结果为()A.616B.68C.68+1D.68-18.已知(x-1)|x|-1有意义且恒等于1,则x的值为()A.-1或2B.1C.±1D.09.从边长为a的正方形内剪掉一个边长为b的小正方形(如图1),然后将剩余部分剪拼成一个长方形(如图2),上述操作所能验证的等式是()A.(a-b)2=a2-2ab+b2B.a2-b2=(a+b)(a-b)C.(a+b)2=a2+2ab+b2D.a2+ab=a(a+b)10.已知a m=7,b n=17,则(-a3m b n)2(a m b2n)3的值为()A.1B.-1C.7D.1711.若(m+n)2=11,(m-n)2=3,则(mn)-2=()A.-14B.14C.-114D.1812.设x,y为任意数,定义运算:x*y=(x+1)(y+1)-1.给出下列五个结论:①x*y=y*x;②x*(y+2)=x*y+x*2;③(x+1)*(x-1)=x*x-1;④x*0=0;⑤(x+1)*(x+1)=x*x+2*x+1.其中正确结论的序号是() A.①③ B.③⑤ C.①②④ D.②⑤二、填空题(本大题共4小题,每小题3分,共12分)13.计算:2 0190+(13)-1=.14.若27x=9x+2,则x=.15.已知(x-1)(x+2)=ax2+bx+c,则代数式4a-2b+c的值为.16.设a1,a2,a3,…是一列正整数,其中a1表示第一个数,a2表示第二个数……a n表示第n个数(n是正整数).已知a1=1,4a n=(a n+1-1)2-(a n-1)2,则a2 018=.三、解答题(本大题共6小题,共52分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)计算:(1)5·(-5)2m+(-5)2m+1; (2)99.82;(3)3(2x-1)(x+6)-5(x-3)(x+6)+(2x-1)2; (4)-82 019×(-0.125)2 018+(-0.25)3×26.18.(本小题满分6分)化简并求值:(1)(3x+1)(2x-3)-(6x-5)(x-4),其中x=-2;(2)(2a+1)(2a-1)+(a-2)2-4(a+1)(a-2),其中a=-2.若(x m÷x2n)3÷x m-n与4x2为同类项,且m+5n=7,求m2-25n2的值.20.(本小题满分8分)“囧”是一个网络流行词.如图,将一张长为x+y,宽为3x的长方形的纸片,剪去两个一样的小直角三角形和一个小长方形得到一个“囧”字图案(阴影部分).(1)用含有x,y的式子表示图中“囧”字图案的面积;(2)当x=2,y=6时,求“囧”字图案的面积.21.(本小题满分10分)规定三角“”表示abc,方框“”表示x m+y n.例如:=1×19×3÷(24+31)=3.请根据这个规定解答下列问题.(1)计算:=.(2)解方程:=6x2+7.研究下列算式:0×1×2-13=-1,1×2×3-23=-2,2×3×4-33=-3,3×4×5-43=-4,…(1)你发现了什么规律?请将你发现的规律用公式表示出来,并用你学过的知识推导出这个公式.(2)用得到的公式计算:999×1 000×1 001.第八章综合能力检测卷答案题号1 2 3 4 5 6 7 8 9 10 11 12答案C B D A B B B A B C B A13.414.415.016.40351.C【解析】a·a2=a3,故A选项错误;(x3)2=x6,故B选项错误;(2a)2=4a2,故C选项正确;(x+1)2=x2+2x+1,故D选项错误.故选C.2.B【解析】由a2·a3=a5,(a3)2=a6,(ab)3=a3b3,a5÷a5=1.可知小明的成绩为25×2=50(分).3.D【解析】由题意知,V长方体=(3a-4)·2a·a=6a3-8a2.故选D.4.A【解析】(2a-b)(-b+2a)=(2a-b)2=4a2-4ab+b2.故选A.5.B【解析】∵(x2-mx+1)(x-1)=x3-x2-mx2+mx+x-1=x3-(1+m)x2+(1+m)x-1,且(x2-mx+1)(x-1)中x2项的系数为零,∴1+m=0,解得m=-1.故选B.6.B【解析】-ab(a2b5-ab3-b)=-a3b6+a2b4+ab2=-(ab2)3+(ab2)2+ab2,∵ab2=-6,∴原式=-(-6)3+(-6)2-6=216+36-6=246,故选B.7.B【解析】5(6+1)(62+1)(64+1)+1=(6-1)(6+1)(62+1)(64+1)+1=(62-1)(62+1)(64+1)+1=(64-1)(64+1)+1=68-1+1= 68.故选B.8.A【解析】根据题意,得x-1≠0,|x|-1=0或x=2.由|x|-1=0,得x=±1,由x-1≠0,得x≠1.综上可知,x 的值是-1或2.故选A.9.B【解析】从边长为a的正方形内剪掉一个边长为b的小正方形,剩余部分的面积是a2-b2,剩余部分剪拼成的长方形的面积是(a+b)(a-b),根据剩余部分的面积相等,得a2-b2=(a+b)(a-b).故选B.10.C【解析】(-a3m b n)2(a m b2n)3=(a m)6(b n)2(a m)3(b n)6=(a m)9(b n)8=79×(17)8=78×(17)8×7=(7×17)8×7=7.故选C.11.B【解析】∵(m+n)2=11,(m-n)2=3,∴m2+2mn+n2=11,m2-2mn+n2=3.两式相减,可得4mn=8,∴mn=2,∴(mn)-2=2-2=14.故选B.12.A【解析】x*y=y*x=xy+x+y,所以①正确;x*(y+2)=(x+1)(y+3)-1=xy+3x+y+2,x*y+x*2=(x+1)(y+1)-1+(x+1)(2+1)-1=xy+x+y+3x+3-1=xy +4x+y+2,所以②错误;(x+1)*(x-1)=(x+2)x-1=x2+2x-1,x*x-1=(x+1)(x+1)-1-1=x2+2x-1,所以③正确;x*0=x,所以④错误;(x+1)*(x+1)=(x+2)(x+2)-1=x2+4x+3,x*x+2*x+1=(x+1)(x+1)-1+3(x+1)-1+1=x2+5x+3,所以⑤错误.故选A.13.4【解析】 2 0190+(13)-1=1+3=4.14.4【解析】∵27x=9x+2,∴(33)x=(32)x+2,33x=32x+4,∴3x=2x+4,x=4.15.0【解析】(x-1)(x+2)=x2-x+2x-2=x2+x-2=ax2+bx+c,则a=1,b=1,c=-2.故4a-2b+c=4-2-2=0.16.4 035【解析】∵4a n=(a n+1-1)2-(a n-1)2,∴(a n+1-1)2=(a n-1)2+4a n=(a n+1)2.又∵a1,a2,a3,…是一列正整数,∴a n+1-1=a n+1,∴a n+1=a n+2,∵a1=1,∴a2=3,a3=5,a4=7,a5=9,…,∴a n=2n-1,∴a2 018=4 035.17.【解析】(1)5·(-5)2m+(-5)2m+1=-(-5)·(-5)2m+(-5)2m+1=-(-5)2m+1+(-5)2m+1=0.(2)99.82=(100-0.2)2=10 000-40+0.04=9 960.04.(3)3(2x-1)(x+6)-5(x-3)(x+6)+(2x-1)2=3(2x2+12x-x-6)-5(x2+6x-3x-18)+4x2-4x+1=6x2+36x-3x-18-5x2-30x+15x+90+4x2-4x+1=5x2+14x+73.(4)-82 019×(-0.125)2 018+(-0.25)3×26=-8×82 018×0.1252 018+(-0.25)3×43=-8×(8×0.125)2 018+(-0.25×4)3=-8×12 018+(-1)3=-8-1=-9.18.【解析】(1)(3x+1)(2x-3)-(6x-5)(x-4)=6x2-9x+2x-3-6x2+24x+5x-20=22x-23,当x=-2时,原式=22×(-2)-23=-67.(2)(2a+1)(2a-1)+(a-2)2-4(a+1)(a-2)=4a2-1+a2-4a+4-4a2+4a+8=a2+11,当a=-2时,原式=15.19.【解析】(x m÷x2n)3÷x m-n=(x m-2n)3÷x m-n=x3m-6n÷x m-n= x2m-5n,因为(x m÷x2n)3÷x m-n与4x2为同类项,所以2m-5n=2.又因为m+5n=7,所以m=3,n=45,所以m2-25n2=9-16=-7.20.【解析】(1)“囧”字图案的面积S=3x(x+y)-12·x+y2·x·2-x+y2·x=2x2+2xy.(2)当x=2,y=6时,“囧”字图案的面积S=8+2×2×6=32.21.【解析】(1)-32.=[2×(-3)×1]÷[(-1)4+31]=-6÷4=-32(2)∵=6x2+7, ∴(3x-2)(3x+2)-[(x+2)(3x-2)+32]=6x2+7,∴9x2-4-(3x2+4x-4+9)=6x2+7,∴9x2-4-3x2-4x-5=6x2+7,解得x=-4.22.【解析】(1)公式:(n-1)n(n+1)-n3=-n(n为正整数).推导:(n-1)n(n+1)-n3=n(n2-1)-n3=n3-n-n3=-n(n为正整数).(2)由(1)知,999×1 000×1 001-1 0003=-1 000,所以999×1 000×1 001=-1 000+1 0003=999 999 000.。
冀教版七年级数学下册 第八章 整式的乘法 测试题 含答案

第八章 整式的乘法一.选择题(本题共10小题,每小题3分,共30分)1.下列运算正确的是() A.1243a a a =⋅ B.()9633222b a b a -=- C.633a a a ÷= D. ()222b a b a +=+2.已知3,5=-=+xy y x 则22y x +=()A. 25. B 25- C 19 D 、19- 3.计算()()2016201522-+-所得结果()A. 20152- B. 20152C. 1D. 24. 若79,43==yx,则yx 23-的值为()A .74 B .47 C .3- D .72 5.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是() A .a 8+2a 4b 4+b 8 B .a 8-2a 4b 4+b 8 C .a 8+b 8 D .a 8-b 86.23227(257)(______)55a b ab ab b -+÷=-括号内应填() A. ab 5 B. ab 5- C. b a 25 D. 25a b - 7.如果整式29x mx ++恰好是一个整式的平方,那么m 的值是() A. ±3 B. ±4.5 C. ±6 D. 98.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m n的值是()A. 2B. 0C. ﹣1D. 1 9.下列等式正确的个数是( ) ①963326)2(y x y x -=-②()n n a a 632=-③9363)3(a a =④()5735(510)7103510⨯⨯⨯=⨯⑤2)25.0(2)5.0(100101100⨯⨯-=⨯-A. 1个B. 2个C. 3个D. 4个 10.3927的个位数是()A. 7B. 9C. 3D. 1二.填空题(本题共6小题,每题4分,共24分)11.若622=-n m ,且3=-n m ,则=+n m 12.方程()()()()32521841x x x x +--+-=的解是______13.已知2a=5,2b=10,2c=50,那么a 、b 、c 之间满足的等量关系是__________ 14.若13x x-=,则221x x +=15.若代数式232x x ++可以表示为2(x 1)(x 1)b a -+-+的形式,则a b += ________16.定义新运算“⊗”规定:2143a b a ab ⊗=--则3(1)⊗-= ___________三.解答题(共7题,共66分)17(本题8分)计算下列各式: (1)()()222226633m n m n m m --÷-(2)()()()()233232222x y x xy y x ÷-+-⋅18(本题8分)先化简,再求值: 6)6()3)(3(2+---+a a a a ,其中1a =.19(本题8分).已知751812,,1,1y y y x x x y x n m n nm =⋅=⋅>>----,求n m ,的值20.(本题10分)(1)若0352=-+y x ,求yx 324⋅的值 (2)已知2x -y =10,求()()()222x yx y 2y x y 4y ⎡⎤+--+-÷⎣⎦的值21(本题10分).观察下列等式,并回答有关问题:2233324121⨯⨯=+;223334341321⨯⨯=++;22333354414321⨯⨯=+++;(1)若n 为正整数,猜想=+⋅⋅⋅+++3333321n (2)利用上题的结论比较3333123100+++⋅⋅⋅+与25000的大小.22(本题10分)(1)关于x 的多项式乘多项式()()2321x x ax --+,若结果中不含有x 的一次项,求代数式:2(21)(21)(21)a a a +-+-的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 整式的乘法一.选择题(本题共10小题,每小题3分,共30分)1.下列运算正确的是() A.1243a a a =⋅ B.()9633222b a b a -=- C.633a a a ÷= D. ()222b a b a +=+2.已知3,5=-=+xy y x 则22y x +=()A. 25. B 25- C 19 D 、19- 3.计算()()2016201522-+-所得结果()A. 20152- B. 20152C. 1D. 24. 若79,43==y x ,则yx 23-的值为()A .74 B .47 C .3- D .72 5.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是() A .a 8+2a 4b 4+b 8 B .a 8-2a 4b 4+b 8 C .a 8+b 8 D .a 8-b 86.23227(257)(______)55a b ab ab b -+÷=-括号内应填() A. ab 5 B. ab 5- C. b a 25 D. 25a b - 7.如果整式29x mx ++恰好是一个整式的平方,那么m 的值是() A. ±3 B. ±4.5 C. ±6 D. 98.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m n的值是()A. 2B. 0C. ﹣1D. 1 9.下列等式正确的个数是( ) ①963326)2(y x y x -=-②()n n a a 632=-③9363)3(a a =④()5735(510)7103510⨯⨯⨯=⨯⑤2)25.0(2)5.0(100101100⨯⨯-=⨯-A. 1个B. 2个C. 3个D. 4个 10.3927的个位数是()A. 7B. 9C. 3D. 1二.填空题(本题共6小题,每题4分,共24分)11.若622=-n m ,且3=-n m ,则=+n m 12.方程()()()()32521841x x x x +--+-=的解是______13.已知2a=5,2b=10,2c=50,那么a 、b 、c 之间满足的等量关系是__________ 14.若13x x-=,则221x x +=15.若代数式232x x ++可以表示为2(x 1)(x 1)b a -+-+的形式,则a b += ________ 16.定义新运算“⊗”规定:2143a b a ab ⊗=--则3(1)⊗-= ___________三.解答题(共7题,共66分)17(本题8分)计算下列各式: (1)()()222226633m n m n m m --÷-(2)()()()()233232222x y x xy y x ÷-+-⋅18(本题8分)先化简,再求值: 6)6()3)(3(2+---+a a a a ,其中1a =.19(本题8分).已知751812,,1,1y y y x x x y x n m n nm =⋅=⋅>>----,求n m ,的值20.(本题10分)(1)若0352=-+y x ,求yx 324⋅的值 (2)已知2x -y =10,求()()()222x yx y 2y x y 4y ⎡⎤+--+-÷⎣⎦的值21(本题10分).观察下列等式,并回答有关问题:2233324121⨯⨯=+;223334341321⨯⨯=++;22333354414321⨯⨯=+++;(1)若n 为正整数,猜想=+⋅⋅⋅+++3333321n (2)利用上题的结论比较3333123100+++⋅⋅⋅+与25000的大小.22(本题10分)(1)关于x 的多项式乘多项式()()2321x x ax --+,若结果中不含有x 的一次项,求代数式:2(21)(21)(21)a a a +-+-的值。
(2)若15))(3(2-+=+-nx x m x x ,求5822+-n m n 的值23(本题12分)你会求()()1 (12201420152016)++++++-a a a a aa 的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:()()1112-=+-a a a ()()11132-=++-a a a a()()111423-=+++-a a a a a(1)由上面的规律我们可以大胆猜想,得到()()20162015201421...1a a a a a a -++++++=________________利用上面的结论,求 (2)122 (222)2201420152016++++++的值。
(3)求2016201520142555...551++++++的值。
参考答案一.选择题: 1.答案:解析:因为347a a a ⋅=,故A 选项错误;因为()3236928a b a b -=-,故B 选项错误;因为633a a a ÷=,故C 选项正确;因为()2222a b a ab b +=++,故D 选项错误。
故选择C2.答案:C解析:因为3,5=-=+xy y x ,所以()()1962532522222=-=⨯--=-+=+xy y x y x故选择C 。
3.答案:B 解析:因为()()2016201522-+-=()2015201520152016212222=-=-故选择B 4.答案:A解析:因为234,37x y ==,7432=∴-yx ,故选择A 5.答案:D解析:因为(a -b )(a+b )(a 2+b 2)(a 4-b 4)()()()()()884442442222b a b a b a b a b a b a -=+-=++-=故选择D 6.答案:B解析:因为23227(257)(5)55a b ab ab ab b -+÷-=-,故选择B 7.答案:C解析:因为()22396±=+±x x x ,所以6±=m ,故选择C8.答案:D解析:因为﹣2a m b 4与5a n +2b2m +n可以合并成一项,所以⎩⎨⎧+=+=nm n m 242解得:⎩⎨⎧==02n m所以120==n m ,故选择D 。
9.答案:A解析:因为23369(2)8x y x y -=-故①错误;因为()326nn a a -=-,故②错误;因为6318(3)27a a =,故③错误;因为()5712(510)7103510⨯⨯⨯=⨯,故④错误;因为100101100(0.5)2(0.52)2-⨯=-⨯⨯,故⑤正确,故选择A10.答案:D解析:因为n 7分别结应的个位数为:771→,972→,373→,174→,175→......984392=÷ ,故3927的个位数为1,故选择D二.填空题: 11.答案:2解析:因为()()226,6m n m n m n -=∴-+=,又3=-n m ,所以2=+n m ,故答案为2 12. 答案:3=x解析:因为()()()()32521841x x x x +--+-=,将原方程转化为:41815215222=++--+x x x x ,解得:3=x ,13.答案:c b a =+解析:因为2a=5,2b=10,所以10522⨯=⨯b a ,所以c ba 2502==+,所以c b a =+,14.答案:11 解析:因为13x x -=,所以11122=+xx 15..答案:11解析:因为222(x 1)(x 1)b 21(2)1a x x ax a b x a x a b -+-+=-++-+=+--++, 与232x x ++相同,所以⎩⎨⎧=++-=-2132b a a 解得:⎩⎨⎧==65b a ,所以11=+b a16.答案:9解析:因为2143a b a ab ⊗=--,所以()213(1)343131293⊗-=-⨯-⨯⨯-=-+=三.解答题:17.答案:(1)2221n n -++;(2)37542y x y x --解析:(1)原式1222++-=n n(2)原式=()()()37523926422824y xy x xy x xy y x --=÷-+-⨯18.答案:324-解析:先化简代数式,再代入计算即可。
【解答】:解:原式=a a a a a 66662222+=++--,当12-=a 时,原式=()()324626223126122-=-+-=-+-【分析】:本题化简计算基本题型,难度不大。
19.答案:3,6==n m解析:利用同底数幂的乘法法则,得到关于n m ,的方程组即可。
【解答】:218157,m n n m n x x x y y y ----⋅=⋅=解1847,18,6,347m n m n x x y y m n m n m n +--+∴==+-=⎧∴∴==⎨-+=⎩【分析】:本题主要是同底数幂的乘法和方程组的应用。
20.答案:(1)8 (2)5 解析:(1)因为2x+5y=3, 所以2525343222228xyxyx y +⋅=⋅===(2)因为2x -y =10 所以()()()()22222222x yx y 2y x y 4y=2224x y x y xy xy y y ⎡⎤+--+-÷+--++-÷⎣⎦()()51021221214242=⨯=-=-=÷-=y x y x y y xy21.答案:()()2211.14n n +()23335000100...212>+++解析:(1)观察前面三个等式即可找到答案;(2)只要利用上面所获得的结论计算出2333322211123100100101100101505042⎛⎫+++⋅⋅⋅+=⨯⨯=⨯⨯= ⎪⎝⎭即可作出比较。
【解答】:(1)由已知三式可得:()22114n n +2333322211(2)123100100101100101505042⎛⎫+++⋅⋅⋅+=⨯⨯=⨯⨯= ⎪⎝⎭因为2250005050>,所以333321231005000+++⋅⋅⋅+>【分析】:本题观察和分析找到规律是解决问题的关键。
22.答案:(1)4-(2)1-解析:(1)代数式展开后含有x 项的系数为零即可求得a ,再代入计算即可。
(2)利用等式的对应值求出n m ,再代入即可。
【解答】:(1)()()2321x x ax --+()()3213322ax a x a x =+--+-∵不含有x 的一次项∴()023=+-a ∴5.1-=a)12)(12()12(2-+-+a a a 42a =+把5.1-=a 代入∴24+a = —4(2)因为2(3)()15x x m x nx -+=+-,所以153)3(22-+=--+nx x m x m x⎩⎨⎧-=-=-∴1533m nm 解得:⎩⎨⎧==25n m ,∴224252118516521n m n --==-=-++ 【分析】:(1)不含某个项即为这个项的合并结果系数为零,是这个问题的重点所在;(2)主要是两个二次三项式相等,二次项相同,即其余各对应项相同,是解决问题的重点所在。