均匀平面波的极化

合集下载

电磁场复习习题

电磁场复习习题

一、选择题1、下列的矢量运算规律有错误的一项是:( B ) A 、θsin AB e B A n →→→=⨯ B 、→→⨯B A =→→⨯A BC 、)()()(→→→→→→→→→⋅-⋅=⨯⨯B A C C A B C B A D 、)()(→→→→→→⨯=⨯⋅A C B C B A2、选出下列的场中不属于矢量场的项:( C ) A 、电场 B 、磁场 C 、高度场 D 、力场3、关于梯度的性质下列说法不正确的是:( D ) A 、标量场的梯度是一个矢量场B 、在标量场中,在给定点沿任意方向的方向导数等于梯度在该方向上的投影C 、标量场中每一点M 处的梯度,垂直于过该点的等值面D 、标量场中每一点M 处的梯度,指向场减小的方向 4、关于矢量场的性质,下列说法有误的是:( A )A 、在矢量线上,任一点的法线方向都与该点的场矢量方向相同B 、静电场中的正电荷就是发出电场线的正通量源C 、磁感应强度B 在某一曲面S 上的面积分就是矢量B 通过该曲面的磁通量D 、漩涡源产生的矢量线是闭合曲线5、下列不属于电磁学三大实验定律的是:( A )A 、高斯定律B 、安培定律C 、库伦定律D 、法拉第电磁感应定律 6、关于电荷,下列描述不正确的是:( B ) A 、点电荷是电荷分布的一种极限情况 B 、实际上带电体上的电荷分布是连续的C 、宏观上我们常用电荷密度来描述电荷的分布情况D 、电荷不能被创造也不能被消灭只能转移 7、关于静电场,下列说法中 (1)由空间位置固定的电荷产生 (2)由电量不随时间变化的电荷产生 (3)基本物理量是电场强度 (4)性质由其散度和旋度来描述 (5)基本实验定律是库仑定律 下列判断正确的是:( D )A 、都不对B 、有一个错C 、有三个错D 、全对 8、0E ερ=⋅∇→是高斯定理的微分形式,它表明任意一点电场强度的( C )与该处的电荷密度有关。

A 、梯度B 、旋度C 、散度D 、环流9、静磁场的磁感应强度在闭合曲线上的环量等于闭合曲线交链的恒定电流的代数和与( B )的乘积。

均匀平面波极化

均匀平面波极化

y
y
E
Ey
O
Ex x
Ex x
O
Ey
E
(a) =0
(b) =
图6-6 线极化波电场的振动轨迹
众所周知,光波也是电磁波。但是光波不具有固 定的极化特性,或者说,其极化特性是随机的。光学 中将光波的极化称为偏振,因此,光波通常是无偏振 的。 为了获得偏振光必须采取特殊方法。
立体电影是利用两个相互垂直的偏振镜头从不同的 角度拍摄的。因此,观众必须佩带一副左右相互垂直 的偏振镜片,才能看到立体效果。
arc
tan
c
ost
c ost
kzx kzx
2
x
O
t kz x
图6-7 圆极化波电场的振动轨迹
这表明,对于给定z值的某点,随时间的增加,E ( z, t ) 的方向以角频率作等速旋转,其矢量端点轨迹为
圆,故称为圆极化(circular polarization)。当 时, / 2 ,t kz 的x 旋E向(z与,t)波的传播方向 成右手螺e旋z 关系,称为右旋圆极化波(righthanded circularly polarized wave);当
均匀平面波的极化
假设均匀平面波沿z方向传播,其电场矢量位于xy
平面,一般情况下,电场有沿x方向及沿y方向的两个
分量,可表示为
E Exme jx e jkzex Eyme jy e jkze y
(6-43)
其瞬时值为
Ex (z,t) Exm cost kz x (6-44a)
Ey (z,t) Eym cos t kz y (6-44b)
这两个分量叠加(矢量和)的结果随 x 、y 、Exm、Eym
的不同而不同。

【高中物理】优质课件:理想介质中的均匀平面波

【高中物理】优质课件:理想介质中的均匀平面波

E y
k2
E y
,
d2 d
H z x2
k 2H z
式中 k j j —传播常数 ( propagation constant),
通解 E y E e j x E e j x
H z
H e j x H e j x
1 (E ej x E e j x ) Z0
2 —波数、相位常数 ( phase constant) rad/m ,
特点:Ey 和 Ez 振幅相同,相位差90°。
合成后 E Ey2 Ez2 C 即 Ey2 Ez2 C2
tanα Ez tan( t )
Ey
Ey 超前 Ez 为右旋极化波。 Ey 滞后 Ez 为左旋极化波。
图6.4.2 圆极化的平面波
返回 上页 下页
椭圆极化(Elliptical Polarization)
返回 上页 下页
感 谢 观 看
H z H ze xe j x H ze xe j x
振幅呈指数衰减,电磁波是减幅波。
当 ,称为良导体, ' ,忽略位移电流。 j
k2 j , k j (1 j) 1 (1 j)
2
d
1 2d
返回 上页 下页
良导体中波的传播特性: E , H 为减幅波(集肤效应) ; 波阻抗为复数, E 超前 H 45
图6.2.1 理想介质中正弦均匀 平面波沿 x 方向的传播
返回 上页 下页
例 6.2.1 自由空间中 B 106 cos(6π 108t 2πz)(ex ey ) 试求:a. f ,v,, 及传播方向;b. E 和 S。
解:a. 波沿 z 轴方向传播; 2π rad/m
2π 1 m f 2π 3108 Hz

均匀平面波的极化特性

均匀平面波的极化特性

6.6 均匀平面波的极化特性1.电磁波的极化定义2.电磁波的极化形式1.电磁波的极化定义电磁波的极化是指空间某点的电场强度矢量方向随时间的变化规律。

用空间某点电场强度矢量的端点随时间变化所描画出的轨迹来表示。

电磁波的极化特性在日常生活中也经常使用例如:超短波收音机U E l =⋅θElcos E l =⋅θ均匀平面波的极化特性平面波的表达式:mˆcos()xE E t kz a =-+ωϕmˆcos()yH H t kz a=-+ωϕxyz2.电磁波的极化形式(1)线极化:电场强度矢量端点随时间变化的轨迹是一条直线。

yx2.电磁波的极化形式(1)线极化:电场强度矢量端点随时间变化的轨迹是一条直线。

(2)圆极化:电场强度矢量端点随时间变化的轨迹是圆。

yEx2.电磁波的极化形式(1)线极化:电场强度矢量端点随时间变化的轨迹是一条直线。

(2)圆极化:电场强度矢量端点随时间变化的轨迹是圆。

(3)椭圆极化:电场强度矢量端点随时间变化的轨迹是椭圆。

yx(1)线极化假设空间任意一个平面波:x yE E E =+若电场表示为:m ˆcos()x x x x E E t kz a ϕ=ω-+演示1——x 方向的线极化波m ˆcos()y y y y E E t kz aϕ=ω-+演示2——y 方向的线极化波线极化条件:ϕϕϕ==y x 或x y ϕϕπ-=±两个相互垂直线极化波叠加:条件:ϕϕϕ==y x 22mmcos()x y E EEt kz ωϕ=+-+与x 轴的夹角为:E θarctan()ymxmE E θ=x yE E E =+m ˆcos()x x x x E E t kz aϕ=ω-+m ˆcos()y y y y E E t kz aϕ=ω-+其中:结论:两个相互垂直线极化波叠加,其初始相位相同时,形成新的线极化波。

两个相互垂直线极化波叠加:条件:22mmcos()x y E EEt kz ωϕ=+-+与x 轴的夹角为:E θarctan()ymxmE E θ=-x yE E E =+m ˆcos()x x x x E E t kz aϕ=ω-+m ˆcos()y y y y E E t kz aϕ=ω-+x y ϕϕπ-=±其中:结论:两个相互垂直线极化波叠加,其初始相位相同时,形成新的线极化波。

讲16均匀平面波极化

讲16均匀平面波极化

0 < ϕ x − ϕ y < π 右旋椭圆极化
− π < ϕx −ϕ y < 0
左旋椭圆极化
两个空间上正交的线极化波可合成一个椭圆极化波;反之亦然。 两个空间上正交的线极化波可合成一个椭圆极化波;反之亦然。 两个旋向相反的圆极化波可合成一个椭圆极化波; 两个旋向相反的圆极化波可合成一个椭圆极化波;反之一个椭圆 那极化波可分解为两个旋向相反的圆极化波。 那极化波可分解为两个旋向相反的圆极化波。
一个圆极化波可以分解为两个相位相差90度 振幅相等、 一个圆极化波可以分解为两个相位相差90度、振幅相等、空间 90 上正交的线极化波。两个相位相差90度 振幅相等、 上正交的线极化波。两个相位相差 度、振幅相等、空间上正交的 线极化波。可以合成为一个圆极化波。 线极化波。可以合成为一个圆极化波。
r π r r E (t ) = ex E0 cos(ωt + ϕ x ) + e y E0 cos(ωt + ϕ x + ) 2
5.2 电磁波的极化
电场强度矢量随时间变化的特性称为电磁波的极化。 电场强度矢量随时间变化的特性称为电磁波的极化。 极化 根据电场强度的矢端曲线的形状,线极化、圆极化、椭圆极化。 根据电场强度的矢端曲线的形状,线极化、圆极化、椭圆极化。 均匀平面波
r r r r r E = ex E x + e y E y = (ex E x 0 + e y E y 0 )e − jkz
圆极化波,电场的旋向与波的传播方向 成右手螺旋 圆极化波,电场的旋向与波的传播方向-z成右手螺旋
r r r π (3) E ( z , t ) = e x E m cos(ωt − kz ) + e y E m sin(ωt − kz + ) 4

电磁场与电磁波(第4版)教学指导书 第5章 平面电磁波

电磁场与电磁波(第4版)教学指导书 第5章 平面电磁波

第5章 平面电磁波5.1基本内容概述本章讨论均匀平面波在无界空间传播的特性,主要内容为:均匀平面波在无界的理想介质中的传播特性和导电媒质中的传播特性,电磁波的极化,均匀平面波在各向异性媒质中的传播、相速与群速。

5.1.1理想介质中的均匀平面波1.均匀平面波函数在正弦稳态的情况下,线性、各向同性的均匀媒质中的无源区域的波动方程为220k ∇+=E E对于沿z 轴方向传播的均匀平面波,E 仅是z 坐标的函数。

若取电场E 的方向为x 轴,即x x E =E e ,则波动方程简化为222d 0d x x E k E z+= 沿+z 轴方向传播的正向行波为()j jkz x m z E e e φ-=E e (5.1)与之相伴的磁场强度复矢量为()()z kz z ωμ=⨯H e E 1j jkz ym E e e φη-=e (5.2)电场强度和磁场强度的瞬时值形式分别为(,)Re[()]cos()j t x m z t z e E t kz ωωφ==-+E E e (5.3)(,)Re[()]cos()j t m y Ez t z e t kz ωωφη==-+H H e (5.4)2.均匀平面波的传播参数 (1)周期2T πω=(s),表示时间相位相差2π的时间间隔。

(2)相位常数k =(rad/m ),表示波传播单位距离的相位变化。

(3)波长kπλ2=(m ),表示空间相位相差2π的两等相位面之间的距离。

(4)相速p v kω==m/s ),表示等相位面的移动速度。

(5)波阻抗(本征阻抗)x y E H η==Ω),描述均匀平面波的电场和磁场之间的大小及相位关系。

在真空中,37712000≈===πεμηη(Ω) 3.能量密度与能流密度在理想介质中,均匀平面波的电场能量密度等于磁场能量密度,即221122εμ=E H电磁能量密度可表示为22221122e m w w w εμεμ=+=+==E H E H (5.5)瞬时坡印廷矢量为21zη=⨯=S E H e E (5.6)平均坡印廷矢量为211Re 22av z η*⎡⎤=⨯=⎣⎦S E H e E (5.7) 4.沿任意方向传播的平面波对于任意方向n e 传播的均匀平面波,定义波矢量为n x x y y z z k k k k ==++k e e e e (5.8)则00()n jk j --==e r k r E r E e E e (5.9)()()1n η=⨯H r e E r (5.10)00n =e E (5.11)5.1.2电磁波的极化1.极化的概念波的极化表征在空间给定点上电场强度矢量的取向随时间变化的特性, 并用电场强度矢量的端点在空间描绘出的轨迹来描述。

无界理想介质中均匀平面波传播特点

无界理想介质中均匀平面波传播特点

无界理想介质中均匀平面波传播特点一、介质的概念和分类介质是指电磁波传播的物质媒介,包括空气、水、金属等。

根据介质的性质,可以将其分为导体和绝缘体两种。

导体是一种能够导电的物质,其内部存在自由电子,并且能够吸收和散射电磁波;绝缘体则是一种不能导电的物质,其内部不存在自由电子,对电磁波具有反射、折射和透射等性质。

二、无界理想介质中均匀平面波的定义无界理想介质是指在空间中没有边界限制,并且不存在任何形式的损耗或散射的理想介质。

均匀平面波是指在空间中具有相同振幅和相位,并且沿着同一方向传播的平面波。

三、无界理想介质中均匀平面波传播特点1. 传播速度恒定:在无界理想介质中,均匀平面波沿着一个方向传播时,其速度始终保持不变。

这是因为在理想情况下不存在任何形式的损耗或散射,因此波的传播速度保持恒定。

2. 波长和频率关系:在无界理想介质中,均匀平面波的波长和频率之间存在一定的关系。

根据电磁波的传播公式,速度等于频率乘以波长,因此当频率增加时,波长会相应地减小。

3. 透射和反射:在无界理想介质中,均匀平面波遇到边界时会发生透射和反射。

如果边界是一个绝缘体,则电磁波会被反射回来;如果边界是一个导体,则电磁波会被吸收。

而当均匀平面波从一个介质进入另一个介质时,也会发生透射和反射现象。

4. 极化方向:在无界理想介质中,均匀平面波的极化方向与传播方向垂直。

这意味着在水平传播的电磁波中,电场垂直于传播方向;而在竖直传播的电磁波中,电场则沿着传播方向。

5. 衍射效应:当均匀平面波遇到障碍物或孔径时,会发生衍射现象。

衍射效应是电磁波传播中的一种重要现象,它使得电磁波能够绕过障碍物或通过孔径。

四、总结在无界理想介质中,均匀平面波的传播特点主要包括传播速度恒定、波长和频率关系、透射和反射、极化方向以及衍射效应等。

这些特点对于电磁波的传播和应用具有重要意义,深入了解其特性可以帮助我们更好地理解电磁波的本质和原理。

任意方向传播的均匀平面波的极化方式识别

任意方向传播的均匀平面波的极化方式识别
学习报告四 ——任意方向传播的均匀平面波的极化方式识别 作者:英才实验学院 09 级 4 班 甘骏 2900104007 【摘要】 本文是电磁场与波课程关于均匀平面波极化方式识别的延伸。将 着重讨论沿任一方向传播的均匀平面波的极化方式。 重点将运用到矢 量的分析方法。 【关键词】
均匀平面波 极化 矢量分析
������ ∙ ������������������ × ������������������ > 0,合成波为右旋极化; ������ ∙ ������������������ × ������������������ = 0,合成波不旋转,为线极化; ������ ∙ ������������������ × ������������������ < 0,则为左旋极化。 对于非线极化情况,需要进一步确定极化波是否为圆极化。如果下列两式满 足,则为圆极化,否则为椭圆极化: ������������������ = ������������������ ������������������ ∙ ������������������ = 0 这种判断方法,不需画图;不需关心分量及初相位;适合任何情况,求计算 简单。
即在 x,y 方向上,电场振幅和相位都不等的情况。 6. 推广到任意方向。 任意方向传播的均匀平面波,可表示为:
-jk r j t E (r , t ) Re[ Eme e ] e x Exm cos(t k r ex ) e y E ym cos(t k r ey ) ez Ezm cos(t k r ez )
【结束语】
电磁场的极化有广泛地应用。能够快速准确地判断任意方向传播的均匀平面 波的极化方式,可以简化计算和抽象思维难度,方便解决问题。本文讨论的方法 应用范围极广,且计算量小,不需画图,可以用作解决均匀平面波极化方式的问 题。但是本文用到复矢量分析的方法,对思维和基础知识要求较高,完成过程中 遇到很多困难,许多地方似懂非懂,解决得不够彻底,今后还将完善。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

kz)sinx
Ey cos(t
把上两式E分ym 别乘 sin
kz) cos y



sin

sin(t kz)sin y
并相减,得
x
Ex Exm
sin y

Ey Eym
sin x

c os(t
kz)sin(x
y)
同理可得
Ex Exm
cos y

这是一个椭圆方程,合成电场的矢
量端点在一椭圆上旋转,如图6-9所
y
示,称之为椭圆极化(elliptical polarization)。当 0 时,旋向 与波的传播方向 ez 成右手螺旋关系, 称为右旋椭圆极化波,反之,当
右旋
E
左旋
Ey
Ex
x
O
0时,称为左旋椭圆极化波。
图6-9 椭圆极化波电场的振动轨迹
E(z,t) 的方向与x轴的夹角 为
arctan E y (z, t)
Ex (z,t)
y 右旋
Ey
E Ex 左旋

arc
tan
c
ost

c ost
kzx kzx

2



x
O
t kz x
图6-7 圆极化波电场的振动轨迹
这表明,对于给定z值的某点,随时间的增加,E ( z, t ) 的方向以角频率作等速旋转,其矢量端点轨迹为
x
O
y
z
(a)右旋圆极化波
x
O y
z
(b)左旋圆极化波 图6-8 圆极化波的空间极化
3.椭圆极化
最一般的情况是电场两个分量的振幅和相位为任 意 变值 化。的从轨式迹方(程6-,44把)式中(消6去-44)t 展kz开,可以得到电场
Ex Exm
cos(t kz) cosx
sin(t
圆,故称为圆极化(circular polarization)。当 时, / 2 ,t kz 的x 旋E向(z与,t)波的传播方向 成右手螺e旋z 关系,称为右旋圆极化波(righthanded circularly polarized wave);当
时, / 2 ,t kz 的x旋 向E(与z,t波) 的传播方向 成
Ey (z,t) Eym cos t kz y (6-44b)
这两个分量叠加(矢量和)的结果随 x 、y 、Exm、Eym
的不同而不同。
两个同频率同传播方向的互相正交的电场强 度(或磁场强度),在空间任一点合成矢量的大 小和方向随时间变化的方式,称为电磁波的极化 (polarization),在物理学中称之为偏振。极 化通常用合成矢量的端点随时间变化的轨迹来描 述,可分为直线极化、圆极化和椭圆极化三种。
一、均匀平面波的三种极化形式
1.直线极化
令 x y,当 0 或 时,E(z,t)方向与x轴
的夹角 为
tan Ey (z,t) Eym
Ex (z,t) Exm
(6-45)
时“间+无”关对,应即于E的 振0动,方“向-不”变对,应轨于迹是一 条。直 与线,
均匀平面波的极化
假设均匀平面波沿z方向传播,其电场矢量位于xy
平面,一般情况下,电场有沿x方向及沿y方向的两个
分量,可表示为
E Exme jx e jkzex Eyme jy e jkze y
(6-43)
其瞬时值为
Ex (z,t) Exm cost kz x (6-44a)
立体电影是利用两个相互垂直的偏振镜头从不同的 角度拍摄的。因此,观众必须佩带一副左右相互垂直 的偏振镜片,才能看到立体效果。
2.圆极化
当 而且Exm E ym =E时,E(z,t) 的振幅为
2
E(z,t)
Ex2 (z,t)

E
2 y
(
z,
t
)

E
(6-46a)
上式表明 E(z,t) 的大小不随时间变化。
左手螺旋e关z 系,称为左旋圆极化波(left-handed
circularly polarized wave),如图6-7所示。
前面考虑的是z固定,场强的大小和方向随时
间的变化情况,称为时间极化。如果时间固定,场
强的大小和方向随位置的变化情况称为空间极化。
图6-8a表示固定某一时刻,右旋圆极化波的电场矢 量随距离z的变化情况,z愈大圆极化的起始角度愈 负,图6-8b是某一时刻左旋圆极化波的电场矢量随 z的变化情况。
Ey Eym
c os x

sin(t
kz)sin(x
y)
把以上两式两边平方后相加,得
sin
Ex Exm
2

2
Ex Exm

Ey E ym


c
os

x

y


Ey E ym

2
2
x y
(6-47)
故称之为直线极化或线极化(linear polarization),如图6-6所示。
y
y
E
Ey

O
Ex x
Ex x
O
Ey
E
(a) =0
(b) =
图6-6 线极化波电场的振动轨迹
众所周知,光波也是电磁波。但是光波不具有固 定的极化特性,或者说,其极化特性是随机的。光学 中将光波的极化称为偏振,因此,光波通常是无偏振 的。 为了获得偏振光必须采取特殊方法。
相关文档
最新文档