第六讲 三角形
初中几何基本图形分析法:第六讲直角三角形斜边上的中线

第六讲直角三角形斜边上的中线基本图形:图形性质:△ABC中,∠ACB=90°AD=BD<=>CD=AD=AB,AD=BD<=>∠DCA=∠DAC,∠BDC=2∠DAC,应用条件:出现了直角三角形斜边的中点,添线方法:添加直角三角形斜边上的中线,难度:★★权重:★★★应用条件:出现了线段之间的倍半关系,且倍线段是一个直角三角形的斜边,添线方法:取斜边的中点,再添加直角三角形斜边上的中线,难度:★★★★权重:★★★应用条件:出现了一个等腰三角形的底边再一个直角的直角边上,添线方法:将等腰三角形的一条腰延长到与另一条直角的边相交,难度:★★★★★★权重:★★★★★应用条件:出现了由线段的中点发出的两条相等线段,添线方法:将相等线段中的一条延长一倍后,联结成直角三角形斜边上中线的基本图形,难度:★★★★★★权重:★★例1,已知:△ABC中,∠ACB=90°,延长AB到D,AB=2CD,过D作DE∥CA交CB的延长线于E.求证:∠CDE=3∠ADE,分析:本题的条件中给出了AB=2CD,是两条线段之间的倍半关系,又因为∠ACB=90°,所以其中的倍线段AB就是直角△ABC的斜边,从而可应用直角三角形斜边上的中线的基本图形的性质进行证明,这是本题的第一个关键思维节点,就是由出现的两条线段之间的倍半关系,且的倍线段是一个直角三角形的斜边,就要想到应用或添加直角三角形斜边上的中线的基本图形进行证明,添加的方法就是将直角三角形斜边上的中线添上,由于图形中是有直角三角形而没有出现斜边上的中线,所以应将斜边上的中线添上,也就是取AB的中点F,联结CF,就可得AB=2CF,由条件AB=2CD,就有CD=CF,这是两条具有公共端点C的相等线段,它们可组成一个等腰三角形,应用等腰三角形的性质可得∠CDF=∠CFD,这是本题的第二个关键思维节点,就是由出现的两条具有公共端点的相等线段,想到要应用等腰三角形的性质进行证明,而由直角三角形斜边上的中线的基本图形的性质又可得∠CFD=2∠BAC,所以∠CDF=2∠BAC,又因为ED∥CA,这两条平行线可以看作是被AD所截,∠EDA和∠BAC是一组同位角,所以可应用与同位角有关的平行线的基本图形进行证明,所以∠EDA=∠BAC,∠CDA=2∠EDA,从而就可得∠CDE=∠CDA+∠EDA=3∠ADE.例2,已知:△ABC中,∠ABC=2∠ACB,AD⊥BC垂足是D,E是BC的中点.求证:DE=AB,分析一:本题给出了条件AD⊥BC,而要证明的结论DE=AB是两条线段之间的倍半关系,且其中的倍线段AB是直角△ABD的斜边,所以就可应用直角三角形斜边上的中线的基本图形的性质进行证明,现在图形中是有直角三角形,而没有斜边上的中线,于是要将斜边上的中线添上,这是本题的第一个关键思维节点,就是由出现的两条线段之间的倍半关系,且的倍线段是一个直角三角形的斜边,就要想到应用或添加直角三角形斜边上的中线的基本图形进行证明,添加的方法就是将直角三角形斜边上的中线添上,也就是取AB的中点F,联结DF,可得DF=AB,从而问题就转化成为应证DF=DE,而由所作的F是AB的中点和条件中给出的E是BC的中点,出现了两个中点,是多个中点问题,从而可应用三角形的中位线的基本图形的性质进行证明,这是本题的第二个关键思维节点,就是由出现的两个中点,是多个中点问题,从而想到可应用三角形的中位线的基本图形的性质进行证明,由于中点E、F所在线段BC、BA有公共端点B,可以组成三角形,所以E、F这两个中点的连线就是三角形的一条中位线,但现在图形中是有三角形而没有中位线,从而需将中位线添上,也就是联结EF,可得EF∥CA,这就是具体的添线方法,现在我们要证的性质是DF=DE,是两条具有公共端点D的相等线段,就可以组成一个等腰三角形,问题也就成为一个等腰三角形的判定问题,又因为E、D、B成一直线,图形中出现了这个要证明的等腰三角形的顶角的外角,所以要证明DE=DF,就可以转化成要证它的等价性质∠FDB=2∠FEB,这是本题的第三个关键思维节点,就是由出现的两条具有公共端点的相等线段,想到要应用等腰三角形的性质进行证明,又因为由直角三角形斜边上的中线的基本图形的性质,可得FD=FB,∠FDB=∠FBD,而由条件∠ABC=2∠ACB,所以问题就成为要证∠ACB=∠FEB,由于这两个角是FE、AC被BC所截得到的同位角,所以可应用与同位角有关的平行线的基本图形进行证明,由于已证EF∥CA,所以分析可以完成。
第六讲 直角三角形的边角关系

第六讲 直角三角形的边角关系【基础知识精讲】一、正弦与余弦,正切:1、 在ABC ∆中,C ∠为直角,锐角A 的对边与斜边的比叫做A ∠的正弦,记作A sin ,⋅=∠=caA A 斜边的对边sin)90sin(cos )90cos(sin A A A A -︒=-︒= tan (90)A A =︒-五、同角三角函数:1cos sin 22=+A A 1tan tan =⋅B A六、坡比(坡度):坡面的铅直高度h 与水平宽度L 的比叫做坡角的正切或坡比. 用字母i 表示,即i= tana = lhla h【例题巧解点拨】例1.计算:(1)02222289sin 88sin 3sin 2sin 1sin +++++变式训练:1. (2011苏州)如图,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点,若EF=2,BC=5,CD=3,则tanC 等于( )A.43B.34C.53D. 542.如图,两条宽度都是1的纸条,交叉重叠放在一起,且它们 的角为α,则它们的重叠部分的面积为_________.例4.(2007北京) 在Rt ⊿ABC 中,︒=∠90C ,斜边c=5,两直角边的长a 、b 是关于x 的一元二次方程0222=-+-m mx x 的两个根,求Rt ⊿ABC 较小锐角的正弦值.米,长为1.2米,落在地面上的影子长为2.4米,则树高为_____米。
5.(2010咸宁)如图,已知直线1l ∥2l ∥3l ∥4l ,相邻两条 平行直线间的距离都是1,如果正方形ABCD 的四个顶点 分别在四条直线上,则sin α= .A B CD α1l 3l 2l4lE6.(2012福州)如图,已知△ABC,AB=AC=1,∠A=36°,∠ABC的平分线BD交AC于点D,则AD的长是,cosA的值是 .(结果保留根号)四、解答题:9.(2012•湘潭)如图,矩形ABCD是供一辆机动车停放的车位示意图,已知BC=2m,CD=5.4m,∠DCF=30°,请你计算车位所占的宽度EF约为多少米?(,结果保留两位有效数字.)DA望子成龙学校家庭作业姓名:_______一、选择、填空题:1.(2010常州)在Rt△ABC中,∠C=90°,AC=2,BC=1,则tanB= .2.(2010温州)如图,已知一商场自动扶梯的长z为10米,该自动扶梯到达的高度h为6米,自动扶梯与地面所成的角为θ,则tanθ的值等于( )。
第六讲 平面问题(三)——三角形单元综合举例、收敛准则

5.3 简单三角形单元综合举例
• • 图示一平面应力问题。结构为直角三角形薄片,厚度为h。承受 集中载荷P。 有限元离散化结构如图所示。直角三角形薄片的每边中点取为 节点,共划分4个单元、6个节点,编号如图。 各单元节点定义如下表:
•
单元 1 2 3 4
l 1 2 2 3
1 kll 1 kml 1 knl 0 0 0 1 klm 1 kln 1 1 kmm kmn 1 1 knm knn
0 0 0
0 0 0
0 0 0 0 0 0 2 2 0 0 0 0 kll kln 2 2 0 0 0 + 0 knl knn 0 0 0 0 0 0 2 2 0 0 0 0 kml kmn 0 0 0 0 0 0
由于单元3、4跟单元1的几何形 状和局部节点编号顺序完全相同, 因此单元刚度矩阵相等:
[k ]3 = [k ]4 = [k ]1
这里将单元刚度矩阵子块的局部 编号和整体编号对照后,可以方 便总刚度矩阵的叠加!
二、整体刚度矩阵的叠加 1) 单元刚度矩阵扩大成整体规模: 先以单元2为例。 单元 1 2 3 4 l 1 2 2 3 m 2 5 4 5 n 3 3 5 6
整体刚度矩阵列式中各子块的局部编号改为整体编号:
1 1 1 kll klm kln 0 0 0 1 1 2 3 1 2 3 2 3 kml kmm + kll + kll kmn + kln klm klm + kln 0 1 1 2 1 2 4 2 4 4 knl knm + knl knn + knn + kll 0 knm + klm kln [K] = 3 3 3 kml 0 kmm kmn 0 0 2 3 2 4 3 2 3 4 4 0 kml + knl kmn + kml knm kmm + knn + kmm kmn 4 4 4 0 knl 0 knm knn 0
初一第六讲认识三角形

第六讲认识三角形1.三角形的概念:(1)什么是三角形呢?三角形是由条不在同一条直线上的线段连结组成的图形,这三条线段就是三角形的。
如图:AB、BC、AC是这个三角形的,两边的公共点叫三角形的。
(如点A)三角形约顶点用大写字母表示,整个三角形表示为△ABC。
C(2)三角形的内角,外角的概念:每两条边叫做三角形的内角,如∠BAC。
每个三角形有几个内角?三角形中内角的一边与另一边的所组成的角叫做三角形的外角,如下图中∠ACD是∠ABC的一个外角,它与内角∠ACB相邻。
(请标记出一下三角形的外角)B D与△ABC的内角∠ACB相邻的外角有几个?它们之间有什么关系?练习:(1)下图中有几个三角形?并把它们表示出来。
B C(2)指出△ADC的三个内角、三条边。
提问:∠ADC能写成∠D吗?∠ACD能写成∠C吗?为什么?4、有人说CD是△ACD和△BCD的公共的边,对吗? AD是△ACD和△ABC的公共边,对吗?(4)∠BDC是△BCD的什么角?是△ACD的什么角?∠BCD是△ACD的外角,对吗?(5)请你画出与△BCD的内角∠B相邻的外角。
2.三角形按角分类。
?并用量角器或三角板加以验证。
23第一个三角形三个内角都是角;第二个三角形有一个内角是角;第三个三角形有一个内角是角。
定义:叫锐角三角形;叫直角三角形;叫钝角三角形。
三角形按角分类可分为:锐角三角形( 个内角都是锐角)直角三角形( 个内角是直角)钝角三角形( 个内角是钝角)3.等腰三角形、等边三角形的概念:给一下以下三个三角形标上顶点,并说明它们的边各有什么特点?(是否相等?)1经过观察,测量可知:第一个三角形的三边;第二个三角形有条边相等( =);第三个三角形的三边。
定义:(1)等腰三角形:。
叫做等腰三角形的腰,如上图(2)中的是这个等腰三角形的腰。
(2)等边三角形:问:等边三角形是不是等腰三角形?三、巩固练习1、在如图所示的图形中,三角形的个数共有个。
第6讲 四年级 下册数学 三角形 讲义

知识点一:三角形的特性1、三角形的定义:由 围成的图形(每相邻两条线段的端点 ),叫三角形。
2、从三角形的 ,顶点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底。
三角形只有 条高。
重点:三角形高的画法:一落二移三画四标3、三角形具有 。
如:自行车的三角架,电线杆上的三角架。
学生/课程年级 四年级 学科 数学 授课教师日期 时段 核心内容 三角形(第6讲)教学目标 1、认识三角形的特性,掌握三角形任意两边之和大于第三边以及三角形的内角和是180°2、认识三角形的分类,了解这些三角形的特点并能够辨认和区别它们3、培养应用数学知识解决实际问题的能力4、三角形三边的关系:三角形任意两边之和第三边。
三角形任意两边之差第三边。
两边第三边〈两边。
判断三条线段能不能组成三角形,只要看两条边的和是不是大于。
5、为了表达方便,用字母A、B、C分别表示三角形的三个顶点,三角形可表示成三角形ABC。
知识点二:三角形的分类1、按照角大小来分:三角形,三角形,三角形。
2、按照边长短来分:三边不等的△,三边相等的△,等腰△(等边三角形或正三角形是特殊的等腰△)。
3、等边△的三边,每个角是度。
(顶角、底角、腰、底的概念)4、三个角都是的三角形叫做锐角三角形。
5、有一个角是的三角形叫做直角三角形。
6、有一个角是的三角形叫做钝角三角形。
7、每个三角形都至少有两个;每个三角形都至多有1个;每个三角形都至多有1个。
8、两条边的三角形叫做等腰三角形。
9、三条边都的三角形叫等边三角形,也叫正三角形。
10、等边三角形是三角形知识点三:三角形的内角和1、三角形的内角和是。
四边形的内角和是。
一个三角形中至少有两个,每个三角形都至多有一个;每个三角形都至多有一个。
可以根据最大的角判断三角形的类型。
最大的角是哪类角,就属于那类三角形。
最大的角是直角,就是直角三角形。
最大的角是钝角,就是钝角三角形。
2、图形的拼组:(1)当两个三角形有一条边长度相等时,就可以拼成。
第六讲直角三角形的判定HL

第六讲:直角三角形的判定(HL )斜边和一条直角边对应相等的两个直角三角形全等(“斜边、直角边”“HL ”) 注意:首先要说明这两个三角形是直角三角形,然后找到直角边和斜边。
迄今为止:所有的判断三角形全等的方法:补充:直角三角形的性质:1.在直角三角形中, 上的中线等于 的一半.2.在直角三角形中,如果一个锐角等于 ,那么 .例1:①已知:如图①,AE ⊥BC ,DF ⊥BC ,垂足分别为E ,F ,AE=DF ,AB=DC ,则△ ≌△ (HL ). ②如图②,有两个长度相同的滑梯(即BC =EF ),左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,则∠ABC +∠DFE =___________度.图① 图②例2:如图,点B 、E 、F 、C 在同一直线上,且AE ⊥BC ,DF ⊥BC ,AB=DC ,BF=CE ,试判断AB 与CD 的位置关系.例3:如图已知AC ⊥BC ,AD ⊥BD ,AD=BC ,CE ⊥AB ,DF ⊥AB ,垂足分别为E 、F ,那么,CE=DF 吗?谈谈你的理由!ABCDEFFED CB A例4:如图,已知AB=AC ,AB ⊥BD ,AC ⊥CD ,AD ,BC 相交于点E ,求证:(1)CE=BE ;(2)CB ⊥AD.例5:如图△ABC 中,∠C=90°,AB=2AC ,M 是AB 的中点,点N 在BC 上,MN ⊥AB ,求证:AN 平分∠BAC 。
例6:已知:如图,AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F ,且BC =DC .你能说明BE 与DF 相等吗?例7:如图1,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E 点,BF ⊥AC 于F 点,若AB=CD,AF =CE,BD 交AC 于M 点。
(1)求证:MB =MD,ME=MF;(2)当E 、F 两点移动至图2所示的位置时,其余条件不变,上述结论是否成立?若成立,给予证明。
(学生版)第6讲 三角形--提高班

第6讲 三角形知识点1三角形初步1.三角形的定义:由3条不在同一直线上的线段,首尾顺次连接组成的封闭图形称为三角形. 如下的图形就是一个三角形.2.三角形的各组成部分:(1)边:组成三角形的三条线段就是三角形的三条边;(2)顶点:三角形任意两边的交点均为三角形的顶点;(3)通常情况下,我们用三角形的三个顶点加以一个“△”来表示一个三角形,在表示三角形时,三个字母之间并无顺序关系.如上图中,此三角形可以表示为,△ABC 或△BAC或△CCBA.(4)内角:三角形两边所夹的角,称为三角形的内角,简称角.例如上图△ABC中,∠A,∠B,∠C都是三角形的内角.3、其他概念与定理三角形内角和定理:三角形的内角之和为180°.三角形外角定理:三角形的一个外角等于与它不相邻的两个内角之和.三角形三边关系:任意两边之和大于第三边,两边之差小于第三边.三角形中边角关系:大边对大角,等边对等角.高:顶点到对边的距离叫做三角形的一条高.三角形角平分线的性质:角平分线上的点到角两边的距离相等.中线:三角形顶点到对边中点的连线叫三角形的中线.中线把原来整个三角形分成两个面积相等的小三角形.4、三角形分类:(1)按角分:三角形锐角三角形直角三角形钝角三角形⎧⎪⎨⎪⎩(2按边分:三角形普通三角形等腰三角形等边三角形⎧⎪⎨⎪⎩5、三角形的特性:稳定性【典例】例1(2020秋•涪城区校级期末)一个三角形的两边长为12和7,第三边长为整数,则第三边长的最大值是()A.16B.17C.18D.19例2(2020秋•齐河县期末)如图,共有个三角形.例3(2020秋•涪城区校级期末)如图,在△ABC中,AM是△ABC的高线,AN是△ABC的角平分线,已知∠B=50°,∠BAC=100°,分别求出∠C和∠MAN的度数.【随堂练习】1.(2020秋•濉溪县期中)在△ABC中,AB=8,BC=2,并且AC为偶数,求△ABC的周长.2.(2020秋•顺平县期中)如图,已知D是△ABC边BC延长线上一点,DF交AC于点E,∠A=35°,∠ACD=83°.(1)求∠B的度数;(2)若∠D=42°,求∠AFE的度数.3.(2020秋•庐阳区校级期中)如图所示,AE为△ABC的角平分线,CD为△ABC的高,若∠B=30°,∠ACB为70°.(1)求∠CAF的度数;(2)求∠AFC的度数.4.(2020秋•全椒县期中)如图,已知CE是△ABC的外角∠ACD的平分线,且CE交BA 的延长线于点E.(1)如果∠B=35°,∠E=20°,求∠BAC的度数;(2)求证:∠BAC=∠B+2∠E.知识点2等腰三角形等腰三角形的概念与性质1、等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两边叫做三角形的腰,第三边叫做三角形的底.2、等腰三角形的性质①等腰三角形的腰相等②等腰三角形的两个底角相等(简记为”等边对等角“)③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合,称为”三线合一“【典例】例1(2020秋•乐亭县期末)如图,在等腰三角形ABC中,∠BAC=120°,DE是AB的垂直平分线,线段DE=1cm,则BC的长度为()A.8cm B.4cm C.6cm D.10cm例2 (2020秋•肇州县期末)如图,在△ABC中,D、E分别为AB、AC边上的点,DA=DE,DB=BE=EC.若∠ABC=130°,则∠C的度数为()A.20°B.22.5°C.25°D.30°例3 (2020秋•南关区期末)图①、图②均是三个角分别为20°,40°,120°的三角形.在图①、图②中,过三角形的一个顶点作直线把此三角形分成两个等腰三角形(图①、图②中的分割线不同).要求画出分割线,并标出等腰三角形底角的度数.【随堂练习】1.(2020秋•长春期末)如图,在△ABC中,AB=AC.AD是BC边上的中线,点E在边AB 上,且BD=BE.若∠BAC=100°,则∠ADE的大小为度.2.(2020秋•丛台区期末)如图,在等腰三角形△ABC中,AC=BC,AC边上的垂直平分线分别交AC,BC于点D和点E,若∠BAE=45°,DE=2,则AE的长度为()A.2B.3C.3.5D.43.(2020秋•朝阳区期末)如图,△ABC中,AB=AC,DE垂直平分AC,若∠A=30°,求∠BCD的度数.知识点3等边三角形等边三角形:三条边都相等的三角形叫做等边三角形,也叫正三角形.等边三角形的性质:①三边相等②三个内角相等,都是60°③它是轴对称图形,对称轴分别是三边上的高.【典例】例1(2020秋•覃塘区期中)如图,△ABC是等边三角形,D是AC边的中点,延长BC到点E,使CE=CD,连接DE,则下列结论错误是()A.CE=12AB B.BD=ED C.∠BDE=∠DCE D.∠ADE=120°例2(2020秋•沧州期中)三个等边三角形的摆放位置如图所示,若∠1+∠2=110°,则∠3的度数为()A.90°B.70°C.45°D.30°例3(2020春•松江区期末)如图,在等边△ABC中,已知点E在直线AB上(不与点A、B重合),点D在直线BC上,且ED=EC.(1)若点E为线段AB的中点时,试说明DB=AE的理由;(2)若△ABC的边长为2,AE=1,求CD的长.【随堂练习】1.(2020秋•五常市期末)如图,△ABC是等边三角形,AD是角平分线,△ADE是等边三角形,下列结论不正确的是()A.AD⊥BC B.EF=FD C.BE=BD D.AE=AC2.(2020秋•南关区校级期末)如图,△MNP中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q.延长MN至G,取NG=NQ,若△MNP的周长为12,则△MGQ周长是()A.8+2√3B.6+4√3C.8+4√3D.6+2√33.(2020秋•福州期中)如图,已知等边△ABC,点D为线段BC上一点,以线段DB为边向右侧作△DEB,使DE=CD,若∠ADB=α,∠BDE=180°﹣2α,则∠DBE的度数是()A.120°﹣αB.180°﹣2αC.2α﹣90°D.α﹣60°知识点4直角三角形直角三角形定义:有一个角为90°的三角形,叫做直角三角形.1、直角三角形的性质:性质1:直角三角形两直角边的平方和等于斜边的平方(勾股定理).性质2:在直角三角形中,两个锐角互余.性质3:在直角三角形中,斜边上的中线等于斜边的一半.(即直角三角形的外心位于斜边的中点)性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积.性质5:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.2.勾股定理(1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.(2)勾股定理应用的前提条件是在直角三角形中.(3)勾股定理公式a2+b2=c2的变形有:a2=c2﹣b2,b2= c2﹣a2及c2=a2+b2.(4)由于a2+b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.3.勾股定理的逆定理:勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.【典例】例1(2020秋•萧山区期中)在下列条件:①∠A+∠B=∠C,②∠A:∠B:∠C=5:3:2,③∠A=90°﹣∠B,④∠A=2∠B=3∠C中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个例2(2020秋•惠来县期末)如图,由两个直角三角形和三个大正方形组成的图形,其中阴影部分面积是()A.16B.25C.144D.169例3(2020秋•新华区校级月考)如图所示,在△ABC中,∠ACB=90°,D是AB的中点,DE⊥BC,E为垂足,AC=12AB,图中为60°的角有()A.2个B.3个C.4个D.5个【随堂练习】1.(2020秋•松江区期末)如图,在四边形ABCD中,AD=2√2,AB=2√7,BC=10,CD =8,∠BAD=90°,那么四边形ABCD的面积是.2.(2019秋•南岸区期末)如图,在Rt△ABC中,∠ACB=90°,∠A=36°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)点F是AE延长线上一点,过点F作∠AFD=27°,交AB的延长线于点D.求证:BE∥DF.知识点5全等三角形1、全等三角形及相关的概念(1)全等三角形的定义:能够完全重合的两个三角形叫做全等三角形.(2)全等三角形对应元素:把两个全等的三角形重合到一起,①对应顶点:重合的顶点;②对应边:重合的边;③对应角:重合的角.(3)全等三角形的表示方法:两个三角形全等用符号“≌”来表示,如图所示△ABC≌△DEF.符号“≌”的含义:“∽”表示形状相同,“=”表示大小相等,合起来就是形状相同,大小也相等,这就是全等.(4)全等三角形的书写:①字母顺序确定法:根据书写规范,按照对应顶点确定对应边,对应角,如△CAB≌FDE,则AB与DE、AC与DF、BC与EF是对应边,∠A和∠D、∠B 和∠E、∠C和∠F时对应角;②图形位置确定法:公共边一定是对应边,公共角一定是对应角,对顶角一定是对应角;(5)对应边(角)与对边(角)的区别:对应边、对应角是对两个三角形而言的,指两条边,两个角的关系;而对边、对角是指一个三角形的边和角的位置关系.对边是与对角相对的边,对角是与边相对的角.易错提示:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,字母顺序不能随意书写.2、全等三角形的性质性质:全等三角形的对应边相等,对应角相等.还具备:全等三角形的对应边上的中线相等,对应边上的高相等,对应角平分线相等;全等三角形的周长相等,面积也相等.易错提示:周长相等的两个三角形不一定全等,面积相等的两个三角形也不一定全等.3、一般三角形全等的判定方法①边边边(SSS)②边角边(SAS)③角边角(ASA)④角角边(AAS)4、直角三角形全等的判定方法①一般三角形全等的判定方法都可应用于判定两个直角三角形全等.②斜边、直角边定理(HL)文字描述:斜边和一条直角边分别相等的两个直角三角形全等.【典例】例1 (2020秋•二道区期末)如图,在△ABC中,∠B=80°,∠C=30°.若△ABC≌△ADE,∠DAC=35°,则∠EAC的度数为()A.40°B.35°C.30°D.25°例2(2020秋•梁子湖区期中)如图,点E在AB上,AC与DE相交于点F,△ABC≌△DEC,∠B=65°.(1)求∠DCA的度数;(2)若∠A=20°,求∠DF A的度数.例3(2020秋•洮北区期末)如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.例4 (2020秋•铁西区期末)在Rt△ABC中,∠ACB=90°,CB=CA=2√2,点D是射线AB上一点,连接CD,在CD右侧作∠DCE=90°,且CE=CD,连接AE,已知AE=1.(1)如图,当点D在线段AB上时,①求∠CAE的度数;②求CD的长;(2)当点D在线段AB的延长线上时,请直接写出∠CAE的度数和CD的长.【随堂练习】1.(2020秋•乐亭县期末)已知图中的两个三角形全等,则∠1等于()A.47°B.57°C.60°D.73°2.(2020秋•朔州月考)如图,△ACF≌△DBE,其中点A、B、C、D在同一条直线上.(1)若BE⊥AD,∠F=63°,求∠A的大小.(2)若AD=11cm,BC=5cm,求AB的长.3.(2020秋•崆峒区期末)如图,在等边△ABC中,点D、E分别是边AC,AB上的点,且AE=CD,BD交CE于点P.(1)如图①,求证:∠BPC=120°;(2)点M是边BC的中点,连接P A,PM,如图②,若点A,P,M三点共线,求证:AP=2PM.知识点6相似三角形1、相似三角形的概念与性质:相似三角形:对应角相等,对应边成比例的两个三角形,叫做相似三角形.两个全等的三角形是特殊的相似三角形,它们的相似比为1:1.2、相似三角形的性质:①相似三角形对应高的比、对应角平分线的比、对应中线的比都等于相似比.②相似三角形的周长比等于相似比,面积比等于相似比的平方.3、相似三角形的判定①平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.②如果两个三角形的三组对应边的比相等,那么这两个三角形相似.③如果两个三角形的两组对应边的比相等,且相应的夹角相等,那么这两个三角形相似.④如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.4、黄金分割一般地,点C 把线段AB 分成两条线段 AC 和 BC (如图), 如果AC BC AB AC=,那么称线段 AB 被点 C 黄金分割, 点C 叫做线段 AB 的黄金分割点,AC 与AB 的比叫做黄金比.黄金比0.618AC AB =≈.【典例】例1 (2021•长宁区一模)如图,己知在△ABC 中,点D 、点E 是边BC 上的两点,联结AD 、AE ,且AD =AE ,如果△ABE ∽△CBA ,那么下列等式错误的是( )A .AB 2=BE •BCB .CD •AB =AD •AC C .AE 2=CD •BED .AB •AC =BE •CD例2 (2020秋•金川区期末)如图,在等边三角形ABC 中,点D ,E 分别在AB ,AC 边上,如果△ADE ∽△ABC ,AD :AB =1:4,BC =8cm ,那么△ADE 的周长等于( )A .2cmB .3cmC .6cmD .12cm例3(2020秋•蜀山区校级月考)如图,在△ABC ,D ,E 分别是AB ,AC 上的点,△ADE ∽△ACB ,相似比为AD :AC =2:3,△ABC 的角平分线AF 交DE 于点G ,交BC 于点F ,求AG 与GF 的比.例4(2020秋•双流区校级月考)如图,在△ABC 中,∠B =90°,点P 从点A 开始沿边AB 向点B 以1cm /s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向点C 以2cm 每秒的速度移动.如果P 、Q 分别从A 、B 同时出发,经过几秒,△PBQ 与△ABC 相似?(AB =6cm ,BC =8cm )【随堂练习】1.(2020秋•二道区期末)在一张缩印出来的纸上,一个三角形的一条边由原图中的6cm 变成了2cm ,则缩印出的三角形的面积是原图中三角形面积的( )A .13B .16C .19D .1122.(2020秋•市中区期中)已知△ABC 的三边长分别为6,8,10,和△ABC 相似的△A ′B ′C ′的最长边长30,求△A ′B ′C ′的另两条边的长、周长及最大角的大小.3.(2020秋•荥阳市期中)已知Rt△ABC的两直角边AB,AC的长分别为6cm和8cm,动点D从点A开始沿AB边向点B运动,速度为1cm/s;动点E从点C开始沿CA边向点A运动,速度为2cm/s.若两点同时运动,其中一点到达终点时,另一点也随之停止运动,那么何时△ADE与△ABC相似?综合运用1.(2020秋•浦北县期中)如图,在等边△ABC中,点O是BC上任意一点,OE,OF分别于两边垂直,且等边三角形的高为2,则OE+OF的值为()A.5B.4C.3D.22.(2020春•荔湾区月考)如图,在△ABC中,∠ACB=90°,AC=8,BC=6,点D为斜边AB上的中点,则CD为()A.10B.3C.5D.43.(2020秋•兰州期末)如图,正方形网格中的△ABC,若小方格边长为1,请证明△ABC 为直角三角形,并求出其面积.4.(2020春•宽城区期末)如图,△ACF≌△DBE,其中点A、B、C、D在一条直线上(1)若BE⊥AD,∠F=62°,求∠A的大小;(2)若AD=9cm,BC=5cm,求AB的长.5.(2020秋•文山市期末)如图是一块地,已知AD=4m,CD=3m,AB=13m,BC=12m,且CD⊥AD,求这块地的面积.6.(2020秋•陕西期中)已知:如图在菱形ABCD中,点E、F分别在边AB、AD上,BE=DF,CE的延长线交DA的延长线于点G,CF的延长线交BA的延长线于点H.求证:△BEC∽△BCH.7.(2020秋•利通区期末)如图,在△ABC中,AB=AC,D是三角形内一点,连接AD,BD,CD,∠BDC=90°,∠DBC=45°.(1)求证:∠BAD=∠CAD;(2)求∠ADB的度数.8.(2020春•内江期末)如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.9.(2020秋•香坊区期末)已知:等边△ABC,点D为AC上一点,DF⊥BC,垂足为点F,点E为BC延长线上一点,分别连接DB、DE,AD=CE.(1)如图1,AD≠CD,求证:BF=EF;(2)如图2,点G为BC中点,连接DG,若AD=CD,在不添加任何辅助线的情况下,请直接写出图中所有是△DFG面积二倍的三角形.10.(2020秋•东城区校级期中)如图,正方形ABCD的边长为4,E是CD中点,点P在射线AB上,过点P作线段AE的垂线段,垂足为F.(1)求证:△P AF∽△AED;(2)连接PE,若存在点P使△PEF与△AED相似,直接写出P A的长.。
第六讲 直角三角形全等的判定

巴学教育培优训练第六讲直角三角形全等的判定选择题1、如图,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论①AS=AR;②QP∥AR;③△BPR≌△QSP中()A、全部正确B、仅①和②正确C、仅①正确D、仅①和③正确第1题第2题第3题第4题2、已知如图,AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,则△ADE的面积为()A、1B、2C、5D、无法确定3、如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A、PA=PBB、PO平分∠APBC、OA=OBD、AB垂直平分OP4、如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB,其中正确的有()A、2个B、3个C、4个D、1个5、如图,∠BAC与∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∥AD交BC于F,交AB于G,下列结论:①GA=GP;②S△PAC:S△PAB=AC:AB;③BP垂直平分CE;④FP=FC;其中正确的判断有()A、只有①②B、只有③④C、只有①③④D、①②③④6第5题第6题第7题第8题、在Rt△ABC中,如图所示,∠C=90°,∠CAB=60°,AD平分∠CAB,点D到AB的距离DE=3.8cm,则BC等于()A、3.8cmB、7.6cmC、11.4cmD、11.2cm7、如图,在Rt△ABC中,∠C=90°,∠A的平分线交BC于D.过C点作CG⊥AB于G,交AD于E.过D点作DF⊥AB于F.下列结论:①∠CED=∠CDE;②S△AEC:S△AEG=AC:AG;③∠ADF=2∠FDB;④CE=DF.其中正确的结论是()A、①②④B、②③④C、只有①③D、①②③④8、如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=30,BD:CD=3:2,则点D到AB的距离为()A、18 B、12 C、15 D、不能确定9、已知△ABC中,∠C=90°,∠A=30°,BD平分∠B交AC于点D,则点D()A、是AC的中点B、在AB的垂直平分线上C、在AB的中点D、不能确定10、下列说法中,正确的个数是()①斜边和一直角边对应相等的两个直角三角形全等;②有两边和它们的夹角相等的两个直角三角形全等;③一锐角和斜边对应相等的两个直角三角形全等;④两个锐角对应相等的两个直角三角形全等A、1个B、2个C、3个D、4个11、如图,ABC中,AD是它的角平分线,AB=4,AC=3,那么△ABD与△ADC的面积比是()A、1:1B、3:4C、4:3D、不能确定第11题第12题第14题12、下列各语句中不正确的是()A、全等三角形的周长相等B、全等三角形的对应角相等C、到角的两边距离相等的点在这个角的平分线上D、线段的垂直平分线上的点到这条线段的两端点的距离相等13、一个角的对称轴是()A、这个角的其中的一条边B、这个角的其中的一条边的垂线C、这个角的平分线D、这个角的平分线所在的直线14、如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为填空题15、如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=度.第15题第16题第17题第18题16、如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是.17、在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=15,且BD:DC=3:2,则D到边AB的距离是.18、如图,△ABC中,∠C=90°,CA=CB,AD平分∠CAB.交BC于D,DE⊥AB于E,且AB=6,△DEB 的周长为.19、如图,直线L过正方形ABCD的顶点B,点A、C到直线L的距离分别是1和2,则正方形的边长是错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六讲 三角形知识点1:轴反射和轴对称图形1、轴反射和轴对称图形:(1)如果一个图形沿着____折叠,直线两旁的部分能够____,那么,这个图形叫作____,这条直线叫做它的____.(2)如果一个图形关于某一条直线做______,能够与另一个图形____,那么就说这两个图形关于这条直线____,也称这两个图形______,这条直线也叫作_____.(3)互相重合的两个点,其中一点叫作另一个点关于这条直线的_____.2、轴对称的性质:(1)如果两个图形关于某直线对称,那么对应线段____,对应角相等____,对应点所连的线段被对称轴______.(2)两个图形关于某直线对称,如果对应线段的延长线相交,那么交点在____上.3、线段的垂直平分线:(垂直且平分一条线段的直线叫作这条线段的垂直平分线(或中垂线).)(1)如果两点A 、A’关于直线 l 对称,则 l 是线段AA’的_______.反之,如果直线 l 是线段AA’的垂直平分线,则点A 、A’关于直线 l ____.(2)线段垂直平分线上任意一点到线段两端点的距离____.(垂直平分线性质定理)(3)三角形三边的垂直平分线的交点到三角形三个顶点的距离_____.(4)到线段两端距离相等的点在线段的_____上.4、角平分线的性质定理及逆定理:(1)角平线上的点到角两边的距离_____.(2)反之,到角两边距离相等的点在_______上.5、画一个图形的对称轴时,可连结任意一对对称点,再作这条线段的____即可.画已知图形的轴对称图形的方法:画已知图形的轴对称图形时,只要分别作出某些点关于对称轴的____,再连结这些____,就可以得到原图形的轴对称图形.知识点1:三角形1、三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2、三角形的表示:3、三角形的分类: ⎪⎩⎪⎨⎧钝角三角形直角三角形锐角三角形 ⎪⎪⎩⎪⎪⎨⎧)(等边三角形等腰三角形不等边三角形 4、三角形的重要线段①三角形的中线:顶点与对边中点的连线,三条中线交点叫重心②三角形的角平分线:内角平分线与对边相交,顶点和交点间的线段,三个角的角平分线的交点叫内心③三角形的高:顶点向对边作垂线,顶点和垂足间的线段.三条高的交点叫垂心(分锐角三角形,钝角三角形和直角三角形的交点的位置不同)三角形 (按角分) 三角形 (按边分)5、三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.6、三角形具有稳定性7、三角形的内角和定理及性质: 定理:三角形的内角和等于180°.推论1:直角三角形的两个锐角互补。
推论2:三角形的一个外角等于不相邻的两个内角的和。
推论3:三角形的一个外角大于与它不相邻的任何一个内角。
8、多边形的外角和恒为360°,内角和为:知识点1:等腰三角形和等边三角形1、等腰三角形的重要性质:(1)等腰三角形底边上的中线、底边上的高、顶角平分线互相____,简称为“_____”.(2)等腰三角形是轴对称图形,____是它的对称轴.(3)等腰三角形的两底角____,简称“_____”.2、等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对边也_____,简称为“_____”.3、等边三角形的性质:(1)等边三角形的三个内角____,且都等于___.(2)等边三角形是_____图形,其____有___条.(3)等边三角形每条边上的中线、高和它所对角的平分线_____.4、等边三角形的判定:(1)三条____都相等的三角形是等边三角形.(2)三个____都相等的三角形是等边三角形.有两个内角是___的三角形是等边三角形.(3)有一个内角是___的等腰三角形是等边三角形.《轴对称和轴对称图形》练习一.选择题(2)下列图形是轴对称图形的是( )(A )任意三角形 (B )有一个角等于︒60的三角形 (C )等腰三角形 (D )直角三角形(3)P 为ABC ∆内一点,且PC PB PA ==,则P 点是( )(A )三条中线的交点 (B )三条高的交点(C )三个角的平分线的交点 (D )三边垂直平分线的交点(5)正五角星的对称轴有()(A )1条 (B )2条 (C )5条 (D )10条(7)下列四个图形①等腰三角形 ②等边三角形 ③等腰直角三角形 ④直角三角形中,一定是轴对称图形的有()(A )1个 (B )2个 (C )3个 (D )4个(8)下列图形中,不一定是轴对称图形的是()(A )线段 (B )角 (C )三角形 (D )等腰直角三角形1、在下列图形中,是轴对称图形的是( )A 、锐角三角形B 、射线C 、线段D 、直角三角形2、等边三角形的对称轴有( )A 、一条B 、二条C 、三条D 、一条或三条3、下列图形中不是轴对称图形的是( )A 、有两个角相等的三角形 C 、有两个角分别为050与080的三角形B 、有一角为045的直角三角形 D 、有两个角分别为055与065的三角形1. 下列图案是我国几家银行的标志,其中不是..轴对称图形的是( )4 . 如图,直线L 1,L 2,L 3表示三条相互交叉的公路,现要建一个货物中转站,•要求它到三条公路的距离相等,则可供选择的地址有( )A .一处B .二处C .三处D .四处5 . 等腰三角形的对称轴是( )A .顶角的平分线B .底边上的高C .底边上的中线D .底边上的高所在的直线6 . 如图,AB AC BD BC ==,,若40A ∠=,则ABD ∠的度数是( )A .20B .30C .35D .40 2. 如下书写的四个汉字,其中为轴对称图形的是( )A .B . C. D.7 . 下列说法不成立的是( )A.若两图形关于某直线对称,那么对称轴是对应点连线的中垂线B.两图形若关于某直线对称,则两图形能重合.C.等腰三角形是轴对称图形D.线段的对称轴只有一条8 . .如图,在四边形ABCD 中,边AB 与AD 关于AC 对称,则下面结论正确的是( )①CA 平分∠BCD ;②AC 平分∠BAD ;③DB ⊥AC ;④BE=DE.A.②B.①②C.②③④D.①②③④D 9. 哪一面镜子里是他的像( )10 .一个等腰三角形但不是等边三角形,它的角平分线、高线、中线总数共( )条A .9 B. 7 C. 6 D.32、下列命题中正确的命题有( )A .B .C .D .B A D C①线段垂直平分线上任一点到线段两端距离相等;②线段上任一点到垂直平分线两端距离相等;③经过线段中点的直线只有一条;④点P 在线段AB 外且PA=PB ,过P 作直线MN ,则MN 是线段AB 的垂直平分线;⑤过线段上任一点可以作这条线段的中垂线.A.1个B.2个C.3个D.4个1、下列说法错误的是( )A .两个对称的图形对应点连线的垂直平分线就是他们的对称轴B .面积相等的两个四边形对称C .成轴对称指的是两个图形沿着某一条直线对折后能完全重合D .关于某直线对称的两个图形完全相同2、在线段、两条相交直线、等腰三角形和圆四个图形中,是轴对称图形的个数是( )A .1个B .2个C .4个D .3个3、若三角形一边的垂直平分线过另一边中点,则该三角形必为( )A .钝角三角形 B.锐角三角形 C.直角三角形 D.等腰三角形4、三角形内到三条边的距离相等的点是( )A 、三角形的三条角平分线的交点B 、三角形的三条高的交点C 、三角形的三条中线的交点D 、三角形的三边的垂直平分线的交点5、如右下图,DE 是∆ABC 中AC 边的垂直平分线,若BC=8厘米,AB=10厘米,则∆ABD 的周长为( )厘米。
A .16 B .28 C .26 D .186、在等腰三角形ABC 中AB=AC,一边上的中线BD 将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为( )A. 7B. 11C.7或11D.7或107、等腰三角形一腰上的高与底所夹的角等于( )A.顶角B.顶角的一半C.顶角的2倍 D 底角的一半二.填空题11. 观察下面的英文字母,其中是轴对称图形的有_____个.A ,C ,D ,E ,F ,H ,J ,S ,M ,Y ,Z12 . 等腰三角形的一个内角是700,则它的另外两个角的度数分别是_____.13 . 如图,三角形ABC 中,AB=AC ,∠A=40度,AB 的垂直平分线MN 交AC 于D ,连接BD ,∠DBC 等于_____度.14. 如图所示的两个三角形关于某条直线对称,∠1=110°,∠2=46°,则x = .16. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D,点D 到AB 的距离为5cm,则CD=_____cm.15. 如图,镜子中号码的实际号___________.17. 已知AD 是等边△ABC 的高,BE 是AC 边的中线,AD 与BE 交于点F ,则∠AFE=______. 18 .如图是一个轴对称图形,AD 所在的直线是对称轴,仔细观察图形,回答下列问题: A B C D(1) 线段BO 、CF 的对称线段是_____________;(2)△ACE 的对称三角形是______________.9、如图,等腰△ABC 中,AB =AC ,DE 垂直平分AB ,①若AB=20,BD=12,DC =__________;②若△DBC 的周长为20,△ABC 的周长为32,则AB=________.第8题 第9题 第10题 第11题10、如图,AB=AC,BD=BC,若∠A=40°,则∠ABD 的度数是______11、 如图,BD 是∠ABC 的平分线,DE ⊥AB 于E,236cm S ABC =∆,AB=18cm,BC=12cm,则DE=______.12、在△ABC 中,∠C = 90°,角平分线AD 分对边BD :DC = 2:3,BC=15 cm ,D 到AB 的距离是___________cm 。
13、等腰三角形的一边长为4cm,另一边长为9cm,则它的周长为____;等腰三角形的一边长为10cm,另一边长为8cm,则它的周长为_____。
14、1)作出如图关于黑线轴对称的力图形2)把原图形先向下平移六个单位,再向右平移四个单位。
23. 如图,在△ABC 中,已知AB =AC ,AD 为∠BAC 的平分线,且∠2=25°,求∠BAC 和∠B 的度数.24. 如图,△ABC 中,∠BAC=1100,DE 、FG 分别为AB 、AC的垂直平分线,E 、G 分别为垂足.(1) 求∠DAF 的度数.(2)如果BC ﹦10cm ,求△DAF 的周长.14、如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,试说明:AM 平分∠DAB.DC15、如图,已知△ABC 中,∠1=∠2,AB=AC=BC ,ED=EB ,试说明:CE=CD .16、如图所示,D 为等腰△ABC 的腰BC 延长线上一点,E 为另一腰AC 上的一点,CD=CE ,DE 的延长线角AB 于F ,试说明:DF ⊥AB.1. 如图,E 是∠AOB 的平分线上一点,EC ⊥AO , ED ⊥BO ,垂足分别是C 、D .试说明:(1) ∠EDC =∠ECD ; (2)OC =OD ; (3)OE 是CD 的垂直平分线.2、直角三角形ABC 中,∠A=90度,DE 是BC 边上的垂直平分线,如果CE 恰好是∠ACB 的平分线。