捷联惯导算法与组合导航原理讲义

合集下载

捷联惯导与组合导航解读

捷联惯导与组合导航解读

3)惯性仪表的校准,对陀螺的标度系数进行测 定,对陀螺的漂移进行测定并补偿,对加速度 计也同样测定标度系数并存入计算机。初始过 程中对惯性仪表的校准是提高系统精度的重要 保证,相关内容在第五章中已有详细讨论。
3、惯性仪表的误差补偿,对捷联式惯导系统来说, 由于惯性仪表直接安装在机体上,因此,飞行 器的线运动和角运动都引起较大的误差,为了 保证系统的精度,必须对惯性仪表的误差进行 补偿,最好的补偿方法是计算补偿,一般通过 专用的软件来实现误差补偿,相关内容在第五 章中已有详细讨论。
? 1.3.1 四元数的基本概念
? 四元数是由一个实数单位 1和一个虚数单位 i、j、k 组成的含有四个元的数,其形式为:
Q? (q0,q1,q2,q3) ? q0 ? q1i ? q2 j ? q3k ? q0 ? q
? 我们知道,在平面问题中,一个复数 以表示二维空间中的一个矢量:
Z ? z1 ? jz2可
? 2)利用陀螺输出角速率信号,通过求解 四元数微分方程实时更新姿态矩阵:
四 元
q?(t)
?
1 q(t) ? ?
2
b
数 微 分 方 程
?q?0 ? ?0
??q?1 ?? ???qq??32 ???
?
1 ??? 2 ??
?
??
bx by bz
? ? bx
0
? ? bz ? by
? ? by ? bz
cos ? 0
2
sin ? 0
2
cos ? 0
2
cos ? 0
?
sin ? 0
?
sin
0
22
?
?
sin
0
?
sin

捷联惯导系统算法.ppt

捷联惯导系统算法.ppt
b Eby

cos


b Ebz

注意事项:当 θ= 90 度时,方程出现奇点
姿态计算 矩阵方程精确解1
二、方向余弦矩阵微分方程及其解 C C
其中
C bE

CbE

b Eb
0

b Eb


z
z
0
y
x

y x
0
由于陀螺仪直接测得的是载体 相对惯性空间的角速度,所以:

CbE

b ib


E iE
C
E b
或四元数微分方程:
q(t)

(
b ib


b iE
)q(t)
注意事项: 1、上述两个方程中的角速度表达式不一样 2、方程第二项较小,计算时速度可以低一些
增量算法 矩阵方程精确解
一、角增量算法
角增量:陀螺仪数字脉冲输出,每个脉冲代表一个角增量
一个采样周期内,陀螺输出脉冲数对应的角增量为:

C


0
0
c os
0 0 0 sin
sin
sin

c os


cos cos
求解欧拉角速率得
1 0



0
cos
0 sin
惯性器件的误差补偿
姿态计算 欧拉角微分方程1
姿态矩阵的计算 假设数学坐标系模拟地理坐标系 飞行器姿态的描述:
航向角ψ、俯仰角θ、滚动角γ 一、欧拉微分方程
从地理坐标系到载体坐标系 的旋转顺序:
Ψ →θ →γ

捷联惯性导航系统的解算方法课件

捷联惯性导航系统的解算方法课件

02
CATALOGUE
捷联惯性导航系统组成及工作 原理
主要组成部分介绍
惯性测量单元
包括加速度计和陀螺仪,用于测量载体在三个正交轴上的加速度 和角速度。
导航计算机
用于处理惯性测量单元的测量数据,解算出载体的姿态、速度和 位置信息。
控制与显示单元
用于实现人机交互,包括设置导航参数、显示导航信息等。
工作原理简述
学生自我评价报告
知识掌握情况
学生对捷联惯性导航系统的基本原理、解算 方法和实现技术有了深入的理解和掌握。
实践能力提升
通过实验和仿真,学生的动手实践能力得到了提升 ,能够独立完成相关的实验和仿真验证。
团队协作能力
在课程项目中,学生之间的团队协作能力得 到了锻炼和提升,能够相互协作完成项目任 务。
对未来发展趋势的预测和建议
捷联惯性导航系统的解算 方法课件
CATALOGUE
目 录
• 捷联惯性导航系统概述 • 捷联惯性导航系统组成及工作原理 • 捷联惯性导航系统解算方法 • 误差分析及补偿策略 • 实验验证与结果展示 • 总结与展望
01
CATALOGUE
捷联惯性导航系统概述
定义与基本原理
定义
捷联惯性导航系统是一种基于惯性测量元件(加速度计和陀螺仪)来测量载体(如飞机、导弹等)的加速度和角 速度,并通过积分运算得到载体位置、速度和姿态信息的自主导航系统。
01
高精度、高可靠性
02
多传感器融合技术
随着科技的发展和应用需求的提高, 捷联惯性导航系统需要进一步提高精 度和可靠性,以满足更高层次的应用 需求。
为了克服单一传感器的局限性,可以 采用多传感器融合技术,将捷联惯性 导航系统与其他传感器进行融合,提 高导航系统的性能和鲁棒性。

捷联惯导与组合导航系统高精度初始对准技术研究

捷联惯导与组合导航系统高精度初始对准技术研究

捷联惯导与组合导航系统高精度初始对准技术研究捷联惯导与组合导航系统高精度初始对准技术研究引言捷联惯导与组合导航系统是一种集捷联惯导和其他导航传感器(如GPS、气压计、陀螺仪等)的优势于一体的导航系统,具有在惯导滞后情况下实现导航信息快速、准确更新的优势。

为了确保导航精度和可靠性,捷联惯导与组合导航系统的初始对准是不可或缺的关键技术之一。

本文将重点探讨捷联惯导与组合导航系统高精度初始对准技术的研究。

一、捷联惯导与组合导航系统概述捷联惯导与组合导航系统是一种通过融合多种导航传感器测量数据来计算导航解的导航系统。

其中,捷联惯导通过惯性导航算法利用加速度计和陀螺仪提供的姿态、速度和位移信息进行导航计算,而组合导航则通过融合GPS和其它传感器的信息来修正惯导的误差,提供更准确的导航结果。

二、初始对准技术的研究现状初始对准技术在捷联惯导与组合导航系统中起到了决定性的作用,对其精度和可靠性具有重大影响。

目前,针对初始对准技术的研究主要集中在以下几个方面:1. 惯性传感器标定:惯导系统的精度和准确性直接依赖于惯性传感器的性能。

因此,对于惯导系统而言,惯性传感器的标定至关重要。

传感器标定主要涉及惯性传感器的误差估计、参数校准和标定方法等。

2. 导航状态估计算法:捷联惯导与组合导航系统的核心是导航状态估计算法。

目前常用的算法包括扩展卡尔曼滤波(EKF)、无迹卡尔曼滤波(UKF)以及粒子滤波(PF)等。

这些算法通过融合多种传感器的信息,实现对导航状态的准确估计。

3. 高精度传感器融合:为了提高初始对准的精度和可靠性,可以考虑使用更高精度的传感器,如高精度的加速度计和陀螺仪。

此外,对于GPS系统而言,使用双频技术和高精度的差分GPS技术可以进一步提高导航精度。

三、捷联惯导与组合导航系统高精度初始对准技术研究在捷联惯导与组合导航系统高精度初始对准技术的研究中,可以采用以下方法来提高初始对准的精度和可靠性:1. 多目标标定方法:采用多目标标定方法来标定捷联惯导系统中的惯性传感器。

捷联惯导

捷联惯导
捷联惯导数学模型及惯导解算原理
坐标系的定义
1. 地理坐标系(下标为t)—— OXtYtZt :O 取载体质心,Xt 轴指向东,Yt 轴指向北,Zt 轴沿垂线指向天。 2. 导航坐标系(下标为n)—— OX nYnZn :O 取载体质心,Zn与 Zt 重合,Xn 与 Xt,Yn 与 Yt 相差一个游动方
C13
C23

C33
位置速率
p ep
位置速率是由飞行器地速的水平分量引起的,由于平台坐标系与地理坐标系相差 一个游动方位角,
可得:
VVENtt



cos sin
sin cos


VEp VNp

p ep
可写成

p epE
C32 C31
180 ,180
1.求纬度的真值L
L L 反正弦函数的主值域与L的定义域一致,因此:

2.求经度的真值
反正切函数的主值域是 90 ,90 与 的定义域不一致,因此需要在 的定义域内确定经度的真值。
由: 主

tan 1
C32 C31

tan 1
cos L sin cos L cos
其中:
.
V ep 平台系相对地球的加速度向量
f 加速度计测量的比力向量
2ie ep V ep 无明显物理意义,又称有害加速度
g 重力加速度向量
整理上式可得:


.
VEp
.

VNp
.

VUp





f
p E

§3.9~3.10捷联式惯导系统

§3.9~3.10捷联式惯导系统

§3.9捷联式惯导系统概论一、概述“捷联”(strap down)这一术语的英文原意就是“捆绑”的意思,因此,所谓捷联系统就是将惯性测量装置的敏感器(陀螺仪与加速度计)直接捆绑在运载体上,从而可实现运动对象的自主导航目的。

平台式惯性导航系统虽然已经达到很高水平,但其造价高、使用十分昂贵。

计算机虽为数字式,但框架伺服系统一般仅采用模拟线路,所以相对来讲,可靠性差一些。

就在平台式惯性导航系统迅速发展的同时,捷联式惯性导航系统也处于研制过程中。

捷联式惯导方案是1956年提出的,当时由于没有满足捷联式系统历要求的惯性元件和计算机,因而没有被采用。

而平台式系统则不断改进、不断完善,达到了相当高的精度,满足了大多数任务的要求。

但是在可靠性和成本方面平台式系统都暴露出一系列严重问题。

与此同时计算技术取得了惊人的进展,克服了捷联式系统发展的一个主要障碍。

捷联式系统的高可靠性和低成本促使人们进—步对它进行新的技术探索。

上世纪六十年代初,美国联合飞机公司首先研制成功了第一个捷联式系统,于1969年成功地应用在阿波罗登月任务中。

捷联式惯性导航系统是将惯性敏感器(陀螺和加速度计)直接安装在运载体上,不再需要物理实现稳定平台的惯性导航系统。

陀螺仪作为角速率传感器而不是作为角位移传感器;加速度计的输入轴不是保持在已知确定方向上,加速度计测量值是运载体瞬时运动方向的加速度值。

通过计算机内的姿态矩阵实时计算而得到一个“数学解析平台”,它同样可以起到机电结合的稳定平台所提供的在惯性空间始终保持所要求的姿态作用。

捷联式惯性导航系统有以下几个主要优点:(1) 惯性敏感器便于安装、维修和更换。

(2) 惯性敏感器可以直接给出载体坐标系轴向的线加速度、线速度、供给载体稳定控制系统。

(3) 便于将惯性敏感器重复布置,从而易在惯性敏感器的级别上实现冗余技术,这对提高系统的性能和可靠性十分有利。

(4) 由于去掉了物理实现的平台,一则消除了稳定平台稳定过程中的各种误差;二则由于不存在机电结合的平台装置,使整个系统可以做得小而轻,并易于维护。

6.7 捷联式惯性导航系统

6.7 捷联式惯性导航系统
稳定平台
加速度信息
位置信息
导航计算机
陀螺旋矩信息
速度信息
陀螺输出信息
控制平台 信息
稳定回路
变态信息
捷联式惯性导航系统
捷联式惯性导航系统特点
• 由于将陀螺仪和加速度计直接固连于运载体,省去复杂的框架系 统、电气稳定系统及接触滑环等,所以其可靠性高于平台式惯导 系统。
• 由于直接将惯性元件固连在运载体上,所以惯性元件测量范围大, 工作环境恶劣,要求苛刻,要求惯性元件的动态特性要好。
cos
0
sin
0
1 0

H


sin
纵摇横摇航向角




H
1 cos

sin
sin sin
0 0 cos
cos x
sin cos



y

载体相对地理坐标系角速度
H y0
捷联式惯性导航系统
捷联姿态矩阵
cos cos H sin sin sin H
Tbt cos sin H sin sin cos H

sin cos
cos sin H cos cos H
sin
sin cos H cos sin sin H
3
捷联式惯性导航系统
从算法的角度看,捷联式惯导系统必须根据陀螺输出的角速度或 角增量计算维持一个数学平台。
sin cos z
3
捷联式惯导系统工作原理
加速度计
载体
陀螺
由机体坐标系至 平台坐标系的方
向余弦矩阵
沿平台坐标系 的比力分量 导航

捷联惯导算法与组合导航原理讲义

捷联惯导算法与组合导航原理讲义

捷联惯导算法与组合导航原理讲义严恭敏,翁浚编著西北工业大学2016-9前言近年来,惯性技术不论在军事上、工业上,还是在民用上,特别是消费电子产品领域,都获得了广泛的应用,大到潜艇、舰船、高铁、客机、导弹和人造卫星,小到医疗器械、电动独轮车、小型四旋翼无人机、空中鼠标和手机,都有惯性技术存在甚至大显身手的身影。

相应地,惯性技术的研究和开发也获得前所未有的蓬勃发展,越来越多的高校学生、爱好者和工程技术人员加入到惯性技术的研发队伍中来。

惯性技术涉及面广,涵盖元器件技术、测试设备和测试方法、系统集成技术和应用开发技术等方面,囿于篇幅和作者知识面限制,本书主要讨论捷联惯导系统算法方面的有关问题,包括姿态算法基本理论、捷联惯导更新算法与误差分析、组合导航卡尔曼滤波原理、捷联惯导系统的初始对准技术、组合导航系统建模以及算法仿真等内容。

希望读者参阅之后能够对捷联惯导算法有个系统而深入的理解,并能快速而有效地将基本算法应用于解决实际问题。

本书在编写和定稿过程中得到以下同行的热心支持,指出了不少错误之处或提出了许多宝贵的修改建议,深表谢意:西北工业大学自动化学院:梅春波、赵彦明、刘洋、沈彦超、肖迅、牟夏、郑江涛、刘士明、金竹、冯理成、赵雪华;航天科工第九总体设计部:王亚军;辽宁工程技术大学:丁伟;北京腾盛科技有限公司:刘兴华;东南大学:童金武;中国农业大学:包建华;南京航空航天大学:赵宣懿;武汉大学:董翠军;网友:Zoro;山东科技大学:王云鹏。

书中缺点和错误在所难免,望读者不吝批评指正.作者2016年9月目录第1章概述 (6)1.1捷联惯导算法简介 (6)1.2 Kalman滤波与组合导航原理简介 (7)第2章捷联惯导姿态解算基础 (10)2。

1反对称阵及其矩阵指数函数 (10)2。

1。

1 反对称阵 (10)2。

1.2 反对称阵的矩阵指数函数 (12)2。

2方向余弦阵与等效旋转矢量 (13)2.2.1 方向余弦阵 (13)2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

捷联惯导算法与组合导航原理讲义
一、捷联惯导算法
捷联惯导(Inertial Navigation System,INS)是一种通过测量惯性传感器的运动参数实现导航定位的技术。

惯性导航系统中包括了加速度计和陀螺仪等传感器,通过测量物体的加速度和角速度,可以推算出物体的位置、速度和姿态等信息。

1.1加速度计
加速度计是一种测量物体加速度的传感器。

常见的加速度计有基于压电效应的传感器和基于微机电系统(Microelectromechanical System,MEMS)的传感器。

加速度计的原理是通过测量物体受到的惯性力,推算出物体的加速度。

由于加速度是速度对时间的导数,因此通过对加速度的积分操作,可以计算出物体的速度和位移。

1.2陀螺仪
陀螺仪是一种测量物体角速度的传感器。

常见的陀螺仪有机械陀螺仪和MEMS陀螺仪等。

陀螺仪的原理是基于角动量守恒定律,通过测量转动惯量的变化,推算出物体的角速度。

与加速度计类似,通过对角速度的积分操作,可以计算物体的姿态。

1.3捷联惯导算法
离散时间模型中,位置、速度和姿态等状态变量通过积分加速度和角速度来更新。

由于加速度计和陀螺仪测量结果存在噪声,因此在积分操作时需要加入误差补偿算法来消除误差。

常见的误差补偿算法有零偏校正和比例积分修正等。

连续时间模型中,位置、速度和姿态等状态变量通过微分方程来描述,并通过求解微分方程来更新状态。

由于计算量较大,通常需要使用数值积
分方法来求解微分方程。

常见的数值积分方法有欧拉法、中点法和四阶龙
格-库塔法等。

二、组合导航原理
组合导航是一种融合多种导航技术的导航方式。

常见的组合导航方式
有捷联惯导与GPS组合导航。

组合导航通过融合多种导航系统的测量结果,可以提高导航定位的精度和可靠性。

2.1捷联惯导与GPS组合导航
捷联惯导与GPS组合导航是一种常见的组合导航方式。

在这种方式下,捷联惯导提供了高频率的惯导数据,可以提供较高的定位精度,但是由于
其测量结果累积误差较大,会逐渐偏离真实轨迹。

而GPS系统提供了较低
频率的定位数据,可以提供较准确的定位信息,但是在信号不好或者有遮
挡物时,可能无法提供可靠的定位。

在捷联惯导与GPS组合导航中,通过融合两种系统的测量结果,可以
提高定位的精度和鲁棒性。

一般采用扩展卡尔曼滤波器(Extended Kalman Filter,EKF)来实现融合定位。

EKF是一种基于线性化的非线性
状态估计方法,通过在状态估计中增加观测噪声和系统模型误差来消除误差。

2.2组合导航的优势和应用
组合导航的优势在于可以融合多种导航技术,提供更准确和可靠的导
航定位。

通过融合惯导和GPS等系统的测量结果,可以在惯导精度高、定
位可靠的情况下,克服惯导偏离真实轨迹的问题。

组合导航广泛应用于航空、航海和汽车等领域。

在航空领域,组合导
航可以提供飞机姿态、位置和速度等信息,用于导航和自动驾驶。

在航海
领域,组合导航可以提供船舶位置和航向等信息,用于海上作业和导航。

在汽车领域,组合导航可以提供车辆位置、速度和方向等信息,用于导航
和自动驾驶。

总之,捷联惯导算法与组合导航原理是基于测量传感器的运动参数实
现导航定位的技术。

捷联惯导算法通过融合加速度计和陀螺仪的测量结果,推算出物体的位置、速度和姿态等信息。

而组合导航原理通过融合多种导
航技术的测量结果,提高导航定位的精度和可靠性。

捷联惯导与GPS组合
导航是一种常见的组合导航方式,在航空、航海和汽车等领域有着广泛应用。

相关文档
最新文档