抛物线的性质

合集下载

抛物线的性质与识别

抛物线的性质与识别

抛物线的性质与识别抛物线是一种重要的曲线形状,在数学和物理学中有广泛的应用。

本文将重点讨论抛物线的性质以及如何识别抛物线。

一、抛物线的定义与性质抛物线是平面上一组点的集合,满足以下定义:对于一个给定的焦点F和直线L,到焦点F和直线L距离之差相等于给定的常数。

这个常数称为焦距,常用字母p表示。

抛物线的主要性质如下:1. 对称性:抛物线关于对称轴对称。

对称轴是通过焦点F与抛物线顶点的直线。

2. 焦点位置:焦点在对称轴上方或下方,距离对称轴的距离等于焦距p。

3. 平准性:抛物线的焦点到抛物线上任意一点的距离等于焦距p。

4. 切线性:抛物线上任一点的切线与焦点到该点的线段垂直。

5. 抛物线开口方向:焦点在抛物线顶点上方,抛物线开口向上;焦点在抛物线顶点下方,抛物线开口向下。

二、抛物线的标准方程与一般方程抛物线可以通过标准方程和一般方程来表示。

标准方程为:y = ax^2 + bx + c,其中a、b、c为实数且a不等于0。

该方程中,a决定了抛物线的开口方向,正值为开口向上,负值为开口向下。

一般方程为:Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0,其中A、B、C、D、E、F为实数且至少有一个不等于零。

通过特定的系数组合可以识别出抛物线、椭圆、双曲线或者直线。

三、识别抛物线的方法1. 方程判断法:对于给定的方程,判断其是否为抛物线方程。

如果方程满足抛物线的一般方程,则可以判断为抛物线。

2. 观察焦点与直线:通过观察焦点位置和直线的关系,可以初步判断曲线是否为抛物线。

如果焦点在对称轴上方或下方,且距离对称轴等于焦距,那么可以确定为抛物线。

3. 判断开口方向:根据方程中二次项系数的符号,即a的正负,可以判断抛物线的开口方向。

4. 同轨与异轨:如果两个抛物线的方程相差一个常数,则这两个抛物线为同轨抛物线;如果两个抛物线的方程相差两个不同的常数,则这两个抛物线为异轨抛物线。

总结:抛物线作为一种特殊的曲线形状,在数学和物理学中具有重要的应用价值。

抛物线的简单几何性质

抛物线的简单几何性质

x
直线与抛物线的关系
例3.已知抛物线y2=4x,过定点A(-2, 1)的
直线l的斜率为k,下列情况下分别求k的
取值范围:
1. l与抛物线有且仅有一个公共点;
2. l与抛物线恰有两个公共点;
3. l与抛物线没有公共点.
例 1 已知抛物线的方程为 y 4 x ,直线 l 过定点 P ( 2 , 1 ) ,斜率为 k , k 为何值时,直线 l 与抛物线 2 y 4 x :⑴只有一个公共点;⑵有两个公共点;⑶ 没有公共点?
l
y
(4) 离心率:
O
F
x
e =1
方程 图
y2 = 2px
(p>0)
y
l O F x
y2 = -2px
x2 = 2py
x2 = -2py
(p>0)
y
x
l l F x
(p>0)
y
F
O l
(p>0)
y
x
O F
形 范围
对称 性
O
x≥0 y∈R
x≤0 y∈R
x∈R y≥0
x∈R y≤0
关于x轴对称 (0,0) e=1
2
分析:直线与抛物 线有一个公共点 的情况有两种情 形:一种是直线 平行于抛物线的 对称轴; 另一种是直线与 抛物线相切.

归纳方法:
1.联立方程组,并化为关于x或y的一元方程;
2.考察二次项的系数是否为0,
①若为0,则直线与抛物线的对称轴平行, 直线与抛物线有且仅有一个交点; ②若不为0,则进入下一步. 3.考察判别式 ⊿<0 直线与抛物线相离. ⊿=0 直线与抛物线相切; ⊿>0 直线与抛物线相交;

抛物线的定义与性质

抛物线的定义与性质

抛物线的定义与性质抛物线是由平面上一点P到一个定点F的距离与点P到一条直线L的距离相等的轨迹。

在平面直角坐标系中,抛物线的方程可以表示为y = ax² + bx + c,其中a、b、c是常数,a ≠ 0。

抛物线具有许多有趣的性质,下面将逐一介绍。

性质一:焦点和直线L抛物线的焦点是定点F,直线L是平行于y轴的直线,距离焦点F的垂直距离是h。

根据抛物线的定义,对于任意一点P(x, y)在抛物线上,我们可以得到以下关系:PF = PL√[(x - p)² + (y - q)²] = |y - h|其中,(p, q)是抛物线的顶点。

性质二:焦半径焦半径是从焦点F到抛物线上任意一点P的线段。

根据性质一中的等式,我们可以得到焦点与抛物线上的任意一点之间的距离PF与抛物线切线的夹角θ满足以下关系:PF = |PC|cosθ其中,切线的斜率可以通过抛物线的方程求出。

性质三:对称轴抛物线的对称轴是直线x = p,其中p是抛物线的顶点的横坐标。

对称轴将抛物线分成两个对称的部分,具有关于对称轴的对称性。

性质四:焦点的坐标对于抛物线y = ax² + bx + c,焦点的横坐标可以通过以下公式计算:p = -b / (2a)焦点的纵坐标可以通过以下公式计算:q = c - b² / (4a)性质五:切线与法线抛物线上的任意一点P的切线与该点的法线垂直,并且共线。

对于抛物线y = ax² + bx + c,点P(x0, y0)处的切线的斜率可以通过以下公式计算:m = 2ax0 + b点P处的切线的方程可以表示为:y - y0 = m(x - x0)该切线的法线与切线斜率的乘积为-1。

性质六:焦点的几何意义抛物线的焦点F到任意一点P的线段PF的长度与FP的长度相等。

这说明,焦点是抛物线上各点到抛物线的一条对称轴的距离之差的等分点。

性质七:离心率离心率是抛物线焦点到抛物线对称轴的距离与焦点到抛物线上任意一点P的距离之比的绝对值。

抛物线的性质与定理应用

抛物线的性质与定理应用

抛物线的性质与定理应用抛物线是数学中的一个重要概念,它具有许多独特的性质和定理。

作为一位初中数学特级教师,我将在本文中向大家介绍抛物线的性质与定理,并探讨它们在实际问题中的应用。

一、抛物线的基本性质抛物线是由一个定点(焦点)和一条定直线(准线)确定的曲线,具有以下基本性质:1. 对称性:抛物线关于准线对称,即准线是抛物线的对称轴。

这个性质使得我们在研究抛物线时可以利用对称性简化问题,节省计算时间。

2. 焦点与准线的关系:抛物线上的任意一点到焦点的距离等于该点到准线的距离。

这个性质被广泛应用于抛物线的测量和设计中,例如卫星天线的调整和太阳能聚光器的设计等。

3. 切线性质:抛物线上的切线与准线垂直。

这个性质使得我们可以通过求解切线斜率为零的方程来确定抛物线上的顶点,从而得到抛物线的标准方程。

二、抛物线的定理应用1. 焦半径定理:焦半径定理是抛物线的一个重要定理,它指出抛物线上任意一点到焦点的距离等于该点到准线的距离的两倍。

这个定理可以用来解决很多与焦点和准线有关的实际问题,例如抛物线反射器的设计和抛物面反射望远镜的原理等。

2. 焦点坐标定理:焦点坐标定理是抛物线的另一个重要定理,它指出抛物线的焦点坐标为(p,0),其中p是焦准距。

这个定理可以用来确定抛物线的焦点位置,从而进一步求解抛物线的标准方程。

3. 抛物线的最值问题:抛物线在一定范围内的最值问题是数学中常见的优化问题。

通过求解抛物线的最值,我们可以确定抛物线的最高点、最低点以及最值对应的自变量值。

这个问题在物理学、经济学和工程学等领域都有广泛的应用。

三、抛物线的实际应用举例1. 抛物线的轨迹问题:假设有一个人站在地面上,以一定的初速度和角度抛出一个物体。

我们可以利用抛物线的轨迹性质来计算物体的飞行距离、最大高度和落地点等。

这个问题在射击、投掷和运动等领域都有实际应用。

2. 抛物线的抛物面反射望远镜:抛物面反射望远镜是一种常见的望远镜设计,它利用抛物线的焦点和准线性质来聚集光线,从而实现远距离的观测。

第2课时抛物线的简单几何性质

第2课时抛物线的简单几何性质

第2课时 抛物线的简单几何性质一、抛物线的性质1.抛物线2y =2px(p>0)的简单几何性质(1)对称性:以-y 代y ,方程2y =2px(p>0)不变,因此这条抛物线是以x 轴为对称轴的轴对称图形.抛物线的对称轴叫做抛物线的轴,抛物线只有一条对称轴. (2)顶点:抛物线和它的轴的交点叫做抛物线的顶点.(3)离心率:抛物线上的点到焦点的距离和它到准线的距离的比,叫做抛物线的离心率, (4)通径:过焦点垂直于轴的弦称为抛物线的通径,其长为2p.(5)范围:由y2=2px ≥0,p>0知x ≥0,所以抛物线在y 轴的右侧;当x 的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸,p 值越大,它开口越开阔. 2.焦半径抛物线上一点与焦点F 连接的线段叫做焦半径,设抛物线上任一点A(x0,y0),则四种标准方程形式下的焦半径公式为3.p 表示焦点到准线的距离,p >0.p 值越大,抛物线的开口越宽;p 值越小,抛物线的开口越窄。

4.焦点弦问题如图所示:AB 是抛物线y 2=2px (p >0)过焦点F 的一条弦,设A (x 1,y 1)、B (x 2,y 2),AB 的中点M (x 0,y 0),抛物线的准线为l .(1)以AB 为直径的圆必与准线l 相切; (2)|AB |=2(x 0+p2)=x 1+x 2+p ;(3)A 、B 两点的横坐标之积、纵坐标之积为定值,即x 1·x 2=42p ,y 1·y 2=2p.题型一、抛物线的对称性例1、正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线y 2=2px (p >0)上,求这个正三角形的边长.[解析] 如图,设正三角形OAB 的顶点A 、B 在抛物线上,且它们坐标分别为(x 1,y 1)和(x 2,y 2)则:y 21=2px 1,y 22=2px 2.又|OA |=|OB |,∴x 21+y 21=x 22+y 22,即x 21-x 22+2px 1-2px 2=0,∴(x 1-x 2)(x 1+x 2+2p )=0. ∵x 1>0,x 2>0,2p >0,∴x 1=x 2, 由此可得|y 1|=|y 2|, 即线段AB 关于x 轴对称.由于AB 垂直于x 轴,且∠AOx =30°.∴y 1x 1=tan30°=33,而y 21=2px 1,∴ y 1=23p . 于是|AB |=2y 1=43p . 例2、等腰Rt △ABO 内接于抛物线2y =2px(p>0),O 为抛物线的顶点,OA ⊥OB ,则△ABO 的面积是()A .82pB .42p C .22pD .2p[答案] B题型二、抛物线焦点弦的性质例3、斜率为2的直线经过抛物线y 2=4x 的焦点,与抛物线相交于两点A 、B ,求线段AB 的长. 解∴|AB|=|AF|+|BF|=x1+x2+2=3+2=5. 例4、过抛物线2y =8x 的焦点作直线l ,交抛物线于A 、B 两点,若线段AB 中点的横坐标为3,则|AB|的值为_____________.[答案] 10 题型三、最值问题例5、设P 是抛物线y 2=4x 上的一个动点,F 为抛物线焦点.(1)求点P 到点A (-1,1)的距离与点P 到直线x =-1的距离之和的最小值; (2)若B (3,2),求|PB |+|PF |的最小值.[解析] (1)如图,易知抛物线的焦点为F (1,0),准线方程是x =-1,由抛物线的定义知:点P 到直线x =-1的距离等于点P 到焦点F 的距离.于是,问题转化为:在曲线上求一点P ,使点P 到点A (-1,1)的距离与点P 到F (1,0)的距离之和最小.显然,连AF 交抛物线于P 点,故最小值为22+12,即 5. (2)如图把点B 的横坐标代入y 2=4x 中,得y =±12,因为12>2,所以B 在抛物线内部,自B 作BQ 垂直准线于Q ,交抛物线于P 1.此时,由抛物线定义知: |P 1Q |=|P 1F |.那么|PB |+|PF |≥|P 1B |+|P 1Q | =|BQ |=3+1=4. 即最小值为4. 例6、定点M ⎪⎭⎫⎝⎛310,3与抛物线y 2=2x 上的点P 之间的距离为d 1,P 到抛物线准线l 的距离为d 2,则d 1+d 2取最小值时,P 点坐标为( )A .(0,0)B .(1,2)C .(2,2) D.⎪⎭⎫ ⎝⎛-21,81 [答案] C例7、设抛物线C :x 2=2py 的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,F A 为半径的圆F 交l 于B ,D 两点.(1)若∠BFD =90°,△ABD 的面积为42,求p 的值及圆F 的方程;(2)若A 、B 、F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m 、n 距离的比值.[正解] (1)由已知可得△BFD 为等腰直角三角形,当p >0时,|BD |=2p ,圆F 的半径|F A |=2p ,由抛物线定义可知A 到l 的距离d =|F A |=2p . 因为△ABD 的面积为42,所以12|BD |·d =42,即12·2p ·2p =42,解得p =2,所以F (0,1),圆F 的方程为x 2+(y -1)2=8. 当p <0时,同理可得p =-2,∴F (-1,0), ∴圆F 的方程为x 2+(y +1)2=8.(2)因为A 、B 、F 三点在同一直线m 上,所以AB 为圆F 的直径,∠ADB =90°,由抛物线定义知|AD |=|F A |=12|AB |.所以∠ABD =30°,m 的斜率为33或-33. 当m 的斜率为33时,由已知可设n :y =33x +b ,代入x 2=2py 得x 2-233px -2pb =0. 由于n 与C 只有一个公共点,故Δ=43p 2+8pb =0,解得b =-p 6.因为m 的截距b 1=p 2,|b 1||b |=3,所以坐标原点到m ,n 距离的比值为3. 当m 的斜率为-33时,由图形的对称性可知,坐标原点到m ,n 的距离的比值为3. 课后作业一、选择题1.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1)、B (x 2,y 2)两点,若x 1+x 2=10,则弦AB 的长度为( )A .16B .14C .12D .10[答案] C[解析] 设抛物线的焦点为F ,则|AB |=|AF |+|BF |=x 1+1+x 2+1=x 1+x 2+2=10+2=12. 2.设O 是坐标原点,F 是抛物线y 2=2px (p >0)的焦点,A 是抛物线上的一点,F A →与x 轴正向的夹角为60°,则|OA |为( )A.214pB.212pC.136p D.1336p [答案] B[解析] 设A (x 1,y 1),直线F A 的方程为y =3(x -p 2),由⎩⎪⎨⎪⎧ y 2=2px y =3(x -p 2),得⎩⎪⎨⎪⎧x 1=32p y 1=3p. ∴|OA |=x 21+y 21=94p 2+3p 2=212p . 3.过抛物线焦点F 的直线与抛物线相交于A 、B 两点,若点A 、B 在抛物线准线上的射影分别为A 1,B 1,则∠A 1FB 1为( )A .45°B .60°C .90°D .120°[答案] C[解析] 设抛物线方为y 2=2px (p >0). 如图,∵|AF |=|AA 1|,|BF |=|BB 1|, ∴∠AA 1F =∠AF A 1,∠BFB 1=∠FB 1B .又AA 1∥Ox ∥B 1B ,∴∠A 1FO =∠F A 1A ,∠B 1FO =∠FB 1B ,∴∠A 1FB 1=12∠AFB =90°.4.抛物线y 2=2x 的焦点为F ,其准线经过双曲线x 2a 2-y 2b2=1(a >0,b >0)的左顶点,点M 为这两条曲线的一个交点,且|MF |=2,则双曲线的离心率为( ) A.102B .2 C. 5 D.52[答案] A[解析] F (12,0),l :x =-12,由题意知a =12.由抛物线的定义知,x M -(-12)=2,∴x M =32,∴y 2M =3,∵点(x M ,y M )在双曲线上,∴9414-3b 2=1,∴b 2=38,∴c 2=a 2+b 2=58,∴e 2=c 2a 2=58×4=52,∴e =102. 5.已知A 、B 在抛物线y 2=2px (p >0)上,O 为坐标原点,如果|OA |=|OB |,且△AOB 的垂心恰好是此抛物线的焦点F ,则直线AB 的方程是( ) A .x -p =0 B .4x -3p =0 C .2x -5p =0D .2x -3p =0[答案] C[解析] 如图所示:∵F 为垂心,F 为焦点,OA =OB ,∴OF 垂直平分AB . ∴AB 为垂直于x 轴的直线设A 为(2pt 2,2pt )(t >0),B 为(2pt 2,-2pt ), ∵F 为垂心,∴OB ⊥AF ,∴k OB ·k AF =-1, 即-(2pt )2(2pt 2-p 2)·2pt 2=-1,解得t 2=54∴AB 的方程为x =2pt 2=52p ,∴选C.二、填空题6.已知过抛物线y 2=6x 焦点的弦长为12,则此弦所在直线的倾斜角是__________________.[答案] π4或3π4[解析] 设直线的倾斜角为θ,由题意得12=2p sin 2θ=6sin 2θ,∴sin 2θ=12,∴sin θ=±22,∵θ∈[0,π),∴θ=π4或3π4.7.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足.如果直线AF 的斜率为-3,那么|PF |=__________________.[答案] 8[解析] 如图,k AF =-3,∴∠AFO =60°,∵|BF |=4,∴|AB |=43, 即P 点的纵坐标为43, ∴(43)2=8x ,∴x =6, ∴|P A |=8=|PF |. 三、解答题8.如图,有一张长为8,宽为4的矩形纸片ABCD ,按如图所示的方法进行折叠,使每次折叠后点B 都落在AD 边上,此时记为B ′(注:图中EF 为折痕,点F 也可落在CD 边上).过点B ′作B ′T ∥CD 交EF 于点T ,求点T 的轨迹方程.[解析] 如图,以边AB 的中点O 为原点,AB 所在的直线为y 轴建立平面直角坐标系,则B (0,-2).连结BT ,由折叠知|BT |=|B ′T |.∵B ′T ∥CD ,CD ⊥AD ,∴B ′T ⊥AD .根据抛物线的定义知,点T 的轨迹是以点B 为焦点,AD 所在直线为准线的抛物线的一部分.设T (x ,y ).∵|AB |=4.即定点B 到定直线AD 的距离为4,∴抛物线的方程为x 2=-8y .在折叠中,线段AB ′的长度|AB ′|在区间[0,4]内变化,而x =|AB ′|,∴0≤x ≤4,故点T 的轨迹方程为x 2=-8y (0≤x ≤4).9.定长为3的线段AB 的端点A 、B 在抛物线y 2=x 上移动,求AB 中点到y 轴距离的最小值,并求出此时AB 中点M 的坐标.[解析] 如图,设F 是抛物线y 2=x 的焦点,A 、B 两点到准线的垂线分别是AC 、BD ,M 点到准线的垂线为MN ,N 为垂足,则|MN |=12(|AC |+|BD |),根据抛物线定义得|AC |=|AF |,|BD |=|BF |,∴|MN |=12(|AF |+|BF |)≥|AB |2=32.设M 点的横坐标为x ,则|MN |=x +14,∴x =|MN |-14≥32-14=54,等号成立的条件是弦AB 过点F , 由于|AB |>2p =1,∴AB 过焦点是可能的,此时M 点到y 轴的最短距离是54,即AB 的中点横坐标为54.当F 在AB 上时,设A 、B 的纵坐标分别为y 1、 y 2,则y 1y 2=-p 2=-14,从而(y 1+y 1)2=y 21+y 22+2y 1y 2=2×54-12=2,∴y 1+y 2=±2, ∴M 点的坐标为(54,±22)时,M 到y 轴距离的最小值为54.。

抛物线性质

抛物线性质

抛物线性质抛物线是一种二次函数,其方程为y=ax²+bx+c,其中a、b、c都是实数,且a≠0。

抛物线有以下几个性质:1. 对称性抛物线有一条对称轴,对称轴垂直于x轴,过抛物线的顶点。

对称轴的方程为x=-b/2a。

抛物线对称于其对称轴。

对于每个点(x,y),如果它在抛物线上,则它关于对称轴的对称点也在抛物线上。

2. 正负性当a>0时,抛物线开口向上,形状像一个U形。

当a<0时,抛物线开口向下,形状像一个倒U形。

3. 零点抛物线与x轴的交点称为抛物线的零点或根。

当抛物线与x轴有两个交点时,抛物线有两个零点。

当抛物线与x轴只有一个交点时,抛物线只有一个零点。

4. 额定值抛物线最高点的y坐标称为抛物线的额定值。

抛物线的额定值等于其顶点的纵坐标。

5. 最大值/最小值如果a<0,则抛物线的最大值等于其额定值,最小值为负无穷。

如果a>0,则抛物线的最小值等于其额定值,最大值为正无穷。

6. 焦点抛物线有一点称为焦点,它是抛物线与其对称轴的交点的一半距离处。

焦点的x坐标为-b/2a,y坐标为(c-b²/4a)。

7. 直线的切线如果抛物线在某一点处存在一条斜率,则这条斜率对应于该点处的切线。

对于抛物线y=ax²+bx+c,其导数为dy/dx=2ax+b。

因此,在x处的切线斜率为2ax+b。

8. 拐点抛物线的拐点是曲线从凸部到凹部或从凹部到凸部的点。

拐点的位置为(-b/2a,c-b²/4a)。

9. 化简抛物线的标准形式抛物线方程y=ax²+bx+c可以化简为y=a(x-h)²+k的标准形式,其中(h,k)为抛物线的顶点。

要将抛物线方程转换为标准形式,可以首先通过完成平方的方法来消除x的一次项:y=a(x²+(b/a)x)+c。

然后,将完全平方的形式应用于括号内的表达式:y=a(x²+(b/a)x+(b/2a)²-(b/2a)²)+c。

抛物线的几何性质

抛物线的几何性质
抛物线的几何性质
一、抛物线的范围: y2=2px y
P(x,y)
•X 0
o
p F ( ,0 ) 2
x
•y取全体实数
二、抛物线的对称性 y2=2px
y
M(x,y)
以-y代y方程不变,所以抛物线 关于x轴对称.我们把抛物线的 对称轴叫做抛物线的轴.
o
F(
p ,0 ) 2
x
M1(x,-y)
三、抛物线的顶点 y2=2px
24cm
o
F
P
x
B
10cm
例3已知点A在平行于y轴的直线L上,且L与x轴的 交点为(4,0)。动点p满足 OA OP y 求P点的轨迹方程,并说明轨迹的形状。 分析:设P( x,y)则A(4,y) OA OP ∴ OA.OP 0
( 。 ∴ x,y) (4,y)=0 L P A
(4,0) x
请具体说出开口方向,焦点坐标,准线方程。
四种抛物线的标准方程的几何性质的对比
好好学习
Y
X
定义 :抛物线 与对称轴的交点, 叫做抛物线的顶 点,只有一个顶 点.
四、抛物线的离心率 y2=2px
Y
X
所有的抛物 线的离心率 都是 1
抛物线上的点与焦点的距离和它到准线的距离的 比,叫做抛物线的离心率,由抛物线的定义可知
e 1
五、焦半径
|PF|=x0+p/2
y
P
O
பைடு நூலகம்
F
x
例1:已知抛物线以x轴为轴,顶点式坐标原点且开口 向右,又抛物线经过点M 4,2 3 ,求它的标准方程。
分析:根据已知条件,可以设抛 物线的方程为
Y

抛物线的性质

抛物线的性质

抛物线的性质引言抛物线是一种常见的二次曲线,具有独特的形状和性质。

本文将介绍抛物线的基本定义、性质和应用,以帮助读者更好地理解和应用抛物线。

抛物线的定义抛物线是一个平面曲线,定义为到一个固定点(称为焦点)和到一条固定直线(称为准线)的距离之比等于从抛物线上任意一点到焦点的距离与该点到准线的距离之比,即满足关系式:$ \frac{PF}{PQ} = e $。

其中,P为抛物线上任意一点,F为焦点,Q为准线上与点P垂直的点,e为常数,称为离心率。

抛物线的形状抛物线的形状是一个对称的弧线。

根据抛物线的定义,可以得出以下结论:1.抛物线关于准线对称,即准线是抛物线的对称轴。

2.抛物线没有端点,它在无穷远处逐渐接近准线,但永远不会和准线相交。

3.离心率e决定了抛物线的形状。

当0 < e < 1时,抛物线开口向上;当e > 1时,抛物线开口向下;当e = 1时,抛物线是一个特殊的情况,称为标准抛物线,开口向上且对称轴和准线重合。

抛物线的方程抛物线可以用一般式和顶点式两种形式来表示。

一般式抛物线的一般式表示为:$ y = ax^2 + bx + c $。

其中,a、b、c为常数,决定了抛物线的位置和形状。

顶点式抛物线的顶点式表示为:$ y = a(x-h)^2 + k $。

其中,(h,k)为抛物线的顶点坐标。

由一般式转换为顶点式的方式如下:1.将一般式中的x项的系数b除以2a,得到顶点的横坐标h。

2.将一般式中横坐标为h的点代入一般式,求出纵坐标k。

抛物线的性质抛物线具有多种性质,包括焦点、准线、对称轴、顶点、拋物线方程和焦距等。

焦点和准线根据抛物线的定义,焦点是到抛物线上任意一点的距离与到准线的距离之比的固定点。

准线是与焦点相对应的直线。

对称轴抛物线的对称轴是准线和焦点连线的中垂线,也就是抛物线的对称轴是垂直于准线且通过焦点的一条直线。

顶点抛物线的顶点是抛物线的最高点或最低点,即曲线的拐点。

顶点的坐标可以通过将一般式转换为顶点式来计算得出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

•抛物线的性质(见下表):(一)抛物线的焦点弦的性质:
•关于抛物线的几个重要结论:
(1)弦长公式同椭圆.
(2)对于抛物线y2=2px(p>0),我们有P(x0,y0)在抛物线内部P(x0,y0)在抛
物线外部
(3)抛物线y2=2px上的点P(x1,y1)的切线方程是
抛物线y2=2px(p>0)的斜率为k的切线方程是y=kx+
(4)抛物线y2=2px外一点P(x0,y0)的切点弦方程是
(5)过抛物线y2=2px上两点的两条切线交于点M(x0,y0),

(6)自抛物线外一点P作两条切线,切点为A,B,若焦点为
F,又若切线PA⊥PB,则AB必过抛物线焦点F.
利用抛物线的几何性质解题的方法:
根据抛物线定义得出抛物线一个非常重要的几何性质:抛物线上的点到焦点的距离等于到准线的距离.利用抛物线的几何性质,可以进行求值、图形的判断及有关证明.
抛物线中定点问题的解决方法:
在高考中一般以填空题或选择题的形式考查抛物线的定义、方程以及几何性质等基础知识,在解答题中常常将解析几何中的方法、技巧与思想集于一身,与其他圆锥曲线或其他章节的内容相结合,考查综合分析问题的能力,而与抛物线有关的定值及最值问题是一个很好的切人点,充分利用点在抛物线上及抛物线方程的特点是解决此类题型的关键,在求最值时经常运用基本不等式、判别式以及转化为函数最值等方法。

利用焦点弦求值:
利用抛物线及焦半径的定义,结合焦点弦的表示,进行有关的计算或求值。

抛物线中的几何证明方法:
利用抛物线的定义及几何性质、焦点弦等进行有关的几何证明是抛物线中的一种常见题型,证明时注意利用好图形,并做好转化代换。

相关文档
最新文档