人教版九年级上册九年级数学圆心角圆周角专项练习题

合集下载

部编数学九年级上册专题08垂径定理、圆心角、圆周角之六大题型(解析版)含答案

部编数学九年级上册专题08垂径定理、圆心角、圆周角之六大题型(解析版)含答案

专题08垂径定理、圆心角、圆周角之六大题型利用垂径定理求值【答案】2【分析】根据垂径定理和勾股定理列方程求解即可.【详解】解:设OC=△中,由勾股定理得,在Rt COE【变式训练】【答案】45cm/4【分析】连接BO,延长22=,即可求解.BC OB OC-【详解】解:如图,连接=,由折叠得:CD CEQ D是OC的中点,\=,CD OD\==,CE CD OD2\==,4OC OE【答案】310【分析】由题意易得【详解】解:连接OD∵AB 是O e 的直径,AB ∴152OD OB AB ===,∵CD AB ^,6CD =,∴13,2DE CD DEO ==Ð∴22OE OD DE =-=垂径定理的实际应用【点睛】本题考查了勾股定理和垂径定理,灵活运用所学知识,掌握垂直于弦的直径平分弦,且平分弦所对的弧,是解决本题的关键.【变式训练】1.(2023上·福建龙岩·九年级统考期末)筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧.如图1,点M 表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O (O 在水面上方)为圆心的圆,且圆O 被水面截得的弦AB 长为8米.若筒车工作时,盛水桶在水面以下的最大深度为2米,则这个圆的半径为( )A .2米B .3米C .4米D .5米【答案】D 【分析】过圆O 作OD AB ^于E ,如图所示,由垂径定理可知4AE BE ==,设圆的半径为r ,再利用勾股定理列方程求解即可得到答案.【详解】解:过圆O 作OD AB ^于E ,如图所示:Q 弦AB 长为8米,\4AE BE ==,Q 盛水桶在水面以下的最大深度为2米,设圆的半径为r ,在Rt AOE △中,90AEO Ð=°,OA r =,4AE =,2OE OD ED r =-=-,则由勾【答案】26【分析】连接AO ,依题意,得出222AO AC CO =+,解方程即可求解.【详解】解:如图所示,连接∵1CD =,10AB =,AB ∴5AC =,设半径为r ,则AO r =在Rt AOC V 中,2AO =利用弧、弦、圆心角的关系求解A.AB OC=C.12ABC BOC Ð+Ð=【答案】D 【变式训练】【答案】80°/80度【分析】利用等腰三角形的性质和三角形内角和计算出即可求出答案.Ð【详解】解:∵OBC半圆(直径)所对的圆周角是直角A.43【答案】B【分析】如图:连接AQ QB=,最后根据勾股定理即可解答.【点睛】本题主要考查了圆周角定理、等腰三角形的判定与性质、勾股定理等知识点,灵活运用勾股定理成为解答本题的关键.【变式训练】【答案】13【分析】连接BD ,先由三角形内角和定理求出求出30ABD Ð=°,即有【详解】解:连接BD∵在ABC V 中,55B Ð=∴60A Ð=°,∵AB 为O e 的直径,∴90ADB CDB Ð=Ð=°Ð的度数;(1)求BAC(2)若点E为OB中点,CE 【答案】(1)45°(2)3590°的圆周角所对的弦是直径例题:(2023上·广东汕头DA DC =,2AB BC ==【答案】32【分析】连接AC ,过点角三角形,勾股定理求得∵90ADC Ð=°,∴AC 是直径,∴90ABC Ð=°【变式训练】1.(2023上·山东济南·九年级统考期末)如图,正方形ABCD 中,4AB =,E 点沿线段AD 由A 向D【答案】2p【分析】连接BD 交EF 于点1222OB OD BD ===,再由∵四边形ABCD 是正方形,∴4BC AB AD ===,EDO Ð∴242BD AB ==,【答案】90°Ð【分析】(1)由ABP (2)首先证明点P理求出OC即可得到则OP OA OB ==,\点P 在以AB 为直径的O e 在Rt BCO V 中,90OBC Ð=225OC BO BC \=+=,532PC OC OP =-=-=,已知圆内接四边形求角度【答案】102°【分析】根据圆内接四边形的性质得出【详解】解:∵四边形∴180A DCB Ð+Ð=°,又180DCE DCB Ð+Ð=°,∴102DCE A ÐÐ==°,故答案为102°.【点睛】本题主要考查了圆内接四边形的性质,熟知圆内接四边形的对角互补是解决此题的关键.【变式训练】【答案】40【分析】根据已知可得»»BCBD =56DAC BAC BAD Ð=Ð+Ð=°,再利用圆内接四边形对角互补以及平角的定义可得56DBE DAC Ð=Ð=°,继而利用角平分线定义及三角形内角和定理即可求解.(1)求证:A AEBÐ=Ð(2)若90Ð=°,点CEDC【答案】(1)见解析e的半径为25 (2)O一、单选题1.(2023上·河北张家口·九年级统考期末)O e 中的一段劣弧»AB 的度数为80o ,则AOB Ð=( )A .10oB .80oC .170oD .180o【答案】B 【分析】根据圆心角、弧、弦之间的关系得出答案即可.【详解】解:Q O e 中的一段劣弧»AB 的度数为80°,80AOB \Ð=°,故选:B .A .32°B .42【答案】A 【分析】先根据同弧所对的圆周角相等得到小即可.【详解】解:∵50A Ð=°,∴50D A Ð=Ð=°,A .10【答案】D∴12AH BH AB===在Rt BOHV中,OH∴线段OP长的最小值为A.105°B.110【答案】D【分析】先根据圆内接四边形的性质和平角的定义求出求解.A .1米B .()35+米C .3米【答案】D 【分析】连接OC 交AB 于D ,根据圆的性质和垂径定理可知理求得OD 的长,由CD OC OD =-即可求解.则OC AB ^,12AD BD AB ==在Rt OAD △中,3OA =,AD ∴225OD AO AD =-=,【点睛】本题考查圆的性质、垂径定理、勾股定理,熟练掌握垂径定理是解答的关键.【答案】120【分析】过O 点作OD AC ^AD CD =,根据三角形中位线定理可得由折叠可得:12OD OE ==∵AB 是直径,∴90ACB Ð=°,12OD BC =【答案】64°/64度【分析】根据在同圆中,Ð=Ð可推出AOC BOD【详解】解:Q»AE=【答案】3【分析】由圆的性质可得OA后根据中位线的性质即可解答.【答案】45【分析】连接AC ,如图所示,由直径所对的圆周角为直角可知及勾股定理求出AC 【详解】解:连接Q OC AB ^,AB =12AD BD AB \==在Rt AOD V 中,OA 420r \=,解得r【答案】4【分析】如图,连接CD直角三角形斜边上的中线等于斜边的一半可得【点睛】本题考查直径所对的圆周角为直角,直角三角形斜边上的中线等于斜边的一半,勾股定理.掌握直径所对的圆周角为直角是解题的关键.三、解答题e的直径AB垂直于弦CD,垂足为E,11.(2023上·安徽合肥·九年级统考期末)如图,O,.==28AE CD(1)求O e 的半径长;(2)连接 BC ,作OF BC ^【答案】(1)5(2)5在Rt OCE V 中,2OE ∴()22224R R -+=,解得5R =,∴O e 的半径长为5;(1)若这个输水管道有水部分的水面宽半径;OE AB ^Q ,11168cm 22BD AB \==´=(1)连接AD,求证:(2)若52,==CD AB 【答案】(1)详见解析;(2)6Ð相等吗?为什么?(1)BAFÐ和CAD^,垂足为(2)过圆心O作OH AB【答案】(1)相等,理由见解析(2)10【详解】(1)解:连接BF ,Q AF 是O e 的直径,90F BAF \Ð+Ð=°Q AC BD ^,\90CAD BDA Ð+Ð=°,Q F BDA Ð=Ð,\BAF CAD Ð=Ð.(2)解:OH AB ^Q ,AH BH \=,OA OF =Q ,210BF OH \==,BAF CAD Ð=ÐQ ,10CD BF \==.【点睛】本题考查的是圆周角定理,等角的余角相等,圆心角、弦的关系,三角形的中位线性质,垂径定理,掌握圆心角、弦的关系,三角形的中位线性质以及垂径定理是解题的关键.15.(2023上·山东威海·九年级统考期末)【初识模型】如图1,在ABC V 中,,90AB AC BAC =Ð=°.点D 为BC 边上一点,以AD 为边作ADE V ,使=90DAE а,AE AD =,连接CE ,则CE 与BD 的数量关系是__________;【构建模型】如图2,ABC V 内接于,O BC e 为O e 的直径,AB AC =,点E 为弧AC 上一点,连接,,AE BE CE .若3,9CE BE ==,求AE 的长;【运用模型】如图3,等边ABC V 内接于O e ,点E 为弧AC 上一点,连接,,AE BE CE .若6,10CE BE ==,求AE 的长.【答案】(1)BD CE =;(2)32;(3)4【分析】(1)只需要利用SAS 证明BAD CAE V V ≌,即可证明BD CE =(2)如图所示,过点A 作AD AE ^交BE 于D ,由BC 是直径,得到明BAD CAE Ð=Ð,再证明45ADE AED Ð=Ð=°,得到AD AE =,即可证明2(3)如图所示,在BE 上取一点∵ABC V 是等边三角形,∴60AB AC ACB ==°,∠,∴60AEB ACB Ð=Ð=°,∴ADE V 是等边三角形,∴60AE DE DAE ==°=,∠∠∴BAC CAD DAE Ð-Ð=Ð-Ð【点睛】本题主要考查了全等三角形的性质与判定,等边三角形的性质与判定,圆周角定理,勾股定理等等,正确作出辅助线构造全等三角形是解题的关键.。

初三数学圆周角和圆心角的关系试题

初三数学圆周角和圆心角的关系试题

初三数学圆周角和圆心角的关系试题1.已知,如图,∠BAC的对角∠BAD=100°,则∠BOC=_______度.【答案】160°【解析】由∠BAD=100°可得∠BAC的度数,再根据圆周角定理即可求得结果.∵∠BAD=100°∴∠BAC=80°∴∠BOC=160°.【考点】邻补角定理,圆周角定理点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.2.如图,AB是⊙O的直径, ,∠A=25°,则∠BOD的度数为________.【答案】50°【解析】圆周角定理:同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.∵,∠A=25°∴∠BOD=50°.【考点】圆周角定理点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.3.如图,AB是半圆O的直径,AC="AD,OC=2,∠CAB=30°," 则点O到CD的距离OE=____.【答案】【解析】由AC=AD,∠CAB=30°可得∠CDO的度数,即可得到∠EOD、∠COE的度数,判断出△COE的形状再结合勾股定理即可求得结果.∵AC=AD,∠CAB=30°,OA=OC∴∠CDO=75°,∠COD=60°∴∠EOD=15°∴∠COE=45°∴△COE为等腰直角三角形∵OC=2∴OE=.【考点】三角形内角和定理,勾股定理点评:特殊三角形的性质的应用是初中数学平面图形中极为重要的知识点,与各个知识点结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注.4.如图,A、B、C、D四个点在同一个圆上,四边形ABCD的对角线把四个内角分成的八个角中,相等的角有( )A.2对B.3对C.4对D.5对【答案】C【解析】圆周角定理:同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.相等的角有∠ADB=∠ACB,∠BAC=∠BDC,∠CAD=∠CBD,∠ACD=∠ABC4对,故选C.【考点】圆周角定理点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.5.如图,D是弧AC的中点,则图中与∠ABD相等的角的个数是( )A.4个B.3个C.2个D.1个【答案】B【解析】圆周角定理:同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.∵D是弧AC的中点∴∠ABD=∠ACD=∠CBD=∠CAD故选B.【考点】圆周角定理点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.6.如图, ,则∠A+∠B等于( )A.100°B.80°C.50°D.40°【答案】C【解析】连接CO并延长交圆于点D,根据圆周角定理即可得到结果.连接CO并延长交圆于点D由图可得∠A+∠B=∠AOD+∠BOD=∠AOB=50°故选C.【考点】圆周角定理点评:辅助线问题是初中数学学习中的难点,能否根据具体情况正确作出恰当的辅助线往往能够体现一个学生对图形的理解能力,因而这类问题在中考中比较常见,在各种题型中均有出现,一般难度较大,需多加关注.7.在半径为R的圆中有一条长度为R的弦,则该弦所对的圆周角的度数是( )A.30°B.30°或150°C.60°D.60°或120°【答案】B【解析】根据圆的性质可得这条弦与半径围成的三角形为等边三角形,再根据圆周角定理即可求得结果.由题意得这条弦与半径围成的三角形为等边三角形则该弦所对的圆周角的度数是30°或150°故选B.【考点】圆周角定理点评:特殊三角形的性质的应用是初中数学平面图形中极为重要的知识点,与各个知识点结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注.8.如图,⊙O的直径AB=8cm,∠CBD=30°,求弦DC的长.【答案】4cm【解析】连接OC、OD,根据圆周角定理可得∠COD=60°,即可得到△COD是等边三角形,根据等边三角形的性质即可求得结果.连接OC、OD,则OC=OD=4cm,∠COD=60°,故△COD是等边三角形,从而CD=4cm.【考点】圆周角定理,等边三角形的判定和性质点评:辅助线问题是初中数学学习中的难点,能否根据具体情况正确作出恰当的辅助线往往能够体现一个学生对图形的理解能力,因而这类问题在中考中比较常见,在各种题型中均有出现,一般难度较大,需多加关注.9.如图,AB为半圆O的直径,弦AD、BC相交于点P,若CD=3,AB=4,求tan∠BPD的值【答案】【解析】连接BD, 根据圆周角定理可得∠ADB=90°,证得△PCD ∽△PAB,根据相似三角形的性质结合余弦的定义可得∠BPD的余弦值,再结合勾股定理即可求得结果.连接BD,∵AB是直径,∴∠ADB=90°.∵∠C=∠A,∠D=∠B,∴△PCD ∽△PAB,∴.在Rt△PBD中,cos∠BPD==,设PD=3x,PB=4x,则BD=,∴tan∠BPD=.【考点】圆周角定理,相似三角形的判定和性质,勾股定理,三角函数点评:本题综合性强,知识点较多,因而这类问题在中考中比较常见,在各种题型中均有出现,一般难度较大,需多加关注.10.在足球比赛场上,甲、乙两名队员互相配合向对方球门MN进攻.当甲带球部到A点时,乙随后冲到B点,如图所示,此时甲是自己直接射门好,还是迅速将球回传给乙,让乙射门好呢?为什么?(不考虑其他因素)【答案】让乙射门较好【解析】根据圆周角定理结合三角形外角的性质分析即可得到结论.迅速回传乙,让乙射门较好,在不考虑其他因素的情况下, 如果两个点到球门的距离相差不大,要确定较好的射门位置,关键看这两个点各自对球门MN的张角的大小,当张角越大时,射中的机会就越大,如图所示,则∠A<MCN=∠B,即∠B>∠A, 从而B处对MN的张角较大,在B处射门射中的机会大些.【考点】圆周角定理,三角形外角的性质点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.。

人教版九年级上册九年级数学圆心角圆周角专项练习题

人教版九年级上册九年级数学圆心角圆周角专项练习题

九年级数学圆心角圆周角专项练习题一、单选题1.如图,⊙O中,半径OC⊙弦AB于点D,点E在⊙O上,⊙E=22.5°⊙AB=4,则半径OB等于()AB.2C.D.32.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=75°,则∠OAC的大小是()A.25°B.50°C.65°D.75°3.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是()A.AD=2OB B.CE=EO C.∠OCE=40°D.∠BOC=2∠BAD 4.在半径为1的弦所对的弧的度数为()A.90B.145C.90或270D.270或145 5.如图,ABC是O的内接三角形,,30AB BC BAC=∠=︒,AD是直径,8AD=,则AC的长为()A.4B.CD.6.下列说法正确的有()①不在同一条直线上的三点确定一个圆;②平分弦的直径垂直于弦;③在同圆或等圆中,如果两条弦相等,那么他们所对的圆周角相等;④圆内接平行四边形是矩形.A.1个B.2个C.3个D.4个二、填空题7.如图,△ABC内接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若☉O 的半径为2,则CD的长为_____8.如图,已知点C是⊙O的直径AB上的一点,过点C作弦DE,使CD=CO.若AD 的度数为35°,则BE的度数是_____.9.如图,AB是⊙O的直径,CD是弦,若∠ABC=63°,则∠D的度数是__.10.如图,在⊙O中,AB=2CD,那么AB________2CD(填“>,<或=”)三、解答题11.如图,已知A⊙B⊙C⊙D是⊙O上的四点,延长DC⊙AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.12.如图,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.(1)若∠AOD=52°,求∠DEB的度数;(2)若AB=24,CD=8,求⊙O的半径长.13.如图,在ABC中,AC BC,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D作//DF BC,交⊙O于点F,求证:(1)四边形DBCF是平行四边形(2)AF EF15.如图,是一个高速公路的隧道的横截面,若它的形状是以O为圆心的圆的一部分,路面AB=12米,拱高CD=9米,求圆的半。

圆周角+同步练习++2024—2025学年人教版数学九年级上册

圆周角+同步练习++2024—2025学年人教版数学九年级上册

24.1.4 圆周角学习目标1. 理解圆周角的概念.2. 掌握圆周角定理及其推论.3. 理解圆内接四边形的性质,探究四点共圆时的性质.课堂学习检测一、填空题1. 在圆上,并且角的两边都的角叫做圆周角.2. 一条弧所对的圆周角等于圆心角的 .3. 所对的圆周角 .4. 所对的圆周角是直角;90°的圆周角所对的弦是 .5. 圆内接四边形的对角 .̂的中点,则图中与∠BAC相等的角有6. 如图, 在⊙O中, 若点 C 是BD.二、选择题7. 如图, OA是⊙O的半径, 弦BC⊥OA, D 是⊙O上一点, 且点 D 在优弧BC 上. 若∠ADB =28°, 则∠AOC的度数为 ( ).(A) 14° (B) 28° (C) 56° (D) 84°综合·运用·诊断一、填空题8. 如图, AB是⊙O的直径, CD是弦. 若∠ACD =65°, 则∠BAD的度数为9. 如图, 点 B, C, D 在⊙O 上. 若∠BCD =130°, 则∠BOD 的度数为 .10. 如图, A, B, C是⊙O上的三点, 且四边形OABC是菱形. 若点 D 是圆上异于A, B, C 的另一点, 则∠ADC的度数是 .二、选择题11. 如图, 点A, B, C, D, E均在⊙O上, 且AC为⊙O的直径, 则∠A+∠B+∠C的度数为( ).(A) 30° (B) 45° (C) 60° (D) 90°̂分成相等的三段弧,点P 在AĈ上. 若点Q在12. 如图, AB是⊙O的直径, 点C, D将ABAB̂上且∠APQ=115°,则点 Q所在的弧是 ( ).̂(B)PĈ(C)CD̂(D)DB̂(A)AP三、解答题.13. 如图, A, B, C, D四个点都在⊙O上, AD是⊙O的直径且AD=6cm,∠ABC=∠CAD.(1) 求弦AC的长;(2) 求∠CAD的度数.14. 如图, ⊙O为△ABC的外接圆,CE是⊙O的直径,CD⊥AB于点 D.求证:∠ACD=∠BCE.拓展·探究·思考15. 如图,四边形ABCD 是圆的内接四边形,∠A=60°,∠B=90°,AB=2,CD=1,求AD的长.16. 如图, AB是⊙O的直径, 弦(CD⊥AB,E是⌢AC上一点, AE, DC的延长线交于点 F.求证:∠AED=∠CEF.。

初三数学《圆心角与圆周角》综合练习题

初三数学《圆心角与圆周角》综合练习题

初三数学《圆心角与圆周角》综合练习题圆心角与圆周角:
圆心角是指顶点在圆心的角,而圆周角则指顶点在圆上的角,二者注意区分。

重要结论:
①同弧(同弦)所对的圆周角是圆心角的一半(即?)
②直径所对的圆周角是直角,即90o
解题思路:
结合垂径定理、圆心角和圆周角的转化关系,加上以前学过的直角三角形性质、三角形的外角性质和角平分线的性质,去解决具体题目,注意分析过程中灵活运用相关知识点。

练习题:
注意:先分析题目条件,然后找出角与角之间的关系,标注在图上,逐个分析,结合相关知识点,很容易解答。

要多联系,才能熟练运用。

精品 2014年九年级数学圆的基本性质 圆周角圆心角讲义+同步练习题

精品 2014年九年级数学圆的基本性质 圆周角圆心角讲义+同步练习题
0

A.16
0
B.32
0
C.48
0
D.64
0
4.如图,⊙O 是△ABC 的外接圆,已知∠AB0=50 ,则∠ACB 的大小为( A.400 B.300 C.450
0
) D.500
5.在同圆中,下列四个命题:(1)圆心角是顶点在圆心的角;(2)两个圆心角相等,它们所对的弦也相等; (3)两条弦相等,它们所对的弧也相等;(4)等弧所对的圆心角相等.其中真命题有( A.4 个 B.3 个 C.2 个 D.1 个 )
19.如图, AB 是⊙O 的直径,点 C 在⊙O 上,∠BAC=30 ,点 P 在线段 OB 上运动.设∠ACP=x,则 x 的取值 范围是 20.如图,CD 是圆的直径,O 是圆心,E 是圆上一点且∠EOD=45 ,A 是 DC 延长线上一点,AE 交圆于 B,如果 AB=OC,则∠EAD=______ 21.弦心距是弦的一半时,弦与直径的比是____________,弦所对的圆心角是__________
29.如图,AB 为⊙O 的弦,P 是 AB 上一点,AB=10cm,OP=5cm,PA=4cm,求⊙O 的半径.
30.⊙O 的直径为 50 cm,弦 AB∥CD,且 AB=40 cm,CD=48 cm,求弦 AB 和 CD 之间的距离.
第 6 页 共 8 页
九年级数学上册同步讲义
圆周角 圆心角同步练习题
C D
C O
A
B
A
)
B
7.如图,∠AOB=100°,则∠A+∠B 等于( A.100° B.80°
C.50°
D.40° )
8.如图,A、B、C 三点都在⊙O 上,点 D 是 AB 延长线上一点,∠AOC=140°, ∠CBD 的度数是( A.40° B.50° C.70° ) D.110°

【2020九年级数学上】圆周角和圆心角的关系习题含答案

【2020九年级数学上】圆周角和圆心角的关系习题含答案

圆周角和圆心角的关系同步习题一.选择题1.如图,四边形ABCD内接于⊙O,连接OA,OC,若∠AOC:∠ADC=2:3,则∠ABC 的度数为()A.30°B.40°C.45°D.50°2.已知:如图,⊙O的两条弦AE、BC相交于点D,连接AC、BE,若∠ACB=50°,则下列结论中正确的是()A.∠AOB=50°B.∠ADB=50°C.∠AEB=30°D.∠AEB=50°3.如图,A、B、C是⊙O上的点,且∠ACB=140°.在这个图中,画出下列度数的圆周角:40°,50°,90°,140°,仅用无刻度的直尺能画出的有()A.1个B.2个C.3个D.4个4.如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=30°,AD=,下列说法错误的是()A.∠B=30°B.∠BAD=60°C.BD=2D.AB=25.如图,AB为半圆O的直径,C是的中点,D是的中点,在上取一点M,上取一点N,使得∠AMN=110°,则下列说法正确的是()A.点N在上,且NC>ND B.点N在上,且NC<NDC.点N在上,且ND>NB D.点N在上,且ND<NB6.如图,AB是⊙O的弦,OC⊥AB交⊙O于点C,点D是⊙O上一点,∠ADC=25°,则∠BOC的度数为()A.30°B.40°C.50°D.60°7.如图,⊙O的直径AB⊥CD弦,∠1=2∠2,则tan D=()A.B.C.2D.8.如图,在△ABC中,以BC为直径的⊙O,交AB的延长线于点D,交AC于点E,连结OD,OE,若∠DOE=α,则∠A的度数为()A.αB.90°﹣αC.D.90°﹣9.如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连接AC交DE于点F.若sin∠CAB=,DF=5,则AB的长为()A.10B.12C.16D.2010.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠OFE的度数是()A.30°B.20°C.40°D.35°二.填空题11.四边形ABCD是⊙O的内接四边形,∠A:∠C=4:1,则∠A=°.12.如图,已知点E为圆外的一点,EA交圆于点B,EC交圆于点D,若=80°,=30°,则∠BED=度.13.如图,在扇形AOB中,点C、D在上,连接AD、BC交于点E,若∠AOB=120°,的度数为50°,则∠AEB=°.14.如图,AB是⊙O的直径,AC、BC是⊙O的弦,直径DE⊥AC于点P.若点D在优弧上,AB=10,BC=4,则DP=.15.如图,点A、B、C在⊙O上,D是的中点,CD交OB于点E.若∠AOB=120°,∠OBC=50°,则∠OEC的度数为°.三.解答题16.如图,AB是⊙O的直径,C、D、E是⊙O上的点,AD=CD,∠E=68°,求∠ABC 的度数.17.如图,⊙O的半径为2,点A为⊙O上一点,OD⊥弦BC于D,如果∠BAC=60°.求OD的长和∠OCB度数.18.已知AB是⊙O的直径.(Ⅰ)如图①,==,∠MON=35°,求∠AON的大小;(Ⅱ)如图②,E,F是⊙O上的两个点,AD⊥EF于点D,若∠DAE=20°,求∠BAF 的大小.参考答案一.选择题1.解:设∠AOC=2x°,∠ADC=3x°,∵圆心角∠AOC和圆周角∠ABC都对着,∴∠ABC=AOC=x°,∵四边形ABCD是⊙O的内接四边形,∴∠ADC+∠ABC=180°,∴3x+x=180,解得:x=45,即∠ABC=45°,故选:C.2.解:∵∠ACB=50°,∴∠AEB=∠ACB=50°,∠AOB=2∠ACB=100°,∠ADB=∠ACB+∠CAD>∠ACB=50°,故选项A、B、C不正确,只有选项D正确,故选:D.3.解:作直径AD,连接BD、AB,如图,∵∠ACB+∠D=180°,∴∠D=180°﹣140°=40°,∵AD为直径,∴∠ABD=90°,∴∠BAD=90°﹣∠D=50°;在上取一点E,连接AE、BE,∴∠AEB=∠ACB=140°.故选:D.4.解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠B=∠ACD=30°,∴∠BAD=90°﹣∠B=90°﹣30°=60°,故选项A、B不符合题意,在Rt△ADB中,BD=AD=3,AB=2AD=2,故选项C符合题意,选项D不符合题意,故选:C.5.解:连接MD,OD、ON、BD,如图,∵C是的中点,D是的中点,∴∠BOD=×90°=45°,∵OB=OD,∴∠OBD=∠ODB=(180°﹣45°)=67.5°,∴∠AMD=180°﹣∠ABD=180°﹣67.5°=112.5°,∵∠AMN=110°,∴点N在上,∵∠DMN=∠AMD﹣∠AMN=2.5°,∴∠DON=2∠DMN=2×2.5°=5°,∴∠BON=40°,∴>,∴BN>DN.故选:D.6.解:∵OC⊥AB,∴,∴∠AOC=∠BOC,∵∠ADC=25°,∴∠AOC=50°,∴∠BOC=50°,故选:C.7.解:设CD交AB于H.∵OB=OC,∴∠2=∠3,∵AB⊥CD,∴∠1+∠2+∠3=90°,CH=HD,∵∠1=2∠2,∴4∠3=90°,∴∠3=22.5°,∴∠1=45°,∴CH=OH,设DH=CH=a,则a,BH=a+a,∴tan D===1+,故选:D.8.解:连接CD,∵BC为⊙O的直径,∴∠BDC=90°,∴∠A+∠ACD=90°,∵∠DOE=α,∴∠DCE=α,∴∠A=90°﹣α.故选:D.9.解:连接BD,如图,∵AB为直径,∴∠ADB=∠ACB=90°,∵AD=CD,∴∠DAC=∠DCA,而∠DCA=∠ABD,∴∠DAC=∠ABD,∵DE⊥AB,∴∠ABD+∠BDE=90°,而∠ADE+∠BDE=90°,∴∠ABD=∠ADE,∴∠ADE=∠DAC,∴FD=F A=5,在Rt△AEF中,∵sin∠CAB=,∴EF=3,∴AE==4,DE=5+3=8,∵∠ADE=∠DBE,∠AED=∠BED,∴△ADE∽△DBE,∴DE:BE=AE:DE,即8:BE=4:8,∴BE=16,∴AB=4+16=20.故选:D.10.解:如图,连接BF,OE.∵EF=EB,OE=OE,OF=OB,∴△OEF≌△OEB(SSS),∴∠OFE=∠OBE,∵OE=OB=0F,∴∠OEF=∠OFE=∠OEB=∠OBE,∠OFB=∠OBF,∵∠ABF=∠AOF=20°,∴∠OFB=∠OBE=20°,∵∠OFB+∠OBF+∠OFE+∠OBE+∠BEF=180°,∴4∠EFO+40°=180°,∴∠OFE=35°,故选:D.二.填空题11.解:设∠A=4x°,∠C=x°,∵四边形ABCD是⊙O的内接四边形,∴∠A+∠C=180°,∴4x+x=180,解得:x=36,即∠A=144°,故答案为:144.12.解:连接AD、OA、OC、OB、OD,如图所示:∵=80°,=30°,∴∠AOC=80°,∠BOD=30°,∴∠BAD=∠BOD=15°,∠ADC=∠AOC=40°,∴∠BED=∠ADC﹣∠BAD=40°﹣15°=25°,故答案为:25.13.解:作所对的圆周角∠APB,连接OC、OD、BD,如图,∵∠APB=∠AOB=×120°=60°,∴∠ADB=180°﹣∠APB=180°﹣60°=120°,∵的度数为50°,∴∠COD=50°,∴∠CBD=∠COD=25°,∵∠AEB=∠EDB+∠EBD,∴∠AEB=120°+25°=145°.故答案为145.14.解:∵AB是⊙O的直径,AB=10,∴∠C=90°,OA=OD=5,∴AC===2,∵DE⊥AC,∴AP=CP=AC=,∴OP===2,∴DP=OD+OP=5+2=7,故答案为:7.15.解:连接OD,∵D是的中点,∠AOB=120°,∴∠BOD=∠AOD=∠AOB=60°,由圆周角定理得,∠BCD=∠BOD=30°,∴∠OEC=∠BCD+∠OBC=80°,故答案为:80.三.解答题16.解:连接DB,如图所示:∵∠E=68°,∴∠A=68°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ABD=90°﹣∠A=90°﹣68°=22°,∵AD=CD,∴,∴∠DBC=∠DBA=22°,∴∠ABC=∠DBC+∠DBA=22°+22°=44°.17.解:∵∠BAC=60°,∴∠BOC=2∠BAC=120°,∵OB=OC,∴∠OBC=∠OCB=(180°﹣120°)=30°,∵OD⊥弦BC,∴∠BDO=90°,∴OD=OB=1.18.解:(I)∵==,∠MON=35°,∴∠MON=∠MOC=∠BOC=35°,∴∠AON=180°﹣∠MON﹣∠MOC﹣∠BOC=180°﹣35°﹣35°﹣35°=75°;(II)连接BF,∵AD⊥直线l,∴∠ADE=90°,∵∠DAE=20°,∴∠AEF=∠ADE+∠DAE=110°,∵A、E、F、B四点共圆,∴∠ABF+∠AEF=180°,∴∠ABF=70°,∵AB是⊙O的直径,∴∠AFB=90°,∴∠BAF=180°﹣∠AFB﹣∠ABF=20°.。

新人教版数学九年级上册24.1.4圆周角课时练习(解析版)

新人教版数学九年级上册24.1.4圆周角课时练习(解析版)

新人教版数学九年级上册24.1.4圆周角课时练习一、选择题1、在⊙O中,同弦所对的圆周角()A、相等B、互补C、相等或互补D、都不对2、如图,在⊙O中,弦AD=弦DC ,则图中相等的圆周角的对数是()A、5对B、6对C、7对D、8对3、下列说法正确的是()A、顶点在圆上的角是圆周角B、两边都和圆相交的角是圆周角C、圆心角是圆周角的2倍D、圆周角度数等于它所对圆心角度数的一半4、下列说法错误的是()A、等弧所对圆周角相等B、同弧所对圆周角相等C、同圆中,相等的圆周角所对弧也相等D、同圆中,等弦所对的圆周角相等5、如图,AB和CD都是⊙O的直径,∠AOC=50°,则∠C的度数是()A、20°B、25°C、30°D、50°6、如图,已知CD为⊙O的直径,过点D的弦DE平行于半径OA ,若∠D的度数是50°,则∠C的度数是()A、25°B、40°C、30°D、50°7、在⊙O中,同弦所对的圆周角( )A、相等B、互补C、相等或互补D、都不对8、下列说法正确的是( )A、顶点在圆上的角是圆周角B、两边都和圆相交的角是圆周角C、圆心角是圆周角的2倍D、圆周角度数等于它所对圆心角度数的一半9、如图,把一个量角器放在∠BAC的上面,请你根据量角器的读数判断∠BAC的度数是( )A、30°B、60°C、15°D、20°10、如图,A、B、C是⊙O上的三点,∠ACB=30°,则∠AOB等于( )A、75°B、60°C、45°D、30°11、用直角钢尺检查某一工件是否恰好是半圆环形,根据图所表示的情形,四个工件哪一个肯定是半圆环形?( )A、B、C、D、12、已知A、C、B是⊙O上三点,若∠AOC=40°,则∠ABC的度数是( )A、10°B、20°C、40°D、80°13、如图24-1-4-17所示,AB为⊙O的直径,P、Q、R、S为圆上相异四点,下列叙述正确的是( )A、为锐角B、为直角C、为钝角D、二、填空题14、如图,已知A、B、C、D、E均在⊙O上,且AC为⊙O的直径,则∠A+∠B+∠C=________度.15、如图24-1-4-5,OB、OC是⊙O的半径,A是⊙O上一点,若已知∠B=20°,∠C=30°,则∠A=________.16、在半径为1的⊙O中,弦AB、AC分别是和,则∠BAC的度数是________.17、如图24-1-4-16所示,AB是⊙O的直径,C、D、E都是⊙O上的点,则∠1+∠2=________.18、如图,在⊙O中,△ABC是等边三角形,AD是直径,则∠ADB=________°,∠ABD=________°19、如图,OE、OF分别为⊙O的弦AB、CD的弦心距,如果OE=OF ,那么________(只需写一个正确的结论).20、圆周角是24度,那么它所对的弧是________度.三、解答题21、如图,已知⊙O中,AB为直径,AB=10 cm,弦AC=6 cm,∠ACB的平分线交⊙O于D ,求BC、AD 和BD的长.22、如图(1),已知△ABC是等边三角形,以BC为直径的⊙O交AB、AC于D、E.求证:(1)△DOE是等边三角形.(2)如图(2),若∠A=60°,AB≠AC ,则(1)中结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.23、四边形ABCD中,AB∥DC ,BC=b,AB=AC=AD=a,如图24-1-4-11,求BD的长.图24-1-4-1124、在足球比赛中,甲、乙两名队员互相配合向对方球门MN进攻,当甲带球冲到A点时,乙已跟随冲到B点,如图24-1-4-12.此时,甲自己直接射门好,还是迅速将球传给乙,让乙射门好?25、如图所示,已知AB为⊙O的直径,AC为弦,OD∥BC ,交AC于D ,BC=4 cm.(1)求证:AC⊥OD;(2)求OD的长;答案解析部分一、选择题1、【答案】C【考点】圆周角定理【解析】【解答】同弦所对的圆周角有两个不同的度数,它们互补.因此同弦所对的圆周角相等或互补. 【分析】此题考查了圆周角定理,要考虑全面.2、【答案】D【考点】圆周角定理【解析】【解答】先找同弧所对的圆周角:弧AD所对的∠1=∠3;弧DC所对的∠2= ∠4;弧BC所对的∠5=∠6;弧AB所对的∠7=∠8.找等弧所对的圆周角,因为弧AC=弧DC ,所以∠1=∠4,∠1=∠2,∠4=∠3,∠2=∠3.由上可知,相等的圆周角有8对.【分析】在同圆或等圆中,判断两个圆周角是否相等,即看它们所对的弧是否相等,因等角对等弧,等弧对等角.3、【答案】D【考点】圆周角定理【解析】【解答】本题考查圆周角和圆心角的联系,解决本题的关键为在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对圆心角的一半.【分析】此题考查了圆周角定理.4、【答案】D【考点】圆周角定理【解析】【解答】同圆或是等圆中才存在等弦所对的圆周角相等或互补.【分析】此题考查了原周角定义,本题为常考题,容易弄错的是在同圆中等弦所对的圆周角相等,而忽略还有互补.5、【答案】B【考点】圆周角定理【解析】【解答】同弧所对的圆心角等于所对圆周角的二倍,∠AOC的对顶角∠BOD也为50度,弧BD所对的圆周角为∠C,所对的圆心角为∠BOD,∠BOD为∠C的二倍,故选B选项.【分析】此题考查了圆周角和圆心角的相互联系.6、【答案】A【考点】平行线的性质,圆周角定理【解析】【解答】根据两直线平行内错角相等和同弧所对的圆心角等于所对圆周角的二倍,可以得到∠C 的度数是25度.【分析】此题考查了圆周角定义.7、【答案】C【考点】圆周角定理【解析】【解答】同圆或是等圆中等弦所对的圆周角相等或互补.【分析】此题考查了圆周角定义,要考虑全面.8、【答案】D【考点】圆周角定理【解析】【解答】根据圆周角的定义做题,考察圆周角和圆心角的联系,记住圆周角的度数等于它所对圆心角的一半.【分析】此题考查了圆周角定义,审题一定要仔细,结合基础知识做题.9、【答案】C【考点】圆周角定理【解析】【解答】根据圆周角和圆心角的关系解决问题,根据量角器我们可以读出∠BOC的度数为30度,∠BOC为圆心角,∠BAC为圆周角,他们是二倍的关系,故选择C选项.【分析】此题考查了圆周角定义,利用圆心角去推出圆周角的度数.10、【答案】B【考点】圆周角定理【解析】【解答】根据圆周角和圆心角的关系解决问题,弧AB所对的圆心角和圆周角分别为∠AOB和∠ACB,圆心角为圆周角的二倍,故本题选择B选项.【分析】此题考查了圆周角和圆心角的联系,做题时要注意利用所给的条件结合图像去发现所求问题和所给条件之间的相互联系.11、【答案】B【考点】圆周角定理【解析】【解答】A和C中的直角显然不是圆周角,因此不正确,D中的直角只满足圆周角的一个特征,也不是圆周角,因而不能判断是否为半圆形.选B.【分析】本题考查圆周角定理的推论及圆周角定义在实际生产中的应用.认真观察图形,可得只有B符合定理的推论.实际问题应读懂题意,看懂图形.12、【答案】B【考点】圆周角定理【解析】【解答】根据圆周角和圆心角的关系解决问题,由“一条弧所对的圆周角等于它所对的圆心角的一半”解答.【分析】此题考查了原周角和圆心角的联系.13、【答案】B【考点】圆周角定理【解析】【解答】AB为直径,根据直径所对的圆周角是直角,所以∠APB、∠AQB、∠ARB、∠ASB都是直角,由于四个角都是直角,所以∠ASB=∠ARB=90°.【分析】直径所对的圆周角等于90度.二、填空题14、【答案】90【考点】圆周角定理【解析】【解答】所求的弧等于半圆周的一半,即90度,∠A随对的弧加上∠B所对的弧加上∠C所对的弧等于弧AC ,弧AC所对的圆心角为180度,所以所对的圆周角为90度.【分析】根据圆周角的定义做题,注意圆心角和圆周角之间的相互联系.15、【答案】50°【考点】圆周角定理【解析】【解答】连结AO ,则AO=OB ,OA=OC ,所以∠A=∠B+∠C=20°+30°=50°.【分析】根据圆周角的定义做题,注意作好辅助线,利用半径相等构造等腰三角形,然后转化角度. 16、【答案】15°或75°【考点】勾股定理,圆周角定理【解析】【解答】图(1)和图(2),分两种情况,作直径AD ,连结BD ,易知∠BAD=30°,∠CAO=45°,∴∠BAC=15°或75°.图1 图2【分析】根据圆周角的定义做题,要考虑全面.17、【答案】90°【考点】等边三角形的性质,圆周角定理【解析】【解答】∠1所对的弧是弧AE,∠2所对的弧是弧BE ,而弧AE+弧BE=弧AB是半圆,因此连结AD ,∠ADB的度数是90°,所以∠ADB=∠1+∠2.本题也可以连结EO ,得到圆心角∠EOA和∠EOB,而∠EOA+∠EOB=180°,所以∠1+∠2=90°.【分析】根据圆周角的定义做题.18、【答案】60;90【考点】圆周角定理【解析】【解答】同弧所对的圆周角相等,所以∠ADB=60度,直径所对的圆周角等于90度.【分析】根据圆周角的定义做题,要注意所给条件中等边三角形个内角的度数,及圆周角所对半圆弧的度数.19、【答案】AB=CD【考点】圆心角、弧、弦的关系【解析】【解答】在同圆或是等圆中,等弦的弦心距相等.【分析】根据弦心距做题,在同圆或是等圆中,等弦的弦心距相等.20、【答案】48【考点】圆周角定理【解析】【解答】弧的度数等于它所对的圆心角的度数,圆心角与圆周角为2倍的关系.【分析】根据圆周角和圆心角的联系做题.三、解答题21、【答案】解:∵AB是直径,∴∠ACB=∠ADB=90°.在Rt△ACB中,BC= = =8.∵CD平分∠ACB ,∴弧AD=弧BD.∴AD=BD.在Rt△ADB中,AD=BD= AB=5 (cm).【考点】勾股定理,圆周角定理【解析】【解答】∵AB是直径,∴∠ACB=∠ADB=90°.在Rt△ACB中,BC= = =8.∵CD平分∠ACB,∴弧AD=弧BD.∴AD=BD.在Rt△ADB中,AD=BD= AB=5 (cm).【分析】已知条件中若有直径,则利用圆周角定理的推论得到直角三角形,然后利用直角三角形的性质解题.22、【答案】(1)证明:∵△ABC为等边三角形,∴∠B=∠C=60°.∵OB=OC=OE=OD ,∴△OBD和△OEC都为等边三角形.∴∠BOD=∠EOC=60°.∴∠DOE=60°.∴△DOE为等边三角形.(2)解:当∠A=60°,AB≠AC时,(1)中的结论仍然成立.证明:连结CD.∵BC为⊙O的直径,∴∠BDC=90°.∴∠ADC=90°.∵∠A=60°,∴∠ACD=30°.∴∠DOE=2∠ACD=60°.∵OD=OE ,∴△DOE为等边三角形.【考点】等边三角形的性质,圆周角定理【解析】【解答】(1)证明:∵△ABC为等边三角形,∴∠B=∠C=60°.∵OB=OC=OE=OD,∴△OBD和△OEC都为等边三角形.∴∠BOD=∠EOC=60°.∴∠DOE=60°.∴△DOE为等边三角形.(2)当∠A=60°,AB≠AC时,(1)中的结论仍然成立.证明:连结CD.∵BC为⊙O的直径,∴∠BDC=90°.∴∠ADC=90°.∵∠A=60°,∴∠ACD=30°.∴∠DOE=2∠ACD=60°.∵OD=OE,∴△DOE为等边三角形.【分析】△ABC是等边三角形,所以∠B、∠C均为60°,利用60°的圆周角定理,可知△DOB、△EOC均为等边三角形.第二种情形类似.23、【答案】解:∵AB=AC=AD=a,∴点B、C、D到A点距离相等.故以A为圆心,以a为半径作⊙A ,并延长BA交⊙A于E ,连结DE.∵AB∥CD ,∴弧BC=弧DE.∴BC=DE=b.∵BE为⊙A的直径,∴∠EDB=90°.在Rt△EDB中,BD= = ,∴BD的长为.【考点】勾股定理,圆周角定理【解析】【解答】∵AB=AC=AD=a,∴点B、C、D到A点距离相等.故以A为圆心,以a为半径作⊙A,并延长BA交⊙A于E,连结DE.∵AB∥CD,∴弧 BC=弧DE.∴BC=DE=b.∵BE为⊙A的直径,∴∠EDB=90°.在Rt△EDB中,BD= = ,∴BD的长为 .【分析】由AB=AC=AD=a可以得到点B、C、D在以A为圆心,以a为半径的圆上,因而可以作出该圆,利用圆的知识解决该题.本题考查圆的定义和圆周角定理及其推论.24、【答案】考虑过M、N及A、B中任一点作圆,这里不妨过M、N、B作圆,则A点在圆外,设MA交⊙O于C,则∠MAN<∠MCN,而∠MCN=∠MBN,所以∠MAN<∠MBN.因此在B点射门为好.【考点】圆周角定理【解析】【解答】考虑过M、N及A、B中任一点作圆,这里不妨过M、N、B作圆,则A点在圆外,设MA交⊙O于C ,则∠MAN<∠MCN ,而∠MCN=∠MBN ,所以∠MAN<∠MBN.因此在B点射门为好..【分析】在真正的足球比赛中情况比较复杂,这里仅用数学方法从两点的静止状态来考虑,如果两个点到球门的距离相差不大,要确定较好的射门位置,关键是看这两点各自对球门MN的张角大小,当张角较小时,则容易被对方守门员拦截.25、【答案】(1)证明:∵AB是⊙O的直径,∴∠C=90°.∵OD∥BC ,∴∠ADO=∠C=90°.∴AC⊥OD.(2)解:∵OD∥BC ,又∵O是AB的中点,∴OD是△ABC的中位线.∴OD= BC= ×4=2(cm).【考点】三角形中位线定理,圆周角定理【解析】【解答】(1)证明:∵AB是⊙O的直径,∴∠C=90°.∵OD∥BC,∴∠ADO=∠C=90°.∴AC⊥OD.(2)∵OD∥BC,又∵O是AB的中点,∴OD是△ABC的中位线.∴OD= BC= ×4=2(cm).【分析】根据圆周角定理的推论以及三角形中位线定理计算.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学圆心角圆周角专项练习题
一、单选题
1.如图,⊙O中,半径OC⊙弦AB于点D,点E在⊙O上,⊙E=22.5°⊙AB=4,则半径OB等于()
A
B.2C.
D.3
2.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=75°,则∠OAC的大小是()
A.25°B.50°C.65°D.75°
3.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是()A.AD=2OB B.CE=EO C.∠OCE=40°D.∠BOC=2∠BAD 4.在半径为1
的弦所对的弧的度数为()
A.90B.145C.90或270D.270或145 5.如图,ABC是O的内接三角形,,30
AB BC BAC
=∠=︒,AD是直径,8
AD=,则AC的长为()
A.4B
.C
D

6.下列说法正确的有()
①不在同一条直线上的三点确定一个圆;②平分弦的直径垂直于弦;③在同圆或等圆中,如果两条弦相等,那么他们所对的圆周角相等;④圆内接平行四边形是矩形.A.1个B.2个C.3个D.4个
二、填空题
7.如图,△ABC内接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若☉O 的半径为2,则CD的长为_____
8.如图,已知点C是⊙O的直径AB上的一点,过点C作弦DE,使CD=CO.若AD 的度数为35°,则BE的度数是_____.
9.如图,AB是⊙O的直径,CD是弦,若∠ABC=63°,则∠D的度数是__.10.如图,在⊙O中,AB=2CD,那么AB________2CD(填“>,<或=”)
三、解答题
11.如图,已知A⊙B⊙C⊙D是⊙O上的四点,延长DC⊙AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.
12.如图,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.(1)若∠AOD=52°,求∠DEB的度数;
(2)若AB=24,CD=8,求⊙O的半径长.
13.如图,在ABC中,AC BC
,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D作//
DF BC,交⊙O于点F,求证:
(1)四边形DBCF是平行四边形
(2)AF EF
15.如图,是一个高速公路的隧道的横截面,若它的形状是以O为圆心的圆的一部分,路面AB=12米,拱高CD=9米,求圆的半。

相关文档
最新文档