已知系统的开环零极点分布如图B41所示

已知系统的开环零极点分布如图B41所示
已知系统的开环零极点分布如图B41所示

B4.1 已知系统的开环零极点分布如图B4.1所示,试绘制各系统的概略根轨迹。

图B4.1控制系统的开环零极点分布图

B4.2 设系统的开环传递函数如下所示:

试绘制各系统的根轨迹。

B4.3 证明题B4.2各系统在复平面上的根轨迹均为一圆或圆弧,并求出它们的圆心和半径。 B4.4 已知系统的开环传递函数如下所示,试绘制各系统的根轨迹。

B4.5 设单位反馈系统的开环传递函数为

要求:

(1)绘制系统的根轨迹;

(2)确定系统的临界开环增益;

(3)当系统的暂态响应为欠阻尼、临界阻尼或过阻尼时,试分别求其开环增益的取值范围。B4.6 已知单位反馈系统的开环传递函数为

若要求系统的性能满足σp≤5%,t s≤8(s),试求开环增益的取值范围。

B4.7 设系统的开环传递函数如下所示,其中a和b为可变参量,试绘制各系统的根轨迹:

B4.8 设单位反馈系统的开环传递函数为

当微分时间常数T d可变时试绘制系统的根轨迹;并确定使复数极点的阻尼比为0.707的T d值。

B4.9 已知系统的特征方程如下所示,试绘制各系统的根轨迹:

B4.10 设某复杂系统的开环传递函数为

试应用MATLAB:

(1)绘制系统的根轨迹;

(2)确定分离点的位置及对应的开环增益值;

(3)确定使系统稳定时开环增益的取值范围,以及临界稳定时闭环零极点的分布。

B4.11 设某单位负反馈系统的开环传递函数为

安装时不慎将反馈的极性接反了,变成正反馈系统。试分别绘制负反馈系统和正反馈系统的根轨迹;并以系统的稳定性为例,分析说明反馈极性接反了的后果。

B4.12 图B3.32所示的某记录仪位置随动系统,其结构图重画在图B4.12上。如果在安装时出现以下差错:(1)把测速反馈的极性接反了;(2)测速反馈的极性是正确的,但把位置反馈的极性接反了,试问它们的后果如何?习题B3.22是用时域分析法来讨论的,现要求将它视为多回路系统,用根轨迹法来分析讨论。从B4.11和B4.12的求解中,您有何感想或体会?

图B4.12记录仪位置随动系统结构图

B4.13 设系统的开环传递函数为

试绘制该系统的准确根轨迹并确定系统的临界开环增益,以及具有实重根时的K g值。

B4.14 设某单位反馈位置随动系统的开环传递函数为

其中K g和a为可变参数,试绘制其准确的根轨迹族。若要求系统的暂态响应特性满足σp=4.3%,t s=1(s),试确定其开环增益值和闭环传递函数以及系统的零极点。

B4.15 已知系统的结构图如图B4.15所示,其中参数K、T和τ均为正的。试分为α>0(负反馈)和α<0(正反馈)两种情况,绘制系统的概略根轨迹;并分析说明在何种情况下系统才能稳定,同时确定使系统稳定时α的取值范围。

图B4.15非最小相位系统结构图

B4.16 已知系统的闭环传递函数为

要求:

(1) 绘制系统的根轨迹(α>0且可变);

(2) 欲使系统的单位阶跃响应的超调量σp=4.3%,α应调整为何值?

(3) 根据生产工艺过程要求应将闭环极点配置为p1,2=-2.3±j2.3,试问仅调整α能否实

现?并用系统的根轨迹加以说明。

B4.17 设多回路系统的结构图如图B4.17所示。要求:

(1) 当增益K可变时绘制系统的根轨迹;

(2) 确定使系统稳定时K的取值范围(K可以是负的),以及在单位阶跃输入信号作用下

系统稳态误差的允许值;

(3) 欲使闭环复极点的阻尼比ζ=0.5,试求增益K的取值和闭环极点的分布。

图B4.17多回路系统结构图

B4.18 分析题B4.4(3)系统当K g=4输入信号r(t)=3.02+t(t≥0)时,系统的特性和闭环零极点的分布;判断系统是否存在主导极点并估算系统的暂态性能。

B4.19 已知系统的结构图,如图B4.19所示。试绘制其根轨迹;若要求系统的暂态响应为衰减振荡的,而且闭环复极点的阻尼比ζ=0.707,系统的开环增益应调整为何值?并计算这时系统的单位阶跃响应。

图B4.19题B4.19系统结构图

B4.20 设控制系统的结构图,如图B4.20所示。试分别绘制当H(s)=1和H(s)=1+2s时系统的根轨迹图,并说明添加开环零点对系统特性的影响。

图B4.20 题B4.20系统结构图

B4.21 试用根轨迹法求解例3.19系统,当开环增益分别为2、29和217时的暂态特性,以及临界阻尼时系统的开环增益值;并与例3.19用时域分析法所得结果进行比较,您有何体会

或看法?

B4.22 试用根轨迹法求解例3.20系统,当添加开环零点使阻尼比ζ=0.5,以及在原系统基础上直接添加与上述相同的闭环零点时系统的暂态性能。并与例3.20用时域分析法所得结果进行对比,您有何体会或看法?

B4.23 已知时滞系统的开环传递函数为

试绘制其根轨迹,并说明时滞环节e-τs对系统特性的影响。

B4.24 试用根轨迹法求代数方程3s4+10s3+21s2+24s-16=0的根。

B4.25 设实系数多项式为f(s)=s3+5s2+(α+6)s+α,欲使其根均为实数,试确定参数α的取值范围。

B4.26 某位置随动系统的结构图,如图B4.26所示。试对其进行串联校正,使系统具有下列性能指标:超调量σp≤20%,调节时间t s≤2s(取Δ=5%)。

图B4.26位置随动系统结构图

B4.27 某直流调速系统的结构图,如图B3.16所示。现重画在图B4.27上,其中K s=44,T s=0.00167s,K e=0.1925V·min/r,T m=0.075s,T a=0.017s,α=0.01158V·min/r。试对系统进行迟后校正使之满足σp≤10%,t s≤0.5s(取Δ=2%),并求出校正装置的传递函数。

图B4.27直流调速系统结构图

B4.28 若上题对系统的性能指标要求提高为:σp≤10%,t s≤0.2s(取Δ≤2%),跟踪单位阶跃输入信号的稳态误差小于2%。试对系统进行串联校正,并求出校正装置的传递函数。

B4.29 图B4.26所示的位置随动系统,为了提高其特性的稳定度,引入测速发电机进行速度反馈校正(如图B4.29所示),使系统的等效阻尼比增大至0.707,试综合该速度反馈校正装置。

图B4.29具有速度反馈校正的位置随动系统结构图

零极点对系统的影响

MATLAB各种图形 结论 1对稳定性影响 ○1增加零点不改变系统的稳定性; ○2增加极点改变系统的稳定性,不同的阻尼比下即使增加的是平面左侧的零点系统也有可能不稳定。 2对暂态性能的影响 ○A增加的零点离虚轴越近,对系统暂态性影响越大,零点离虚轴越远,对系统的影响越小。 分析表1可以发现,增加零点会对系统的超调量、调节时间、谐振峰值和带宽产生影响,且增加的零点越大,对系统的暂态性能影响越小。当a增加到100时,系统的各项暂态参数均接近于原系统的参数。增加的极点越靠近虚轴,其对应系统的带宽越小。同时还可以发现,时域中的超调量和频域中的谐振峰值在数值上亦存在一定的关系。具体表现为超调量减小时,谐振峰值也随之减小。 ○B增加的极点离虚轴越近,对系统暂态性影响越大,极点离虚轴越远,对系统的影响越小。 ①增加零点,会使系统的超调量增大,谐振峰值增大,带宽增加。 ②增加极点,会使系统的超调量减小,谐振峰值减小,带宽减小。 ③增加的零极点离虚轴越近,对系统暂态性影响越大;零极点离虚 轴越远,对系统的暂态性影响越小。 3 对稳态性能的影响 ①当增加的零极点在s的左半平面时,不改变系统的类型,使系统 能跟踪的信号类别不变,但跟踪精度会有差别。 ②当增加的零点在s的虚轴上时,系统的型别降低,跟踪不同输入 信号的能力下降。 ③当增加的极点在s的虚轴上时,系统的型别升高,跟踪不同输入 信号的能力增强。

1、绘制G1(s)的根轨迹曲线(M2_1.m) %画G1(s)的根轨迹曲线 n=[1,0]; %分子 d=[1,1,2]; %分母 figure1 = figure('Color',[1 1 1]); %将图形背景改为白色rlocus(n,d); %画G1(s)根轨迹曲线title('G1(s)的根轨迹'); %标题说明 2、绘制G1(s)的奈奎斯特曲线(M2_2.m) %画G1(s)的奈奎斯特曲线 figure1 = figure('Color',[1 1 1]); %将图形背景改为白色for a=1:10 %a取1,2,3……10,时,画出对应的奈奎斯特曲线G=tf([1/a,1],[1,1,1]); nyquist(G); hold on end title('G1(s)的奈奎斯特曲线'); %标题说明

连续系统零极点分布与频响特性的关系

连续系统零极点分布与频响特性的关系 班级:02 学号:2014210 请利用MATLAB软件绘制下列因果系统的零极点图和频率响应特性曲线,并分析系统的滤波特性。 (1) H1(s); 程序如下: close all b=[2]; a=([1 2]); SYS=tf(b,a); pzplot(SYS); axis([-4,4 -2,2]); figure; freqs(b,a); MATLAB绘制的零、极点图和频率响应特性曲线如图所示。

-2-1.5-1-0.5 00.511.52 Real Axis (seconds -1 ) I m a g i n a r y A x i s (s e c o n d s -1) -10 1 -80 -60-40-200 Frequency (rad/s) P h a s e (d e g r e e s ) 10 10 10 10 -0.7 10 -0.4 10 -0.1 Frequency (rad/s) M a g n i t u d e (2) H 2(s) ; 程序如下: close all b=[1 0]; a=([1 2]); SYS=tf(b,a); pzplot(SYS); axis([-4,4 -2,2]); figure; freqs(b,a); MATLAB 绘制的零、极点图和频率响应特性曲线如图所示。 零极点图 频率特性曲线图

Real Axis (seconds -1) I m a g i n a r y A x i s (s e c o n d s -1) 10 10 10 10 Frequency (rad/s) P h a s e (d e g r e e s ) 10 10 10 10 10 101010 Frequency (rad/s) M a g n i t u d e

零极点对系统的性能影响分析

零极点对系统性能的影响分析 1任务步骤 1.分析原开环传递函数G0(s)的性能,绘制系统的阶跃响应曲线得到系 统的暂态性能(包括上升时间,超调时间,超调量,调节时间); 2.在G0(s)上增加零点,使开环传递函数为G1(s),绘制系统的根轨迹, 分析系统的稳定性; 3.取不同的开环传递函数G1(s)零点的值,绘制系统的阶跃响应曲线得 到系统的暂态性能(包括上升时间,超调时间,超调量,调节时间); 4.综合数据,分析零点对系统性能的影响 5.在G0(s)上增加极点,使开环传递函数为G2(s),绘制系统的根轨迹, 分析系统的稳定性; 6.取不同的开环传递函数G2(s)极点的值,绘制系统的阶跃响应曲线得 到系统的暂态性能(包括上升时间,超调时间,超调量,调节时间); 7.综合数据,分析极点对系统性能的影响。 8.增加一对离原点近的偶极子和一对距离原点远的偶极子来验证偶极子 对消的规律。

2原开环传递函数G0(s)的性能分析 2.1 G0(s)的根轨迹 取原开环传递函数为: Matlab指令: num=[1]; den=[1,0.8,0.15]; rlocus(num,den); 得到图形: 图1 原函数G0(s)的根轨迹 根据原函数的根轨迹可得:系统的两个极点分别是-0.5和-0.3,分离点为-0.4,零点在无限远处,系统是稳定的。 2.2 G0(s)的阶跃响应 Matlab指令: G=zpk([],[-0.3,-0.5],[1]) sys=feedback(G,1) step(sys) 得到图形:

图2 原函数的阶跃响应曲线 由阶跃响应曲线分析系统暂态性能: 曲线最大峰值为1.12,稳态值为0.87, 上升时间tr=1.97s 超调时间tp=3.15s 调节时间ts=9.95s ,2=? 超调量% p σ=28.3%

系统函数的零极点分布决定时域特性

摘要 本文详细分析了系统函数零极点的分布与冲击响应时域特性之间的关系。首先论述了如何通过MATLAB软件绘制出系统函数的零极点分布图。然后根据系统函数极点的不同分布情况,通过MATLAB软件绘制出冲击响应的时域函数,通过对图像的观察和比较,得出了极点的类型决定时间函数的时间连续形式,极点在S平面的位置决定时间函数的波形特点。最后,在极点相同,但零点不同的情况下,通过比较时域函数的波形,得出零点分布与时域函数的对应关系,即零点分布的情况只影响到时域函数的幅度和相位。 关键词:系统函数的零极点;时域特性;MATLAB软件

目录 1课程设计目的 (1) 2实验原理 (1) 3实现过程 (1) 3.1MATLAB简介 (1) 3.2系统函数极点分布情况 (2) 3.2.1极点为单实根 (2) 3.2.2极点为共轭复根 (2) 3.2.3极点为重根 (2) 3.2.4用MATLAB绘制系统函数的零极点分布图 (2) 3.3系统函数的零极点分布与冲击响应时域特性的关系 (6) 3.3.1用MATLAB绘制冲击响应的时域函数 (6) 3.3.2极点的类型决定时间函数的时间连续形式 (19) 3.3.3极点在S平面的位置决定时间函数的波形特点 (19) 3.3.4零点分布与时域函数的对应关系 (19) 4设计体会 (23) 5参考文献 (24)

1 课程设计目的 1.掌握系统函数的零极点分布与系统冲激响应时域特性之间的关系。 2.学习MATLAB 软件知识及应用。 3.利用MATLAB 编程,完成相应的信号分析和处理。 2 实验原理 拉普拉斯变换将时域函数f(t)变换为s 域函数F(s);反之,拉普拉斯逆变换将F(s)变换为相应的f(t)。由于f(t)与F(s)之间存在一定的对应关系,故可以从函数F(s)的典型形式透视出f(t)的内在性质。当F(s)为有理函数时,其分子多项式和分母多项式皆可分解为因子形式,各项因子指明了F(s)零点和极点的位置,显然,从这些零点和极点的分布情况,便可确定原函数的性质。 设连续系统的系统函数为)(s H ,冲激响应为)(t h ,则 ?+∞ -=0)()(dt e t h s H st 显然,)(s H 必然包含了)(t h 的本质特性。 对于集中参数的LTI 连续系统,其系统函数可表示为关于s 的两个多项式之比,即 其中),,2,1(M j q j =为)(s H 的M 个零点,),,2,1(N i p i =为)(s H 的N 个极点。 3 实现过程 3.1 MATLAB 简介 MALAB 译于矩阵实验室(MATrix LABoratory ),是用来提供通往 LINPACK 和EISPACK 矩阵软件包接口的。后来,它渐渐发展成了通用科技计算、图视交互系统和程序语言。 MATLAB 的基本数据单位是矩阵。它的指令表达与数学、工程中常用的习惯形式十分相似。比如,矩阵方程Ax=b ,在MATLAB 中被写成A*x=b 。而若要通过A ,b 求x ,那么只要写x =A \b 即可,完全不需要对矩阵的乘法和求逆进行编程。因此,用MATLAB 解算问题要比用C 、Fortran 等语言简捷得多。 MATLAB 发展到现在,已经成为一个系列产品:MATLAB “主包”和各种可选的toolbox “工具包”。主包中有数百个核心内部函数。迄今所有的三十几个工具包又可分为两类:功能性工具包和学科性工具包。功能性工具包主要用来扩充MATLAB 的符号计 ∏∏1 1) -()-() () ()(N i i M j j p s q s C s A s B s H ====

零极点分布对系统频率响应的影响

备注:(1)、按照要求独立完成实验内容。 (2)、实验结束后,把电子版实验报告按 要求格式改名(例:09 号_张三 _实验七.doc)后,实验室统一刻 盘留档。 实验三零极点分布对系统频 率响应的影响 一、实验目的 1. 掌握系统差分方程得到系统函数的方法; 2. 掌握系统单位脉冲响应获取系统函数的方法; 3. 掌握用系统函数零级点分布的几何方法分析研究系统的频率响应 二、实验原理 在MA TLAB 中,可以用函数[z,p,K]=tf2zp ( num ,den)求得有理分式形式的系统转移函数的零、极点,用函数zplane( z,p)绘出 零、极点分布图;也可以用函数 zplane( num,den)直接绘出有理分式形式的系统转移函数的零、极点分布图。 另外,在MA TLAB 中,可以用函数[r,p,k]=residuez(num,den)完成部分分式展开计算;可以用函数sos=zp2sos( z,p,K )完成三、实验内容(包括代码与产生的图形) 1. 假设系统用下面差分方程描述: y(n)=x(n)+ay(n-1) 假设a=0.7, 0.8, 0.9 ,分别在三种情况下分析系统的频率特性,并打印幅度特性曲线。 B=1; A=[1,-0.7]; subplot(3,3,1);zplane(B,A); xlabel(' 实部Re'); ylabel(' 虚部Im'); title('y(n)=x(n)+0.7y(n-1) 传输函数零、极点分布'); grid on [H,w]=freqz(B,A,'whole'); subplot(3,3,4); 将高阶系统分解为 2 阶系统的串联。plot(w/pi,abs(H),'linewidth',2);

绘制离散系统零极点图.

绘制离散系统零极点图:zplane() 滤波器 绘制离散系统零极点图:zplane() zplane(Z,P) 以单位圆为基准绘制零极点图,在图中以'o'表示零点,以'x'表示极点,如果存在重零极点,则在它们的右上方显示其数目。如果零极点是用矩阵来表示,在不同行内的零极点用不同的颜 色来表示。 zplane(B, A) 输入的是传递函数模型,则函数将首先调用root 函数以求出它们的零极点。 [H1, H2, H3]=zplane(Z,P) 函数返回图形对象的句柄。其中,H1返回的是零点线的句柄;H2返回的是极点线的句柄;H3返回的是轴和单位圆线条句柄。如果有重零极点,它还包括显示在其右上方 的文本句柄。 例:设计一个数字椭圆带阻滤波器,具体要求是:通带截止频率是 wp1=1500Hz,wp2=2500Hz,阻带截止频率是ws1=1000Hz,ws2=3000Hz,在通带内的最大衰减为0.5dB,在阻带内的最小衰减 为60dB 程序设计如下: wp1=1500; wp2=2500; ws1=1000; ws2=3000; Fs=100 00Hz; rp=0.5; rs=60; wp=[wp1,wp2]; ws=[ws1,ws2]; [n,wn]=ellipord(wp/(Fs/2), ws/(Fs/2), rp, rs); [num,den]=ellip(n, rp, rs, wn, 'stop'); [H, W]=freqz(num, den); figure; plot(W*Fs/(2*pi), abs(H)); grid; xlabel('频率/Hz'); ylabel('幅值'); figure; impz(num, den); figure; grpdelay(num, den); figure; zplane(num, den); FREQZ 是计算数字滤波器的频率响应的函数

实验六开环增益与零极点对系统性能的影响

实验六 开环增益与零极点对系统性能的影响 一.实验目的 1.研究闭环、开环零极点对系统性能的影响; 2.研究开环增益对系统性能的影响。 二.实验内容 1.搭建原始系统模拟电路,观测系统响应波形,记录超调量σ%、峰值时间tp 和调节时间ts ; 2.分别给原始系统在闭环和开环两种情况下加入不同零极点,观测加入后的系统响应波形,记录超调量σ%和调节时间ts ; 3.改变开环增益K ,取值1,2,4,5,10,20等,观测系统在不同开环增益下的响应波形,记录超调量σ%和调节时间ts 。 三.实验步骤 在实验中观测实验结果时,可选用普通示波器,也可选用本实验台上的虚拟示波器。 如果选用虚拟示波器,只要运行ACES 程序,选择菜单列表中的相应实验项目,再选择开始实验,就会打开虚拟示波器的界面,点击开始即可使用本实验台上的虚拟示波器CH1、CH2两通道观察被测波形。具体用法参见用户手册中的示波器部分。 1.原始二阶系统 实验中所用到的功能区域: 阶跃信号、虚拟示波器、实验电路A1、实验电路A2、实验电路A3。 原始二阶系统模拟电路如图1-6-1所示,系统开环传递函数为: 0.1(0.21) K s s , 图1-6-1原始二阶系统模拟电路 (1) 设置阶跃信号源: A .将阶跃信号区的选择开关拨至“0~5V ”; B .将阶跃信号区的“0~5V ”端子与实验电路A3的“IN32”端子相连接; C .按压阶跃信号区的红色开关按钮就可以在“0~5V ”端子产生阶跃信号。 (2) 搭建原始二阶系统模拟电路: A .将A3的“OUT3”与A1的“IN11”、“IN13”同时连接,将A1的“OUT1”与A2的“IN21”相连接,将A2的“OUT2”与A3的“IN33”相连接;

matlab实验四 系统的零极点分析

实验四连续时间系统复频域分析和离散时间系统z域分析 一.实验目的: 1.掌握连续信号拉氏变换和拉氏反变换的基本实现方法。 2.熟悉laplace函数求拉普拉斯变换,ilaplace函数求拉氏反变换 的使用。 3.掌握用ztrans函数,iztrans函数求离散时间信号z变换和逆z 变换的基本实现方法。 4.掌握用freqs函数,freqz函数由连续时间系统和离散时间系统 系统函数求频率响应。 5.掌握zplane零极点绘图函数的使用并了解使用零极点图判断系 统稳定性的原理。 二、实验原理: 1.拉氏变换和逆变换 原函数()() ?象函数 f t F s 记作:[()]() =→拉氏变换 L f t F s 1[()]() -=→拉氏反变换 L F s f t 涉及函数:laplace,ilapace. 例如:

syms t;laplace(cos(2*t)) 结果为:ans =s/(s^2+4) syms s;ilaplace(1./(s+1)) 结果为:ans = exp(-t) 2. 系统传递函数H(s)或H(z)。 12121212...()()()...m m m n n n b s b s b B s H s A s a s a s a ----+++==+++ 112112...()()()...m m m n n n b z b z b B z H z A z a z a z a --+--++++==+++ 其中,B 为分子多项式系数,A 为分母多项式系数。 涉及函数:freqz,freqs. 3. 系统零极点分布与稳定性的判定。 对于连续时间系统,系统极点位于s 域左半平面,系统稳定。 对于离散时间系统,系统极点位于z 域单位圆内部,系统稳定。 涉及函数:zplane. 三、 实验内容 1. 验证性实验 a) 系统零极点的求解和作图

闭环零点对二阶系统的影响

完全书本上的理论:闭环零点是系统闭环传递函数中分子多项式方程的根。闭环零点由前向通道的零点和反馈通道的极点构成。对于单位反馈系统,闭环零点就是开环零点。 这个从系统结构上是可以推导出来的结论。 一想到零点,我们会想到比例微分环节,那么这个比例微分环节,放在前向通道和反馈通道,作用上会有什么不同吗? 谈到零点,我们最先想到的是微分环节,事实上,单纯的微分环节是不存在的。对一个信号取微分,也就是相当取这个信号的变化率。一个脉冲信号,上升沿变化率近似于无穷大,而运放的输出能量是有限的。 能产生零点的基本环节有比例微分环节PD,比例积分环节PI。 先来看,在一个传递函数的分子中,加入一个零点,而分母不变,会有什么影响呢? 以欠阻尼二阶系统G=4/(s^2+2*s+4)(阻尼比=0.5)为例,与另一个系统 G=4(s+1)/(s^2+2*s+4)的单位阶跃响应比较。 绿色是加入零点的,蓝色是没有零点的。 从这个例子,我们可以得到一个很简单的结论:传递函数分母不变,分子中串入零点,瞬态响应变快,超调量增加。 举个例子,还是以传递函数G=4/(s^2+2*s+4)(阻尼比=0.5)作为控制对象,采用比例微分环节(1+0.5*s)去控制它。 而根据比例微分环节加入整个系统的位置不同,可以分为两种:一种是放在前向通道,一种是放在反馈通道。 下面以采用这两种校正方式后的单位阶跃响应,来看看它们有什么不同~ (1)、将校正环节串入系统的前向传递通道(绿色):sys=tf([4],[1,2,0]);sys2=tf([0.5, 1],[1]);sys3=series(sys2,sys),sys4=feedback(sys3,1);step(sys4);hold on; (2)、将校正环节作为系统的反馈通道(蓝色):sys=tf([4],[1,2,0]);sys2=tf([0.5,1],[1]);sys3=feedback(sys,sys2);step(sys3);(3)、原系统的单位反馈(红色):sys0=tf([4],[1,2,4]);step(sys0);

连续时间系统S域零极点分析

实验七 连续时间系统S 域零极点分析 一、目的 (1)掌握连续系统零极点分布与系统稳定性关系 (2)掌握零极点分布与系统冲激响应时域特性之间的关系 (3)掌握利用MATLAB 进行S 域分析的方法 二、零极点分布与系统稳定性 根据系统函数)(s H 的零极点分布来分析连续系统的稳定性是零极点分析的重要应用之一。稳定性是系统固有的性质,与激励信号无关,由于系统函数)(s H 包含了系统的所有固有特性,显然它也能反映出系统是否稳定。 对任意有界信号)(t f ,若系统产生的零状态响应)(t y 也是有界的,则称该系统为稳定系统,否则,则称为不稳定系统。 上述稳定性的定义可以等效为下列条件: ● 时域条件:连续系统稳定充要条件为∞

闭环零点对二阶系统单位阶跃响应的影响

闭环零点对二阶系统单位阶跃响应的影响 张国超 10电本2班 摘要:由于实际工作中对高阶系统的研究常常是将其降为二阶系统,因此分析二阶系统的单位阶跃响应,对于研究自动控制系统的暂态特性具有重要意义。大多数高阶系统中含有一对闭环主导极点,则该系统的动态响应就可以近似的用这对主导极点所描述的二阶系统来表达。本文将从根轨迹和频率特性两方面,对增加一闭环零点对二阶系统单位阶跃响应的影响。并探究了不同位置下闭环零点对系统的不同影响。 关键词:闭环零点 二阶系统 根轨迹 频率特性 0章 引言 二阶系统是工程中常用到的系统,不仅仅是研究二阶系统本身,而且研究高阶系统也是将其化为二阶系统,因此二阶系统是个非常重要的系统。实际工程中欠阻尼二阶系统是最常用的,可以看成是稳定的系统,因此分析欠阻尼系统具有实际意义。二阶系统的单位阶跃响应最能反映二阶系统的本质特性。在实际生产中,二阶系统要满足工程最佳参数,而通过改变开环放大系数的方法会增大系统的稳态误差,为了满足这一要求的同时还能保证系统稳态的精度,常用设置零点的方法来做到。本文就是对闭环零点对二阶系统影响做了描述。 1章 二阶系统简单描述 一个系统的阶次是由其最简闭环传递函数分母S 的最高次项决定的。二阶系统就是S 的最高次项为2的闭环传递函数所对应的系统典型。简单来说就是由二阶微分方程描述的系统就叫做二阶系统。 二阶系统结构图见图1 图1 由图可知二阶系统开环传递函数为: ()() n n K s s s W ξωω 22+= 二阶系统闭环传递函数为: ()2 222n n n B s s s W ωξωω++=

在没有零点时,二阶系统的根轨迹()() n n K s s s W ξωω 22+= ,ζ 及ωn 为定值(ζ=0.7ωn=1) 为例为例。 随着K 值的增大,θ角也不断增大,由于ξ ξθ2 1arctan -= , n d r t ωξθ πωθπ21--=-= , ()n s t ξω3 %5= 8.00<<ξ,()n s t ξω4 %2= 8.00<<ξ,%100%2 1?=-- ξξπ δe (注公式) 所以ζ一直在减小,导致上升时间增长,但调节时间增长,超调量增大,系统的平稳性降低。 2章具有零点的二阶系统的根轨迹分析 2.1增加零点对二阶系统的影响 零点的二阶系统结构图见图2: 具有零点的二阶系统的传递函数为: 2 2 22)()()()(n n n B w s w s z s w s Xr s Xc S W +++= =ξ θ ) 2() (2 22 n n n w s w s z z s w +++ξ )(s X r )(s X c 图2

零极点对系统性能的影响分析

摘要 本次课程设计主要是分析零极点对系统性能的影响。首先从根轨迹、奈奎斯特 曲线、伯德图和阶跃响应四方面分析原开环传递函数时的系统性能,然后在原开环 传递函数基础上增加一个零点,并且让零点的位置不断变化,分析增加零点之后系 统的性能,同时与原系统进行分析比较,发现增加的零点与虚轴的距离决定了对系 统影响的大小;再在原开环传递函数基础上增加一个极点,并且令极点位置不断变 化,分析增加极点后系统的性能,同时与原系统进行分析比较,同样发现增加的极 点与虚轴的距离决定了对系统的影响大小。 关键词:零极点开环传递函数系统性能 MATLAB 谐振带宽 The curriculum design is mainly the analysis of effect of zero pole on the performance of the system. First from the root locus, Nyquist curve, Bode diagram and step response analysis of four aspects of the original open-loop transfer function of the system performance, and then in the original open-loop transfer function is added on the basis of a zero, and let the zero point position changes continuously, increase system performance analysis of zero, at the same time and the original system analysis that increase, the zeros and the imaginary axis distance determines the impact on the system size; adding a pole in the original open-loop transfer function based on pole position, and make the changes, analysis of increasing performance point system, at the same time and the analysis of the original system, also found that increasing pole and the imaginary axis distance determines the impact on the size of the system. Keywords: zero pole open loop transfer function of system performance of MATLAB resonant bandwidth

零极点对系统的影响

增加零极点以及零极点分布对系统的影响一般说来,系统的极点决定系统的固有特性,而零点对于系统的暂态响应 和频率响应会造成很大影响。以下对于零极点的分布研究均是对于开环传递函 数。 零点一般是使得稳定性增加,但是会使调节时间变长,极点会使调节时间变短,是系统反应更快,但是也会使系统的稳定性变差。在波特图上反应为,增加一个零点会在幅频特性曲线上增加一个+20db/10倍频的曲线,幅频曲线上移,增加一个极点,会在幅频特性曲线上增加一个-20db/10倍频的曲线,幅频曲线下移。 在s左半平面增加零点时,会增加系统响应的超调量,带宽增大,能够减小系统的调节时间,增快反应速度,当零点离虚轴越近,对系统影响越大,当零点实部远大于原二阶系统阻尼系数ξ时,附加零点对系统的影响减小,所以当零点远离虚轴时,可以忽略零点对系统的影响。从波特图上来看,增加一个零点相当于增加一个+20db/10倍频的斜率,可以使的系统的相角裕度变大,增强系统的稳定性。 在s右半平面增加零点,也就是非最小相位系统,非最小相位系统的相位变化范围较大,其过大的相位滞后使得输出响应变得缓慢。因此,若控制对象是非最小相位系统,其控制效果特别是快速性一般比较差,而且校正也困难。对于非最小相位系统而言,当频率从零变化到无穷大时,相位角的便变化范围总是大于最小相位系统的相角范围,当ω等于无穷大时,其相位角不等于-(n-m)×90o。非最小相位系统存在着过大的相位滞后,影响系统的稳定性和响应的快速性。 在s左半平面增加极点时,系统超调量%pσ减小,调整时间st(s)增大,从波特图上看,s左半平面增加一个极点时,会在幅频特性曲线上增加一个-20db/10倍频的曲线,也就意味着幅频特性曲线会整体下移,导致相角域度减小,从而使得稳定性下降。当极点离原点越近,就会增大系统的过渡时间,使得调节时间增加,稳定性下降,当系统影响越大当极点实部远大于原二阶系统阻尼系数ξ时,附加极点对系统的影响减小,所以当极点远离虚轴时可以忽略极点对系统的影响。 在s右半平面增加极点会导致系统不稳定。 最小相位系统 从传递函数角度看,如果说一个环节的传递函数的极点和零点的实部全都小于或等于零,则称这个环节是最小相位环节.如果传递函数中具有正实部的零点或极点,或有延迟环节,这个环节就是非最小相位环节. 对于闭环系统,如果它的开环传递函数极点或零点的实部小于或等于零,则称它是最小相位系统.如果开环传递函中有正实部的零点或极点,或有延迟环节,则称系统是非最小相位系统.因为若把延迟环节用零点和极点的形式近似表达时(泰勒级数展开),会发现它具有正实部零点. 最小相位系统具有如下性质: 1,最小相位系统传递函数可由其对应的开环对数频率特性唯一确定;反之亦然. 2,最小相位系统的相频特性可由其对应的开环频率特性唯返航一确定;反之亦然. 3,在具有相同幅频特性的系统中,最小相位系统的相角范围最小.

系统的零极点分布决定时域特性

目录 一、引言 (1) 二、Matlab入门 (2) 2.1 Matlab7.0介绍 (2) 2.2利用Matlab7.0编程完成习题设计 (2) 三、利用Matlab7.0实现系统函数的零极点分布决定 时域特性的设计 (4) 3.1系统函数的零极点分布决定时域特性的基本原理 (4) 3.2编程设计及实现 (5) 3.3运行结果及其分析 (6) 四、结论 (11) 五、参考文献 (12)

一、引言 《信号与系统》课程是一门实用性较强、涉及面较广的专业基础课,该课程是将学生从电路分析的知识领域引入信号处理与传输领域的关键性课程,对后续专业课起着承上启下的作用. 该课的基本方法和理论大量应用于计算机信息处理的各个领域,特别是通信、数字语音处理、数字图像处理、数字信号分析等领域,应用更为广泛。 我们选择Matlab语言作为辅助教学工具,借助Matlab强大的计算能力和图形表现能力,将《信号与系统》中的概念、方法和相应的结果,以图形的形式直观地展现给我们,大大的方便我们迅速掌握和理解老师上课教的有关信号与系统的知识。 Matlab是当前最优秀的科学计算软件之一,也是许多科学领域中分析、应用和开发的基本工具。Matlab全称是Matrix Laboratory,是由美国Mathworks公司于20世纪80年代推出的数学软件,最初它是一种专门用于矩阵运算的软件,经过多年的发展,Matlab 已经发展成为一种功能全面的软件,几乎可以解决科学计算中的所有问题。而且MATLAB 编写简单、代码效率高等优点使得Matlab在通信、信号处理、金融计算等领域都已经被广泛应用。它具有强大的矩阵计算能力和良好的图形可视化功能,为用户提供了非常直观和简洁的程序开发环境,因此被称为第四代计算机语言。Matlab 强大的图形处理功能及符号运算功能,为我们实现信号的可视化及系统分析提供了强有力的工具。Matlab强大的工具箱函数可以分析连续信号、连续系统,同样也可以分析离散信号、离散系统,并可以对信号进行各种分析域计算,如相加、相乘、移位、反折、傅里叶变换、拉氏变换、z变换等等多种计算。 作为信号与系统的基本分析软件之一,利用Matlab进行信号与系统的分析与设计是通信以及信息工程学科的学生所要掌握的必要技能之一。通过学习并使用Matlab语言进行编程实现课题的要求,对学生能力的培养极为重要。尤其会提高综合运用所学理论知识进行分析问题、解决问题的能力,也便于将理论知识与实践相结合,并得以更好地掌握信号分析与处理的基本方法与实现。这也将为后续相关的课程学习打下一定的基础,从而在以后相关课程设计与分析的时候达到对Matlab的熟练应用与融会贯通。 二、Matlab入门 2.1 Matlab7.0介绍

极点与系统稳定性

极点对系统性能影响 一.控制系统与极点 自动控制系统根据控制作用可分为:连续控制系统和采样控制系统,采样系统又叫离散控制系统。通常把系统中的离散信号是脉冲序列形成的离散系统,称为采样控制系统。连续控制系统即指控制量为连续的模拟量如时变系统。 系统的数学模型一般由系统传递函数表达。传递函数为零初始条件下线性系统响应(即输出)量的拉普拉斯变换(或z变换)与激励(即输入)量的拉普拉斯变换之比。记作Φ(s)=Xo(s)/Xi(s),其中Xo(s)、Xi(s)分别为输出量和输入量的拉普拉斯变换。 特征方程的根称为极点。如试Φ﹙S﹚= C [∏(S-Pi)/∏(S-Qi) ]中Q1 Q2 Q3 ……Qi ……即为系统的极点。 二.极点对系统的影响 极点--确定了系统的运动模态;决定了系统的稳定性。下面对连续系统与离散系统分别进行分析: ⑴连续系统 理论分析:连续系统的零极点分布有如下几种形式 设系统函数为: 将H(S)进行部分分式展开:

系统冲激响应H(S)的时域特性h(t)随时间衰减的信号分量完全由系统函数H(S)的极点位置决定。每一个极点将决定h(t)的一项时间函数。 稳定性:由上述得知Y(S)= C [∏(S-Pi )/(S-Qi) ]可分解为Y(S)=C1/(S-τ1)+ C2/(S-τ2)+ C3/(S-τ3)+……+ Ci/(S-τi)+…… 则时间响应为 …… 由于特征方程的根不止一个,这时,应把系统的运动看成是多个运动分量的合成。只要有一个运动分量是发散的,则系统是不稳定的。因此,特征方程所有根的实部都必须是负数,亦即所有的根都在复平面的左半平面。 通过复变函数幅角定理将S 由G 平面映射到GH 平面。 如果封闭曲线 F 内有Z 个F(s)的零点,有P 个F(s)的极点,则s 沿 F 顺时针转一圈时,在F(s)平面上,F(s)曲线绕原点顺时针转的圈数R 为z 和p 之差,即R =z -p 。 若R 为负,表示F(s)曲线绕原点逆时针转过的圈数。 F(s)的分母是G0(s)的分母,其极点是G0(s)的极点;其分子是?(s)的分母,即?(s)的特征多项式,其零点是?(s)的极点。 取D 形曲线(D 围线)如图所示,是整个右半复平面。 且设D 曲线不经过F(s)的任一极点或零点。 s 沿D 曲线顺时针变化一周,F(s)顺时针包围原点的周数为: n=z-p=F(s)在右半复平面的零点数(闭环传函在右半复平面极点数) -F(s)在右半复平面的极点数(开环传函在右半复平面极点数) 所以闭环系统稳定的充分必要条件是: n=- p =-开环传函在右半复平面的极点数 1212()n s t s t s t n y t C e C e C e =+++ 0()0()0()0()t s y t y t Ce y t y t t ααααα=<→?? ===??>→∞?→∞(1)只有一个实根:时,时,恒量时,()()121 ()0cos()00j t j t t s j y t C e C e C e t t αωαωααωαω?αα+-=±=+? →∞ (2)有一对复根:时,收敛时,等幅振荡时,发散

已知系统的开环零极点分布如图B41所示

B4.1 已知系统的开环零极点分布如图B4.1所示,试绘制各系统的概略根轨迹。 图B4.1控制系统的开环零极点分布图 B4.2 设系统的开环传递函数如下所示: 试绘制各系统的根轨迹。 B4.3 证明题B4.2各系统在复平面上的根轨迹均为一圆或圆弧,并求出它们的圆心和半径。 B4.4 已知系统的开环传递函数如下所示,试绘制各系统的根轨迹。 B4.5 设单位反馈系统的开环传递函数为 要求: (1)绘制系统的根轨迹; (2)确定系统的临界开环增益; (3)当系统的暂态响应为欠阻尼、临界阻尼或过阻尼时,试分别求其开环增益的取值范围。B4.6 已知单位反馈系统的开环传递函数为

若要求系统的性能满足σp≤5%,t s≤8(s),试求开环增益的取值范围。 B4.7 设系统的开环传递函数如下所示,其中a和b为可变参量,试绘制各系统的根轨迹: B4.8 设单位反馈系统的开环传递函数为 当微分时间常数T d可变时试绘制系统的根轨迹;并确定使复数极点的阻尼比为0.707的T d值。 B4.9 已知系统的特征方程如下所示,试绘制各系统的根轨迹: B4.10 设某复杂系统的开环传递函数为 试应用MATLAB: (1)绘制系统的根轨迹; (2)确定分离点的位置及对应的开环增益值; (3)确定使系统稳定时开环增益的取值范围,以及临界稳定时闭环零极点的分布。 B4.11 设某单位负反馈系统的开环传递函数为 安装时不慎将反馈的极性接反了,变成正反馈系统。试分别绘制负反馈系统和正反馈系统的根轨迹;并以系统的稳定性为例,分析说明反馈极性接反了的后果。 B4.12 图B3.32所示的某记录仪位置随动系统,其结构图重画在图B4.12上。如果在安装时出现以下差错:(1)把测速反馈的极性接反了;(2)测速反馈的极性是正确的,但把位置反馈的极性接反了,试问它们的后果如何?习题B3.22是用时域分析法来讨论的,现要求将它视为多回路系统,用根轨迹法来分析讨论。从B4.11和B4.12的求解中,您有何感想或体会?

三个因果稳定系统的零点极点分布分别如图所示

三个因果稳定系统123(),(),()H z H z H z 的零点、极点分布分别如图所示。 三个系统的极点相同,120.9,0.9p p =-=。由图可见,1()H z 为最小相位系统,2()H z 为混合相位系统,3()H z 为最大相位系统。设图中0.5,/3r ?π==。试分别写出系统函数 123(),(),()H z H z H z 的数学表达式,并绘制其幅频特性、相频特性曲线、单位脉冲响应 123(),(),()h n h n h n 的波形图以及相应的累计能量曲线。由此验证最小相位系统的性质 %program %compute freqz z1=[0.5*exp((pi/3)*j),0.5*exp((pi/3)*j),0.5*exp((-pi/3)*j),0.5*exp((-pi /3)*j)]'; p1=[0.9,-0.9];

k1=1; [b1,a1]=zp2tf(z1,p1,k1); [H1,w1]=freqz(b1,a1,256,1); mag1=abs(H1); phs1=angle(H1); z2=[0.5*exp((pi/3)*j),0.5*exp((-pi/3)*j),2*exp((pi/3)*j),2*exp((-pi/3)* j)]'; p2=[0.9,-0.9]; k2=0.5^2; [b2,a2]=zp2tf(z2,p2,k2); [H2,w2]=freqz(b2,a2,256,1); mag2=abs(H2); phs2=angle(H2); for n=1:255 if (phs2(n+1)-phs2(n))>=6 for m=n+1:256 phs2(m)=-2*pi+phs2(m); end end end z3=[2*exp((pi/3)*j),2*exp((pi/3)*j),2*exp((-pi/3)*j),2*exp((-pi/3)*j)]' ; p3=[0.9,-0.9]; k3=0.5^4; [b3,a3]=zp2tf(z3,p3,k3); [H3,w3]=freqz(b3,a3,256,1); mag3=abs(H3); phs3=angle(H3); for n=1:255 if (phs3(n+1)-phs3(n))>=6 for m=n+1:256 phs3(m)=-2*pi+phs3(m); end end end %plot h1(n),h2(n),h3(n): subplot(231); impz(b1,a1,20);ylabel('h1(n)');xlabel('n'); subplot(232); impz(b2,a2,20);ylabel('h2(n)');xlabel('n'); subplot(233); impz(b3,a3,20);ylabel('h3(n)');xlabel('n'); %plot H(ejw): subplot(234); plot(w1,mag1);hold on; plot(w2,mag2);hold on; plot(w3,mag3); ylabel('|H(ejw)|');xlabel('w/2pi'); %plot phase subplot(235); plot(w1,phs1);hold on; plot(w2,phs2);hold on; plot(w3,phs3); ylabel('phase');xlabel('w/2pi');

1,已知控制系统的开环零极点分布如图所示,试绘制闭环系统根轨迹

1,已知控制系统的开环零极点分布如图所示,试绘制闭环系统根轨迹。 (a) (b) (c) (d) 图T3.6 (a)解:系统有一个开环极点1p -, 渐近线与负实轴重合,并指向-∞, 故系统根轨迹与渐近线重合, 如图所示。 (b)解:系统有两个开环极点1p -,2p -和 一个开环零点1z -,n -m =1,渐近线 与负实轴重合。实轴上的根轨迹为1p - 到-∞,2p -与1z -之间等两段。 (c)解:系统有两个开环极点1p -,2p -和一个开环零点1z -,n -m =1,渐近线与负实轴重 合。实轴上的根轨迹为1z -到-∞,1p -与2p -之间等两段。在1p -与2p -之间有分离点,1z -左方有会合点,复平面上也有根轨迹,是一个园,如图所示。

(d)解:系统有三个开环极点1p -,2p -,3p -,渐近线如图所示。实轴上的根轨迹与复实轴重合。 2 轴交点。 (1) ) 3)(2()(0++= s s k s G 解:系统开环极点是,21 =--p ,32=--p 。实轴上的根轨迹在极点1p -和2p -之间。 渐近线与实轴的交点为,5.223 2-=--=F 渐近线与实轴的夹角为,000270,901801 2=+=k α

(2) ) 3)(2)(1()(0+++= s s s k s G 解:系统开环极点是,11=--p ,22=--p ,33=--p 。实轴上的根轨迹在极点1p -和2p -之间,以及3p -沿负实轴到无穷远处。 渐近线与实轴的交点为,233 21-=---= F 渐近线与实轴的夹角为, 0000300,180,601803 1 2=+=k α 求根轨迹的分离点,由系统得特征方程,0)3)(2)(1()(='++++=K s s s s D )6116()3)(2)(1(2 3 +++-=+++-='s s s s s s K 0)11123(2=++-=' s s ds K d 3322,1±-=s , 42.11-=s 58.22-=s 舍去58.22-=s (它不在根轨迹上),42.11-=s 为分离点 (3)) 22)(3() 2()(20++++= s s s s k s G 解:系统开环极点是,31=--p ,112,1j p ±=--。开环零点21-=z -。实轴上的根轨迹在极点1p -和1z -之间。 渐近线与实轴的交点为,5.1132 113-=-+---=F 渐近线与实轴的夹角为,000270,901802 1 2=+=k α

相关文档
最新文档