实现超低排放燃煤烟气沸腾式泡沫脱硫除尘一体化
240t循环流化床锅炉烟气脱硝脱硫除尘超低排放改造

240t/h循环流化床锅炉烟气脱硝、脱硫、除尘超低排放改造技术方案目录公司简介 (3)1 概述 (3)1.1 项目名称 (3)1.2 工程概况 (3)1.3 主要设计原则 (3)2 燃煤CFB锅炉烟气污染物超低排放方案 (4)2.1 总体技术方案简介 (4)2.2脱硝系统提效方案 (4)2.3脱硫除尘系统提效 (6)2.4脱硫配套除尘改造技术 (7)2.5引风机核算 (8)3 主要设计依据 (10)4 工程详细内容 (12)5 投资及运行费用估算 (14)6 涂装、包装和运输 (15)7 设计和技术文件 (17)8 性能保证 (18)9 项目进度一览表 (20)10 联系方式 (21)公司简介1 概述1.1项目名称项目名称:××××××机组超低排放改造工程1.2工程概况本工程为××××的热电机组工程。
本期新建高温、高压循环流化床锅炉。
不考虑扩建。
同步建设脱硫和脱硝设施。
机组实施烟气污染物超低排放改造,对现有的除尘、脱硫、脱硝系统进行提效,使机组烟气的主要污染物(烟尘、二氧化硫、氮氧化物)排放浓度达到燃气锅炉机组的排放标准(GB13223-2011)。
1.3主要设计原则为了保证在满足机组安全、经济运行和污染物减排的条件,充分考虑老厂的运行管理现状,结合省环保厅要求,就电厂本期工程的主要设计原则达成了一致意见。
主要设计原则包括有:1)燃煤锅炉烟气污染物污染物超低排放改造可行性研究,主要包括处理100%烟气量的除尘、脱硫和脱硝装置进行改造,同时增设臭氧氧化污染物深度脱除系统,改造后烟囱出口烟尘排放浓度不大于10 mg/Nm3, SO2排放浓度不大于35 mg/Nm3;NOx排放浓度不大于50 mg/Nm3,达到天然气燃气轮机污染物排放标准。
2)装置设计寿命为30年。
系统可用率≥98%。
3)设备年利用小时数按7500小时考虑。
焦化厂烟气脱硝脱硫一体化解决方案1

110万吨/年焦炉烟气脱硝脱硫一体化技术方案110万吨/年焦炉烟道气与脱硝脱硫一体化设计方案廊坊市晋盛节能技术服务有限公司目录1. 项目概述 (2)1.1. 项目概况 (2)2. 设计依据 (2)2.1. 设计原则 (2)2.2. 设计标准 (3)2.3. 设计原始参数 (3)2.3.1 烟气参数 (3)2.3.2 气候条件 (4)2.4. 设计要求 (4)2.5. 工程范围 (4)3. 烟气脱硫脱硝一体化工艺 (5)3.1. 总工艺流程 (5)3.2. 脱硝工艺 (5)3.3. 脱硫工艺 (7)4. 烟气脱硫脱硝一体化技术说明 (8)4.1. 脱硝技术 (8)4.1.1脱硝系统的构成 (8)4.1.2脱硝系统主要设备 (9)4.2. 脱硫技术 (11)4.2.1脱硫工艺描述 (11)4.2.2脱硫主要设备 (11)5. 经济及环境效益分析 (13)5.1脱硫脱硝环境效益及节约费用 (13)5.2脱硫脱硝运行费用 (13)5.3脱硫脱硝投资费用 (14)5.4设备清单 (13)1.项目概述1.1.项目概况焦化厂是专门从事冶金焦炭生产及冶炼焦化产品、加工、回收的专业工厂。
焦、NOx及烟尘炉烟囱排放的大气污染物为焦炉煤气燃烧后产生的废气,主要有SO2等,污染物呈有组织高架点源连续性排放,是污染最为严重的行业之一。
2012年6月,环境保护部及国家质量监督检验检疫局联合发布了《炼焦化学工业污染物排放标准》,明确规定了焦化工业的大气污染物排放标准。
廊坊市晋盛节能技术服务有限公司一体化烟气治理技术,就是将烟气烟气除尘技术,烟气脱硫、脱硝技术捆绑在一起,形成一套集成创新的装置,这套装置既能除尘、脱硫、脱硝,从而达到烟气资源化利用的目的。
从此改变烟气治理只有投入,没有产出的困境。
2.设计依据2.1.设计原则2.1.1脱硫脱硝➢对尾气同时进行脱硝及脱硫治理。
➢采用高效、先进、运行稳定、管理方便的治理工艺及技术,保证废气的达标排放;➢烟气净化治理不影响焦化厂生产工艺的正常运行。
江苏省水泥和焦化行业超低排放改造实施方案

江苏省水泥和焦化行业超低排放改造实施方案实施水泥和焦化行业超低排放是推动行业绿色低碳高质量发展、助力深入打好蓝天保卫战的重要举措。
为贯彻落实《中共中央国务院关于深入打好污染防治攻坚战的意见》《空气质量持续改善行动计划》《江苏省“十四五”生态环境保护规划》《江苏省深入打好重污染天气消除、臭氧污染防治和柴油货车污染治理攻坚行动实施方案》等有关要求,高质量推进水泥和焦化行业超低排放改造,结合我省实际,特制定本方案。
一、总体要求(一)指导思想以习近平新时代中国特色社会主义思想为指导,深入贯彻党的二十大精神,全面落实习近平生态文明思想,坚持精准、科学、依法治污,推进实施水泥和焦化行业超低排放,提升全流程、全过程大气污染治理水平,推动行业绿色低碳高质量发展,促进大气环境质量持续改善,实现减污降碳协同增效,为深入打好污染防治攻坚战提供有力支撑,更好满足人民群众对美好生活的期盼。
(二)基本原则坚持系统提升,协同增效。
统筹推进水泥和焦化行业超低排放改造和行业碳减排行动,优化调整产业、原料、用能、运输结构,坚持源头防控、过程管控和末端治理相结合,实现减污降碳协同增效。
坚持突出重点,分布推进。
以改善大气环境质量为核心,以氮氧化物和挥发性有机物等多污染物协同减排为重点,综合考虑技术、经济、市场等条件,确定分阶段改造任务。
坚持分类管理,综合施策。
根据水泥和焦化行业生产及排放特征,对有组织排放、无组织排放、物料产品运输和监测监控分类提出指标限值和措施要求;综合采取财政、价格、金融、环保等政策,多措并举推动实施。
坚持企业主体,政府引导。
强化企业主体责任,加大资金投入,严把工程质量,加强运行管理;更好发挥政府作用,形成有效激励和约束,增强服务意识,营造公平竞争、健康有序的发展环境。
(三)主要目标全面推进我省水泥和焦化行业超低排放改造和评估监测。
到2025年底,全省水泥和焦化企业基本完成超低排放改造和清洁生产改造;到2027年底,全省水泥和焦化企业完成超低排放改造和评估监测。
燃煤烟气污染物超低排放技术综述及排放效益分析

燃煤烟气污染物超低排放技术综述及排放效益分析关键词:超低排放超低排放技术超低排放改造针对燃煤电厂烟气中烟尘、SO2和NOx的超低排放要求,对现有常用除尘、脱硫、脱硝技术的原理、改造方法,以及改造后投运实例进行了综合探讨,分析了燃煤电厂烟气污染物超低排放改造后的经济效益及环境效益,以期提供参考。
关键词:燃煤烟气;超低排放;经济效益;环境效益1引言2016年入冬以来,全国各地雾霾天气持续不断,已经严重影响人们的日常生活和身心健康。
我国的能源消费结构以煤炭为主,这是造成我国环境空气污染和各类人群呼吸系统疾病频发的重要根源,无论是能源政策还是经济社会发展要求,其共同目的都是通过控制煤炭消费强度来减少大气污染物排放,改善区域环境质量。
煤电超低排放改造是现阶段发电用煤清洁利用的根本途径,超低排放技术可以进一步减少烟气污染物的排放总量,这是当前复杂形势下解决能源、环境与经济三者需求的最佳手段,也是破解一次能源结构性矛盾的必由之路[1]。
国务院有关部门要求燃煤机组在2020年前完成超低排放改造。
实行对燃煤电厂的超低排放技术改造刻不容缓,由此对超低排放技术改造的技术路线并结合改造案例进行综合介绍。
2超低排放的概念超低排放[2]是指燃煤火力发电机组烟气污染物排放浓度应当达到或者低于规定限值,即在基准氧含量为6%时,烟(粉)尘≤5mg/m3,二氧化硫≤35mg/m3,氮氧化物≤50mg/m3。
3超低排放改造的技术路线我国目前大量工业用电、居民用电,基本都靠燃煤电厂供给,因此选择合理的改造技术显得尤其重要。
对现有净化设备利用率高,改造工程量少的技术成为电厂的首选。
以下针对燃煤电厂常用的几种除尘、脱硝、脱硫设备的改造方式进行综合介绍。
3.1除尘技术目前燃煤电厂采取的除尘超低排放技术有:电除尘、电袋复合除尘、低低温电除尘、湿式电除尘以及最新的团聚除尘技术等。
3.1.1电除尘技术电除尘器[3]的工作原理是通过高压静电场的作用,对进入电除尘器主体结构前的烟道内烟气进行电离,使两极板(阴极和阳极)间产生大量的自由电子和正负离子,致使通过电场的烟(粉)尘颗粒与电离粒子结合形成荷电粒子,随后荷电粒子在电场力的作用下分别向异极电极板移动,荷电粒子沉积于极板表面,从而使得烟气中的尘粒与气体分离,达到净化烟气的目的。
超低排放工程施工方案

一、项目背景随着我国环保政策的不断加强,钢铁、电力、水泥等行业的排放标准日益严格。
为响应国家“大气污染防治行动计划”,实现绿色发展,本项目针对现有锅炉烟气排放进行超低排放改造,以满足国家最新排放标准。
二、工程目标1. 实现锅炉烟气颗粒物、二氧化硫、氮氧化物等污染物排放浓度达到国家最新超低排放标准;2. 提高锅炉运行效率,降低能耗;3. 保障工程安全、环保、高效、经济。
三、工程内容1. 烟气脱硫:采用SDS干法脱硫布袋除尘器,将烟气中的二氧化硫去除,使烟气中SO2浓度低于35mg/m³;2. 烟气脱硝:采用SNCR脱硝技术,将烟气中的氮氧化物去除,使烟气中NOx浓度低于50mg/m³;3. 烟气除尘:采用布袋除尘器,将烟气中的颗粒物去除,使烟气中颗粒物浓度低于5mg/m³;4. 优化燃烧过程:通过调整燃烧器结构、优化燃烧参数等手段,降低污染物排放。
四、施工方案1. 施工准备(1)组织施工队伍,明确各工种人员职责;(2)熟悉图纸、施工方案及有关技术规范;(3)做好施工现场的“三通一平”(通路、通电、通水、平整场地);(4)确保施工材料、设备、人员到位。
2. 施工流程(1)拆除原有锅炉烟气处理设施;(2)安装脱硫、脱硝、除尘设备;(3)进行管道、阀门、仪表等配套设施的安装;(4)进行电气、仪表调试;(5)进行系统联调,确保各系统运行正常;(6)进行试运行,对系统进行优化调整;(7)进行验收,交付使用。
3. 施工要点(1)严格按照设计图纸和施工规范进行施工;(2)确保施工质量,杜绝返工现象;(3)加强施工现场管理,确保施工安全;(4)做好施工过程中的环保措施,减少对环境的影响;(5)合理安排施工进度,确保工程按时完成。
五、施工组织与管理1. 成立施工项目部,明确项目经理、技术负责人、质量负责人等职责;2. 建立健全施工管理制度,严格执行;3. 定期召开施工会议,协调解决施工过程中遇到的问题;4. 加强施工现场安全管理,确保施工安全;5. 做好施工过程中的环保工作,确保施工过程中不产生二次污染。
全面实施燃煤电厂超低排放和节能改造工作方案

全面实施燃煤电厂超低排放和节能改造工作方案I.引言燃煤电厂作为我国电力生产的主要方式之一,已经在我国能源产业中发挥着重要作用。
然而,由于燃煤电厂的燃烧过程不仅会排放大量的二氧化碳等温室气体,还会产生大量的氮氧化物、硫氧化物、颗粒物等污染物,对环境和人类健康造成巨大影响。
为了应对全球气候变化,我国政府已经提出了减少碳排放的目标。
为了实现这一目标,必须对燃煤电厂进行超低排放和节能改造。
II.超低排放技术1.优化煤炭燃烧过程:通过优化煤粉燃烧过程,减少窑尾氮氧化物的排放。
采用高效烟气脱硝技术,抑制窑尾氮氧化物的生成。
2.粉煤灰的处理技术:采用高效的粉煤灰处理技术,降低粉煤灰的含碳量。
在粉煤灰处理过程中,可以采用高效脱硫、脱氮和除尘设备,减少污染物的排放。
3.烟气脱硝技术:通过添加脱硝剂,将烟气中的氮氧化物转化为氮气和水。
采用高效的烟气脱硝技术,可以将燃煤电厂的氮氧化物排放降至极低水平。
III.节能改造技术1.锅炉燃烧系统的改造:通过对锅炉内部进行优化改造,提高燃烧效率,降低燃煤电厂的能耗。
2.烟气余热回收技术:通过对烟气进行余热回收,将烟气中的热能转化为电能或其他能源,提高能源利用效率。
3.节能设备的安装:安装高效节能设备,如变频调速器、节能灯等,降低电厂的能耗。
IV.实施步骤1.制定实施计划:制定全面实施燃煤电厂超低排放和节能改造的年度计划,明确具体的改造项目和时间表。
2.统一监管和管理:建立统一的监管和管理机制,加强对燃煤电厂超低排放和节能改造工作的监督和管理,确保改造工作的顺利进行。
3.提供政策支持:政府应提供相应的政策和经济支持,鼓励燃煤电厂进行超低排放和节能改造。
4.推广示范工程:选取一些典型的燃煤电厂进行超低排放和节能改造,作为示范工程进行推广,向其他电厂宣传其改造成果和经验。
5.不断完善技术:不断研发和推广更先进的超低排放和节能改造技术,提高燃煤电厂的能源利用效率,减少污染物的排放。
V.预期成果通过全面实施燃煤电厂超低排放和节能改造工作方案,预计能够实现以下成果:1.大幅减少燃煤电厂的温室气体排放,对应对全球气候变化起到积极作用。
工业锅炉能效提升政策及节能技术

➢ “十三五” 期间燃煤工业锅炉实际运行效率提高5个百分点,到2020年 新生产燃煤锅炉效率不低于80%,燃气锅炉不低于92%。
一、工业锅炉能效提升政策解读
3、《节能减排“十二五”规划》 国发〔2012〕40号
➢ 燃煤工业锅炉运行效率在2015年达到70—75%,比2010年提高5— 10%。
➢ 燃煤锅炉蒸发量大于35t/h且二氧化硫超标排放的,要实施烟气脱硫改 造,改造后脱硫效率应达到70%以上。
➢ 促进煤炭清洁利用,重点区域淘汰低效燃煤锅炉。推广使用天然气、煤 制气,生物质成型燃料等清洁能源。
二、工业锅炉的能效限定及热效率
工业锅炉能效限定值主要依据为2009年的 国家标准:GB 24500-2009
标准4.3为强制执行,其余为推荐性的。
4.3 工业锅炉能效限定值 工业锅炉在额定工况下的热效率均应不低 于表1~表4中能效等级“三级”的规定。
附加执行标准: ➢GB/T 2900.48 ➢GB/T 10180 ➢JB/T 10094
一、工业锅炉能效提升政策解读
4、《重点区域大气污染防治“十二五”规划》 环发〔2012〕130号
➢ 改善煤炭质量,推进煤炭洁净高效利用。推进配煤中心建设,研究推广 煤炭清洁、高效利用技术。重点控制区内没有配套高效脱硫、除尘设施 的燃煤锅炉,禁止燃用含硫量超过0.6%、灰分超过15%的煤炭。
➢ 污染防治。容量在20t/h及以上的锅炉全部实施脱硫,脱硫效率达到 70%以上;在重点控制区推进燃煤工业锅炉低氮燃烧改造和脱硝示范。 积极采用天然气等清洁能源替代燃煤;使用生物质成型燃料应符合相关 技术规范,使用专用燃烧设备;对无清洁能源替代条件的,推广使用型 煤。
《烧结砖瓦工业大气污染物治理设施工程技术规范》国家标准 编制说明 (征求意见稿)说明书

《烧结砖瓦工业大气污染物治理设施工程技术规范》国家标准编制说明(征求意见稿)《烧结砖瓦工业大气污染物治理设施工程技术规范》国家标准编制组二○二一年三月北京《烧结砖瓦工业大气污染物治理设施工程技术规范》国家标准编制说明1.工作简况1.1任务来源随着我国环保形势的严峻,为贯彻执行《中华人民共和国环境保护法》、《中华人民共和国大气污染防治法》、《工业企业污染治理设施相关污染物及温室气体减排核算技术指南》、《国务院关于落实科学发展观加强环境保护的决定》等法律,法规和《国务院关于编制全国主体功能区规划的意见》,保护环境,防治污染,控制砖瓦行业大气污染物排放,促进砖瓦工业生产工艺和污染治理技术的进步,国家环境保护部、国家质量监督检验检疫总局于2013年9月17日发布了《砖瓦工业大气污染物排放标准》(GB29620-2013),2014年1月1日正式实施。
当时,整个中国砖瓦行业基本没有环保治理设施,行业的面临空前压力,中国砖瓦工业协会及时根据国家环境要求及行业情况,参照相关陶瓷、水泥及燃煤电厂等行业大气污染物治理设施技术路线和相关标准,迅速出台了《烧结砖瓦工业大气污染物治理设施工程技术规范》(T/CBTA0001—2018)协会团体标准支撑《砖瓦工业大气污染物排放标准》(GB29620-2013)的实施,为行业企业提供各类大气污染物治理技术路线及设施工程技术标准要求,许多企业依据《烧结砖瓦工业大气污染物治理设施工程技术规范》(T/CBTA0001—2018)协会团体标准的技术路线及设施工程技术标准要求进行大气污染物治理设施改造,达到了国家标准《砖瓦工业大气污染物排放标准》(GB29620-2013)的标准要求,极大地促进了砖瓦行业大气污染物治理工作,得到了生态环境部、工业和信息化部、国家发展和改革委员会及国家市场监督管理总局等相关部门的肯定,《烧结砖瓦工业大气污染物治理设施工程技术规范》(T/CBTA0001—2018)协会团体标准实施几年以来,也暴露出许多问题,首先协会团体标准的局限性,仅限于行业应用,目前环境治理已不仅仅是一个行业的工作,而是全社会的应该遵守共同准则,确需国家标准支撑;其次《烧结砖瓦工业大气污染物治理设施工程技术规范》(T/CBTA0001—2018)协会团体标准偏重于行业技术进步和行业发展,行业大量应用的部分治理技术没有列入协会团体标准范畴,这部分大气污染物治理设施工程并没有得到规范和指导,确需国家标准完善补充和支撑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实现超低排放燃煤烟气沸腾式泡沫脱硫除尘一体化技术与装备专项研究一、立项背景近年来我国大面积区域性重污染灰霾天气频发,环境污染问题日益严重。
2011年7月,环保部颁布了《火电厂大气污染物排放标准》(GB13223-2011),新标准规定了非常严格的污染物排放限值,被称为史上最严的火电排放标准。
2014年9月12日国家发展改革委、环保部、能源局三部门联合印发《煤电节能减排升级与改造行动计划(2014-2020年)》,行动计划明确了在基准氧含量6%条件下,烟尘、二氧化硫、氮氧化物排放浓度分别不高于10、35、50毫克/标立方米的超低排放要求。
随着污染物排放标准的不断升级,对电厂环保设施也提出了更高的要求。
一般情况下,常规脱硫塔的脱硫效率、粉尘脱除率分别约为95%、50%左右,常规ESP出口粉尘浓度一般在毫克/标立方米以上。
要达到超低排放要求,高硫煤机组要求脱硫塔脱硫效率达到99%以上,环保设施除尘总效率达到99%以上,常规环保设施无法满足要求。
针对超低排放要求,国内部分电厂采用湿式电除尘技术,该技术可以满足烟尘小于5毫克/标立方米的排放要求,但存在初投资大、运行费用高、耗水量大等缺点。
因此,针对常规脱硫除尘装置进行创新性的技术改造升级,使其能够在投资少、能耗低、运行可靠稳定的前提下,满足日益严格的排放要求,具有非常重要的意义。
为此,中电投远达环保工程有限公司组织公司研发骨干力量,针对新形势下燃煤电厂烟气超低排放脱硫除尘开展了各项研究工作。
二、主要科技创新1.发现了脱硫塔内气、液、固三相的沸腾式泡沫强化传质规律;基于泡沫形成理论,开发出了具有强化气、液、固传质效果的沸腾式泡沫传质系统;建立了沸腾式泡沫传质脱硫除尘计算模型,获得了沸腾式泡沫传质脱硫除尘工程计算软件,形成了微细颗粒脱除关键技术。
深入研究了气、液、固三相传质规律,开发出了沸腾式脱硫除尘技术。
该技术通过在脱硫塔内设置沸腾式脱硫除尘构件,使烟气通过该构件自激发形成沸腾式泡沫层,增加了气液接触面积和湍流强度,增强了SO2与浆液的传质效果;通过泡沫对其内部颗粒的惯性和扩散捕集作用,提高了粉尘颗粒与液相表面碰撞粘附机率,实现了对细颗粒粉尘的高效脱除,解决了常规脱硫系统超细粉尘脱除效率低的问题。
本技术可在较低成本下实现燃煤电厂超低排放,脱硫效率达到99%以上,整体除尘效率达到80%以上。
通过本项目,建立了燃煤电厂原烟气沸腾式泡沫传质中试实验装置,该实验平台可对不同参数类型的沸腾式泡沫式传质构件进行实验研究,能真实反应脱硫塔内气、液、固传质状态;通过实验研究并结合理论分析,发现了脱硫塔内气、液、固三相强化传质规律,得到了沸腾式泡沫式传质构件不同参数对泡沫产生、形成、破裂等过程的影响规律,同时得到了泡沫内SO2与液膜的传质机理,以及粉尘受到液膜作用的捕集机理。
开发出了具有强化气、液、固传质效果的沸腾式泡沫传质系统;根据流体力学、泡沫形成理论、气液固传质理论并结合实验结果,得到了不同开孔孔型、空隙率、孔径大小、气相负荷、液气比等参数下,沸腾式脱硫除尘构件对塔内脱硫除尘效率的影响,确定了沸腾式脱硫除尘构件关键参数的取值范围,开发了具有阻力低、脱硫除尘效率高、运行稳定的沸腾式泡沫传质系统。
图1:沸腾式泡沫传质中试实验装置及泡沫除尘气液区域状态图2:不同的开孔形式建立了沸腾式泡沫传质脱硫除尘计算模型,获得了沸腾式泡沫传质脱硫除尘工程计算软件,形成了微细颗粒脱除关键技术。
通过流体力学和传质理论研究,建立了沸腾式泡沫传质脱硫除尘阻力计算模型、脱硫效率计算模型以及除尘效率计算模型。
将理论模型与实验数据进行对比,修正了模型中关键系数,开发了沸腾式泡沫传质脱硫除尘工程计算软件,已应用于工程设计。
图3:沸腾式泡沫传质脱硫除尘构件及分级除尘效率2.开发了具有气液耦合的精细化喷淋脱硫除尘技术,主要包括喷淋层精细化布置和无壁流吸收塔技术,解决了塔内气液分布不均、同一截面气液比不合理以及壁流等问题,避免了烟气走廊现象,提高了浆液有效利用率。
开发了喷淋层精细化布置技术,结合喷淋脱硫原理,在不同喷淋层设计不同浆液量、喷嘴类型和雾化参数等,使每一层浆液都能有效利用,同时采用双头喷嘴、改善雾化参数,增强二次雾化效果,提高SO2传质效果以及粉尘被液滴捕集的概率;根据烟气流场分布特点,同一层喷淋层配置不同喷嘴密度,合理分配浆液量。
图4:喷淋层布置及浆液分布根据壁面流场特点,通过在壁面设置塔沿,开发了无壁流脱硫吸收塔,该技术可避免出现烟气走廊,同时可将沿塔壁流下的浆液进行二次分配,增加了浆液的利用率。
图5:无壁流塔示意图及流场模拟3.发现了除雾器内雾滴湍流捕集效应,基于惯性碰撞原理及湍流效应,开发了可捕集微细雾滴的惯性湍流双驱高效雾滴捕集技术,解决了常规除雾器捕集微细雾滴捕集效率低的问题;通过研究石膏颗粒粒径分布,得到了除雾器除雾效率对粉尘排放的贡献关系。
本技术可保证出口雾滴含量控制在20毫克/标立方米以下。
发现了除雾器内雾滴湍流捕集效应,得到了不同颗粒粒径的雾滴在除雾器中的捕集机理,基于惯性碰撞原理及湍流效应,开发了可捕集微细雾滴的惯性湍流双驱高效雾滴捕集技术,解决了常规除雾器捕集微细雾滴捕集效率低的问题。
图6:不同粒径雾滴在除雾器中的湍流效应及除雾器实物图通过研究石膏颗粒粒径分布,同时对比除雾器的除雾特性,通过理论分析得到了除雾器除雾效率对粉尘排放的贡献关系,该计算关系以成功应用于实际工程设计。
图7:不同叶片间距下烟气流速与雾滴极限粒径的关系及浆液中的石膏粒径分布三、与当前国内外同类技术主要参数、效益、市场竞争力的比较常规脱硫+干式除尘技术路线难以达到SO2≤35毫克/标立方米、粉尘≤5毫克/标立方米超低排放要求,本项目开发出了燃煤电厂烟气超低排放脱硫除尘一体化技术,达到国际先进水平,可实现燃煤烟气SO2排放浓度低于35毫克/标立方米,粉尘排放浓度低于5毫克/标立方米,达到超低排放标准。
与常规脱硫喷淋塔+湿式电除尘超低排放技术路线相比,在满足超低排放SO2≤35毫克/标立方米,粉尘≤5毫克/标立方米的条件下,对于改造项目,本技术初投资可节省50%以上,运行维护费用可降低约5%。
以600兆瓦机组超低排放改造为例,本技术与常规脱硫喷淋塔+湿式电除尘超低排放技术路线相比数据汇总如下:本技术具备单塔高效、投资少、能耗低、适应性强、稳定性高、工期短、不额外增加场地等特点,对现役机组提效改造及新建机组实现超低排放均具有良好的推广使用价值。
我国东部地区200兆瓦以上火电装机容量约2亿千瓦,如全部进行超低排放改造,采用本技术总投资节省约65亿元,每年节省运行费用约4.5亿元。
目前,本技术正处于工程应用推广阶段,需要在推广应用进程中,积累工程经验,进一步完善化、标准化。
四、第三方评价1.技术鉴定报告。
2015年6月27日,重庆市科学技术委员会在重庆召开了“实现超低排放的燃煤烟气沸腾式泡沫脱硫除尘一体化技术与装备”成果鉴定会,鉴定专家认为该技术具有自主知识产权,可达到超低排放先进技术指标,并已获工程实践验证,整体达到国际先进水平,一致同意通过科技成果鉴定。
创新性成果如下:研制了具有强化气、液、固传质效果的沸腾式泡沫传质构件,基于泡沫尺寸及其与颗粒物碰撞的优化,实现了对细颗粒物的高效脱除。
开发了气液耦合精细化喷淋系统,显著提高了喷淋液滴的均布性,并防止壁流,结合沸腾式泡沫传质构件,实现了高效脱硫。
研发了惯性湍流双驱高效雾滴捕集技术,解决了常规除雾技术脱除微细雾滴效率低的问题,可有效减少因雾滴携带所带出的固体颗粒物。
该技术与装备已在重庆合川电厂660兆瓦、上海漕泾电厂1000兆瓦、华能金陵电厂1000兆瓦机组等项目中得到应用。
经第三方测试,均达到了国家规定的超低排放要求。
2.性能测试报告。
2014年10月20日受重庆合川发电有限责任公司委托,东北电科院对重庆合川发电有限责任公司4号机组进行了相关污染物排放指标测试,检测结论如下:测试期间脱硝系统、电除尘系统、脱硫系统均正常投运,检测结果表明:检测期间,4号机组FGD出口SO2测试平均排放浓度为14.4毫克/标立方米,FGD脱硝效率达99.34%;FGD出口烟尘平均排放浓度7.98毫克/标立方米,满足《火电厂大气污染物排放标准》(GB13223-2011)排放限值要求,各项指标达到工程设计要求。
3.用户意见。
华能金陵电厂、重庆合川电厂等用户评价“均优于燃机排放标准,各项性能指标达到设计要求”、“各项性能指标达到设计要求,系统运行稳定可靠”。
4.项目查新报告。
通过科学技术部西南信息中心查新中心检索,采用计算机检索与手工检索相结合的方式,查阅国内8种数据库和检索资源,经反复筛选,列出相关文献,经与检出文献对比分析,可以得出如下结论:已见有燃煤电厂烟气协同治理的文献报道,但涉及本项目所述开发出了燃煤电厂烟气高效脱硫除尘协同治理技术及关键装备,脱硫效率达99%,协同除尘效率达80%,粉尘出口含量<5毫克/标立方米、开发出了具有强化气、液、固传质效果的沸腾式传质构件和可捕集微细雾滴的除雾技术及关键装置,可保证脱硫装置出口液滴含量<20毫克/标立方米等技术特征,未见文献报道;综合本项目所述主要技术特征的燃煤电厂烟气高效脱硫除尘协同治理技术及应用,在所检文献以及时限范围内,国内未见文献报道。
5.推广应用情况本项目开发的实现超低排放的燃煤烟气沸腾式泡沫脱硫除尘一体化技术与装备已在重庆合川发电有限责任公司3号机组、上海上电漕泾发电有限公司2#机组、华能金陵电厂1号机组等项目实现了应用。
其中合川发电有限责任公司4号机组FGD出口SO2测试平均排放浓度为14.4毫克/标立方米,FGD 脱硫效率达99.34%;FGD出口烟尘平均排放浓度7.98毫克/标立方米,满足《火电厂大气污染物排放标准》(GB13223-2011)排放限值要求,各项指标达到工程设计要求;上海上电漕泾发电有限公司2号机组1000兆瓦烟气超洁净排放脱硫增容改造工程,实现中电投集团首台百万机组超低排放。
该机组成为在中电投集团内首次采用该新工艺技术的示范工程,经实际运行数据显示,各项性能数据良好,吸收塔入口SO2浓度为1019毫克/标立方米,吸收塔出口SO2浓度为12.23毫克/标立方米,吸收塔脱硫效率为98.799%;吸收塔入口烟尘为23.96毫克/标立方米,吸收塔出口烟尘为3.04毫克/标立方米,脱硫吸收塔除尘效率为87.3%。
SO2及烟尘排放值均满足国家环保要求的燃机排放标准,达到近零排放标准。
同时该技术也在华能金陵电厂1号机组超低排放改造工程中得到应用,由江苏省环境监测站现场测得烟尘、二氧化硫排放指标分别达到1.7-2.3毫克/标立方米、1-9毫克/标立方米,主要参数全部优于设计值。