乳化剂与分散剂
乳化剂和分散剂的异同点

乳化剂和分散剂的异同点乳化剂和分散剂在化学品及食品工业中都是常见的添加剂,它们虽然有着相似的功能,但在具体应用和作用机制上存在一些差异。
本文将以乳化剂和分散剂的异同点为主题,对它们的定义、作用以及应用领域进行详细介绍。
我们先来了解乳化剂和分散剂的定义。
乳化剂是一类能够使两种互不相溶的液体混合的物质,常见的乳化剂有蛋黄、明胶等。
而分散剂则是一类能够使固体颗粒均匀分散在液体中的物质,常见的分散剂有明胶、羧甲基纤维素等。
乳化剂和分散剂在作用机制上有所不同。
乳化剂的作用机制是通过降低液体表面张力和增加相互作用力,从而使两种不相溶的液体形成乳状液。
这是因为乳化剂的分子结构中同时具有亲水和疏水基团,可以在两种液体之间形成一层稳定的界面活性剂层。
而分散剂则是通过吸附在固体颗粒表面,形成一层稳定的分散剂膜,使固体颗粒均匀分散在液体中,防止颗粒之间的聚集。
乳化剂和分散剂在应用领域上也有所不同。
乳化剂主要应用于食品工业中的乳化液体制品,如乳制品、酱料、沙拉酱等。
乳化剂在这些产品中起到了增加稳定性、改善质地和口感的作用。
此外,乳化剂还广泛应用于化妆品、农药和医药领域,用于调整产品的性质和改善使用体验。
而分散剂则主要应用于颜料、涂料、油墨等领域,用于稳定颜料的分散状态,避免颜料沉淀和团聚。
乳化剂和分散剂在物理性质上也有一些差异。
乳化剂一般为液体或膏状,可以直接添加到液体中进行乳化。
而分散剂则可以是液体、固体或粉末,添加时需要进行适当的搅拌和分散处理。
总结起来,乳化剂和分散剂虽然都是用于改善液体体系的物质,但在作用机制、应用领域和物理性质上存在一些差异。
乳化剂主要用于乳化液体制品,通过降低液体表面张力使两种不相溶的液体混合;而分散剂主要用于分散固体颗粒,通过吸附在颗粒表面形成分散剂膜来防止颗粒聚集。
乳化剂一般为液体或膏状,而分散剂可以是液体、固体或粉末。
通过合理选择乳化剂和分散剂,可以改善产品的稳定性、质地和使用体验,满足不同领域的需求。
乳化剂和分散剂

(2)瓜尔胶 是从种子瓜尔素中提取得到,为非离子型、带支链旳多糖-半 乳甘露糖, M=2×105 ;
(3)羧甲基纤维素钠盐 由棉短纤维经碱化,再与氯乙烯、醋酸乙烯等酸醚化后生成, M=5×104;主要是提升O/W型乳液旳水相粘度,乳液稳定性提升。
2)合成高分子表面活性剂 (1)聚氧乙烯苯乙烯基苯基醚
拌下,将油水混合,两种乳化剂在界面上形成混合膜。
2、乳化设备
1 搅拌混合器 2 胶体磨 3 高剪切混合乳化机 4 静态混合器 5 超声波乳化器
第四节 乳化性能旳测定
一、乳状液类型旳测定措施
1、滤纸润湿法 合用于重油与水制备旳乳液。 若乳液能在滤纸上迅速展开旳为 O/W 型。
2、染色法 将微量旳水溶性或油溶性染料加入乳液中,并加 以混合,若乳液整体带色则为 O/W 型或 W / O 型。
3)提升界面膜旳物理性质 ① 提升表面活性剂旳浓度,有利分子旳定向排列,界面膜强度 提升,乳液稳定性提升;
图 7-2 表面活性剂形成界面膜示意图 ② 选择疏水链较长、支化度小、亲水基在一端旳表面活性剂, 因为其易形成胶束,且界面膜旳强度高,故适合作乳化剂。
③ 使用混合表面活性剂或添加其他物质,发挥其协同效应,提 高乳液旳稳定性;
3)阳离子型乳化剂 C12-C22单烷基胺类 酰胺类
分类
咪唑啉类
季铵盐类 环氧乙烷双胺类
胺化木质素
2、高分子乳化剂
高分子乳化剂虽然无法明显降低溶液旳界面张力,但是能在液 珠旳界面上形成强度较高旳界面膜,而且还能提升液相旳粘度,因 此也是性能优良旳乳化剂。
1)天然高分子 (1)魔芋胶 主要成份魔芋甘露糖,M=104 ;
具有不同HLB值旳混合乳化剂, 用该系列混合乳化剂将油水体
乳化剂el40结构

乳化剂el40结构乳化剂是一种在物理上将水和油相混合的化学物质。
它们通常会帮助改善食品和化妆品的口感和质感,同时也能提高药物的溶解性和稳定性。
其中,EL40(polysorbate 60)是一种常用的乳化剂,下面将详细介绍EL40的结构和其在不同领域的应用。
EL40的化学名称是聚山梨醇酯60,化学结构式为C64H124O26。
它是一种非离子型乳化剂,由山梨醇和硬脂酸甘油酯的酯化反应制得。
EL40的分子量为1310.73 g/mol,它是一种黄色至琥珀色的液体,具有较低的溶解度。
其CAS号为9005-67-8。
EL40是一种表面活性剂,它具有两个主要的功能特性:乳化和分散。
乳化是指将不相溶的两种液体,如水和油相,混合在一起,并形成一个稳定的混合物,称为乳液。
这是因为EL40分子具有亲水性(含有羟基)和亲油性(含有疏水基)。
在乳化过程中,EL40的亲水基固定在水相中,亲油基固定在油相中,从而使得水和油两相能够均匀地混合在一起。
EL40还具有分散作用,即将固体颗粒均匀地分散在液体中。
当固体颗粒与液体接触时,EL40分子会附着在固体颗粒的表面,帮助其分散在液体中,防止固体颗粒聚集在一起。
这有助于提高药物的溶解性,并使颗粒均匀地分布在整个液体中。
EL40在食品、化妆品和药物等领域有广泛的应用。
在食品工业中,EL40常被用作乳化剂,用于制作乳酪、冰激凌、酱油和咖啡伴侣等产品。
它能使这些产品具有更好的质地和口感,同时也增加其稳定性,延长货架期。
在化妆品中,EL40被用作乳化剂和分散剂,用于制作乳液、化妆水和洗发水等产品。
它能使化妆品更易于涂抹和吸收,并使其成分更均匀地分布在整个产品中。
在药物制剂中,EL40常用作辅料,用于制作口服液、软胶囊和乳剂等药物。
它能提高药物的稳定性和溶解性,使药物更容易进入血液中,增强药效。
尽管EL40在许多领域中具有广泛的应用,但也需要注意其使用量和使用条件。
过高的EL40浓度可能会导致产品质量下降,或者对人体健康产生负面影响。
第七章 乳化剂与分散剂要点

-
-
固/水 间的界面张力;
油/水 间的界面张力;
θ -在水相方向的接触角;
形成乳状液时,润湿固体较多的液体构成外相。
二、乳状液类型的鉴别和影响因素
1、乳状液类型的鉴别
电导法:电导性好的为:O/W 型
染色法:将油溶性染料加入乳状液中予以混 鉴别方法 合,若整体带色则为 W/O 型 稀释法:根据与液体相混溶性来判断;
硫酸盐
如聚氧乙烯烷基酚醚硫酸盐 脂肪醇聚氧乙烯醚硫酸盐等
阴离子型
磺酸盐
如烷基、烷基苯、烷基萘类, 聚氧乙烯烷氧基醚类等
磷酸酯类 如烷基、烷基聚氧乙烯醚类,
脂肪酸聚氧乙烯醚类等 亚磷酸酯类 如烷基聚氧乙烯醚类单、双酯
2)非离子型乳化剂
非离子乳化剂根据其亲水、亲油性,可作O/W型和W/O型
乳状液的乳化剂,主要类型有醚型和酯型二类。 聚氧乙烯烷基酚醚类
3)阳离子型乳化剂 C12-C22单烷基胺类
酰胺类
咪唑啉类 分类 季铵盐类 环氧乙烷双胺类 胺化木质素
2、高分子乳化剂 高分子乳化剂虽然无法显著降低溶液的界面张力,但是能在液
珠的界面上形成强度较高的界面膜,而且还能提高液相的粘度,因
此也是性能优良的乳化剂。 1)天然高分子
(1)魔芋胶
主要成分魔芋甘露糖,M=104 ;
(2)瓜尔胶 是从种子瓜尔素中提取得到,为非离子型、带支链的多糖-半 乳甘露糖, M=2×105 ;
③ 使用混合表面活性剂或添加其它物质,发挥其协同效应,提 高乳液的稳定性;
图 7-3 油/水界面生成的复合膜示意图
关键要素:一为水溶性,另一为含有与水形成氢键的有机物;
4)提高乳状液分散介质的粘度
根据斯托克斯的沉降速度公式:
乳化剂和分散剂的异同点

乳化剂和分散剂的异同点乳化剂和分散剂是常用的化学添加剂,它们在物质的分散和乳化过程中起着重要的作用。
尽管它们的作用有所相似,但是乳化剂和分散剂在分子结构、应用范围和作用机制等方面存在着一些异同点。
从分子结构上来看,乳化剂和分散剂有着不同的特点。
乳化剂通常是由一种具有亲水性和疏水性的分子组成,其中一个极性部分与水分子相互作用,而另一个非极性部分则与油脂相互作用。
这种结构使得乳化剂能够在油水界面上形成一层薄膜,将油脂分子包裹其中,从而实现油水乳化的效果。
而分散剂则是由一种或多种具有亲油性或亲水性的分子组成,能够与分散体颗粒表面相互作用,形成稳定的分散体系。
乳化剂和分散剂在应用范围上也存在一定的差别。
乳化剂主要应用于油水乳化体系中,如乳液、乳霜、乳剂等。
乳化剂能够使油脂颗粒分散均匀,增加乳液的稳定性,改善产品的质感和口感。
而分散剂则广泛应用于颜料、染料、药物、化妆品等领域的分散体系中。
分散剂能够有效地将固体颗粒分散在液体中,防止颗粒的团聚和沉积,保持分散体系的稳定性。
乳化剂和分散剂的作用机制也不尽相同。
乳化剂的作用机制主要是通过降低油水界面的表面张力,使得油脂颗粒能够均匀地分散在水相中。
乳化剂的极性部分与水分子形成氢键,而非极性部分与油脂分子相互作用,从而形成一层薄膜,将油脂颗粒包裹其中。
这样一来,油脂颗粒就能够均匀地分散在水相中,形成稳定的乳液体系。
而分散剂的作用机制则是通过与固体颗粒表面发生吸附作用,改变颗粒表面的性质,使其分散性增强。
分散剂的亲油性或亲水性部分与颗粒表面相互作用,阻碍颗粒的聚集,使颗粒分散均匀,从而保持分散体系的稳定性。
乳化剂和分散剂在分子结构、应用范围和作用机制等方面存在一些异同点。
乳化剂主要应用于油水乳化体系中,通过降低油水界面的表面张力,使油脂颗粒均匀分散;而分散剂主要应用于颜料、染料等分散体系中,通过与固体颗粒表面发生吸附作用,使颗粒分散均匀。
它们都能够有效地改善产品的稳定性和质感,提高产品的品质。
饲料添加剂之乳化剂

胆汁酸盐 一、在肉鸡生产中的应用 1、对肉鸡生产性能的影响: 大豆磷脂能提高家禽的食欲改善营养物质的消化率尤其是亲水的胆碱基与疏水的脂肪酸相结合有利于营养物质与家禽消化酶的结合。
2、对肉鸡的保健功能:胆碱、肌醇、VB12、VE、亚油酸和一些未知生长因子对动用和消除肝中的多余脂肪是不可缺少的。
大豆磷脂中含有丰富的胆碱、肌醇和亚油酸在鸡饲料中添加大豆磷脂对防止鸡脂肪肝综合症等疾病的发生非常有效,同时可保持肝脏/体重比值正常3、在蛋鸡生产中的应用:蛋鸡饲料中添加大豆磷脂可以促进其生长发育、提高产蛋率和节约饲料。
[7] 二、大豆磷脂在猪日粮的作用1、帮助仔猪软蓬松,并且在融化过程中可保持形状。
[22]单甘酯Glycerinmonostearate简称:GMS 单硬脂酸甘油脂非离子分子量:358.57分子结构式:CH2OH—CHOH—CH2OOC(CH2)16CH3白色或微黄色蜡状片形或珠形固体。
无味或油脂味、无臭、无毒。
不溶于水和甘油,但能在热水中形成稳定的水合分散体,溶于热有机溶剂。
HLB值3.6-4.0【23】酯化反应、水解反应等糖苷酯类乳化剂的性能和营养功能均优于市场上其他现有的乳化剂。
此类乳化剂充分解决了普通乳化剂经常发生的乳化体系不稳定、易破乳重新形成油层的不足【23】化学法主要有酯交换、酯化法两种,其原料主要是甘油、脂肪酸(酯)。
【24】酶法:以天然油脂、合成酯、脂肪酸和甘油为原料,脂肪酶催化反应。
【25】①2%(t0)的复配乳化剂(亲水性单甘酯与大豆磷酯为1:1),可得含油30%(∞)左右的稳定的乳状液。
【26】②单甘酯与蔗糖酯以4:1进行搭配时对豆油的乳化效果最好。
【23】除乳化剂外还可作为消泡剂、分散剂、增稠剂、湿润剂、流滴剂和防雾剂、润滑剂、抗静电剂等。
广泛应用于食品、化妆品、医药、塑料助剂、农业等领域。
【27】蔗糖酯SucroseFattyAcidEsters(Sucrose Estersof FattyAcids;Sucroesters)蔗糖酯的全称为蔗糖脂肪酸酯(SE)非离子型表面活性剂(RCOO)nC12H12O3(OH)8-n化学结构R为脂肪酸烃基;n为蔗糖的羟基酯化数蔗糖酯为白色至棕黄色的粉末,无臭、无味。
市场常见乳化剂及润湿分散剂列表

100%.A.M 100%.A.M 100%.A.M 100%.A.M 100%.A.M 100%.A.M HLB 18, 70%.A.M
Nonylphenol ethoxylated/ 壬基酚聚氧乙烯醚 Sodium-n-alkyl-(C10-C13) benzene suphonate 十二烷基苯磺酸钠 Sodium NP (4) Sulfate
辛基酚聚氧乙烯醚 Octylphenol ethoxylate / HLB 18, 70%.A.M 辛基酚聚氧乙烯醚 Alkylphenol ethoxylate / 90%.A.M,低泡润湿剂,HLB12.5, 凝固点2度 烷基酚聚氧乙烯醚 Alcohol-based ethoxylate HLB 18, 75%.A.M / 脂肪醇聚氧乙烯醚 Alcohol-based ethoxylate 75% A.M / 脂肪醇聚氧乙烯醚 Alcohol-based ethoxylate HLB 12.5, 90%.A.M / 脂肪醇聚氧乙烯醚 Octylphenol polyglycol ether sulphate, sodium salt / 辛基酚聚氧乙烯醚硫酸钠盐 Nonylphenol polyglycol ether sulphate, sodium salt / 壬基酚聚 氧乙烯醚硫酸钠盐 Fatty alcohol polyglycol ether sulphate, sodium salt / 脂肪醇聚氧 乙烯醚硫酸钠盐 二辛基磺基琥珀酸钠 80% A.M iso-tridecanol based ethoxylate / 异构十三醇聚氧乙烯醚 70% A.M iso-tridecanol based ethoxylate / 异构十三醇聚氧乙烯醚 70% A.M iso-tridecanol based ethoxylate / 异构十三醇聚氧乙烯醚 100% A.M iso-tridecanol based ethoxylate / 异构十三醇聚氧乙烯醚 tributyl phenol ether sulfate 色浆分散剂 mixture of nonionic and anionic 色浆分散剂 surfactants and humectants APEO-free,钠盐 28% A.M APEO-free,钠盐 80% APEO-free 低泡
油田水处理药剂的类型及其机理

油田水处理药剂的类型及其机理油田水处理药剂主要是指在油田开发过程中,对产出水进行处理的化学药剂。
这些药剂主要用于去除或减少水中的污染物,以满足油田环境保护和水资源利用的要求。
油田水处理药剂的类型很多,常见的有分散剂、乳化剂、缓蚀剂、阻垢剂、杀菌剂等。
这些药剂具有不同的机理和功能,在油田水处理中发挥重要作用。
1.分散剂:分散剂是一种能够使沉淀物分散悬浮于水中的药剂。
它的主要机理是通过表面活性剂的作用,改变颗粒表面的性质,使颗粒带电,从而相互之间发生静电吸引,形成悬浮体系。
常用的分散剂有磺酸盐、酸性饱和胺、表面活性剂等,可用于悬浮油、沉淀物的处理。
2.乳化剂:乳化剂是一种能够将油水两相混合形成乳液的药剂。
其机理是通过乳化剂分子在水中,使之分子极性一部分与油相互作用,另一部分与水相互作用,从而形成稳定的乳化体系。
乳化剂常用的有表面活性剂、聚醚酸盐等,它们可以在油水界面上形成一层膜,阻碍油水分离,以利于油水的分离和处理。
3.缓蚀剂:缓蚀剂是一种能够减缓金属腐蚀速率的药剂。
它可以与金属表面形成一层保护膜,阻止腐蚀介质的进一步侵蚀金属表面。
常见的缓蚀剂有有机磷、缓蚀胺等,它们通过吸附在金属表面,形成保护膜,降低金属腐蚀速率。
4.阻垢剂:阻垢剂是一种能够防止沉积物结垢、保持设备通畅的药剂。
它可以通过改变结垢物质的形态或阻止其与管壁的黏附,从而避免结垢物质的形成。
常见的阻垢剂有聚合物、多元酸盐等,它们可以通过吸附、络合、分散等作用,防止沉积物的结垢和堵塞。
5.杀菌剂:杀菌剂是一种能够抑制和杀灭细菌、病毒等微生物的化学药剂。
常见的杀菌剂有氧化剂、酸性物质等,它们可以破坏微生物的细胞膜、细胞壁等结构,达到杀菌的目的。
以上是一些常见的油田水处理药剂及其机理,它们在油田开发中的应用可以有效地去除或减少水中的污染物,保护环境,优化油田开发过程。
随着技术的发展,油田水处理药剂的种类和性能会继续得到改进和完善,以适应不同的水质和处理要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图 7-4 固体粉末的润湿性与乳状液类型示意图
根据Young公式可得:
式中:
- 固/油 间的界面张力;
- 固/水 间的界面张力;
- 油/水 间的界面张力;
θ-在水相方向的接触角;
图 7-3 油/水界面生成的复合膜示意图 关键要素:一为水溶性,另一为含有与水形成氢键的有机物;
4)提高乳状液分散介质的粘度 根据斯托克斯的沉降速度公式:
由上式可知:外相粘度赿大,液珠的运动速度赿慢,液珠的 运动速度进赿间的碰撞机率减小,有利于乳液的稳定。
⑤ 使用固体粉末作乳化剂 只有固体粉末既能被水润湿,又能被油润湿时,会停留在
磺酸盐 如烷基、烷基苯、烷基萘类, 聚氧乙烯烷氧基醚类等
磷酸酯类 如烷基、烷基聚氧乙烯醚类, 脂肪酸聚氧乙烯醚类等
亚磷酸酯类 如烷基聚氧乙烯醚类单、双酯
2)非离子型乳化剂 非离子乳化剂根据其亲水、亲油性,可作O/W型和W/O型 乳状液的乳化剂,主要类型有醚型和酯型二类。
聚氧乙烯烷基酚醚类
聚氧乙烯脂肪醇醚类
表 7-1 器壁性质对乳状液类型的影响 注:塑料为聚四氟乙烯;
第三节 乳化剂
一、乳化剂类型
表面活性剂型
乳化剂分类
高分子型 天然产物型
固体粉末型
1、合成表面活性剂类
1)阴离子型乳化剂 一般制作O/W型乳状液,HLB值在8-18之间,亲水性强。 羧酸盐 如三乙醇胺的氧乙烯烷基酚醚硫酸盐 脂肪醇聚氧乙烯醚硫酸盐等
3)提高界面膜的物理性质 ① 提高表面活性剂的浓度,有利分子的定向排列,界面膜强度 提高,乳液稳定性提高;
图 7-2 表面活性剂形成界面膜示意图 ② 选择疏水链较长、支化度小、亲水基在一端的表面活性剂, 由于其易形成胶束,且界面膜的强度高,故适合作乳化剂。
③ 使用混合表面活性剂或添加其它物质,发挥其协同效应,提 高乳液的稳定性;
(2)瓜尔胶 是从种子瓜尔素中提取得到,为非离子型、带支链的多糖-半 乳甘露糖, M=2×105 ;
(3)羧甲基纤维素钠盐 由棉短纤维经碱化,再与氯乙烯、醋酸乙烯等酸醚化后生成, M=5×104;主要是提高O/W型乳液的水相粘度,乳液稳定性提高。
2)合成高分子表面活性剂 (1)聚氧乙烯苯乙烯基苯基醚
乳化剂与分散剂
第二节 乳化作用
一、乳状液
1、定义 将油、水和乳化剂放于一起,在一定温度下,通过强剪切力搅 拌迫使一相以微滴状分散于另一相中,此时相界面的面积增大,体 系的稳定性降低,形成乳状液,这一过程称之为乳化。 组成:油、水、乳化剂; 分布:① 以液珠形式存在的一相称为分散相或内相;
② 连成一片的相称为分散介质或外相; 类型:
形成乳状液时,润湿固体较多的液体构成外相。
二、乳状液类型的鉴别和影响因素
1、乳状液类型的鉴别 电导法:电导性好的为:O/W 型
鉴别方法
染色法:将油溶性染料加入乳状液中予以混 合,若整体带色则为 W/O 型
稀释法:根据与液体相混溶性来判断;
滤纸润湿法:能快速展开的为 O/W 型
2、影响乳状液类型的因素 1)乳化剂的亲水性(HLB值)
① 水包油型(O/W),即内相为油,外相为水; ② 油包水型(W/O),即内相为水,外相为油;
2、乳状液的稳定性 从热力学角度讲,乳化为非自发过程,故乳状液是一种不
稳定体系。为了尽可能降低乳状液的不稳定性,可从两相间界面稳 定上着手来提高乳状液稳定性。
1)降低两相间的表面张力 作为乳状液,体系必然存在较大的界面,因而必定存在一定的 界面能,所以,这种体系总要力图减小界面,降低界面自由能,从 而最终使乳状液发生破乳、分层。因此,选择优异的表面活性剂作 乳化剂是形成乳状液的首要条件,也有利于稳定性的提高。 如涂料印花使用的增稠剂乳化糊A(A帮浆),是煤油和水组成 的,当加入平平加O后,煤油-水的界面张力由 40mN/m,降至 1mN/m;乳化体系界面的能量降低,体系稳定性提高。
3)阳离子型乳化剂 C12-C22单烷基胺类 酰胺类
分类
咪唑啉类 季铵盐类
环氧乙烷双胺类
胺化木质素
2、高分子乳化剂
高分子乳化剂虽然无法显著降低溶液的界面张力,但是能在液 珠的界面上形成强度较高的界面膜,而且还能提高液相的粘度,因 此也是性能优良的乳化剂。
1)天然高分子 (1)魔芋胶 主要成分魔芋甘露糖,M=104 ;
(1)醚型 聚氧乙烯聚氧丙烯烷基酚醚类
脂肪酰胺的环氧乙烷加成物
聚氧乙烯烷基胺醚类
(2)酯型 ① 脂肪酸环氧乙烷加成物,作W/O乳化剂
单酯: 双酯: ② 山梨糖醇酐脂肪酸类 Span系列(司派):山梨糖醇酐脂肪酸酯, W/O型; Tween系列(吐温):山梨糖醇酐脂肪酸聚氧乙烯, W/O型; ③ 聚氧乙烯甘油醚脂肪酸单(双)酯
2)提高界面电荷 通常情况下,O/W 型乳状液中,液珠多半呈电负性;而 W/O
中液珠呈正电荷。受各种因素的影响,乳状液的界面都会形成双电 层,如图 7-1 所示。
图 7-1 O/W 型乳液界面双电层示意图
扩散双电层的作用及影响: ① 由于电荷的排斥作用,使之阻止或减弱了液珠的碰撞,从而 减少了液珠分子的聚结,有利于乳液稳定性提高; ② 当液珠碰撞时,首先接触双电层,而真正的液珠分子间的碰 撞几率大大降低,或者说乳状液的界面膜增厚,乳液稳定性提高; ③ 当在乳状液中加入电解质时,双电层将变薄,会引起乳状液 的稳定性降低; ④ 使用离子型表面活性剂作乳化剂时,由于有较强的扩散双电 层存在,会使乳液稳定性得以提高。
(2)聚氧丙烯-聚氧乙烯嵌段共聚物
易溶于水的乳化剂易生成 O/W 型乳状液,反之相反; 2)相体积
当水相体积<26%时,只能形成 W / O 型 乳液; 当水相体积> 74%时,只能形成 O/W 型乳液; 当水相体积介于二者之间时,二者均有可能形成; 3)乳化剂分子构型 钾、钠等一价金属脂肪盐乳化剂,易生成O / W 型乳液; 钙、镁等二价金属脂肪盐乳化剂,易生成W / O 型乳液; 4)乳化器材料性质 亲水性强的器壁易得到O / W 型乳液;反之相反。