薛定谔方程
薛定谔方程

薛定谔方程(英语:Schrodinger equation)是由奥地利物理学家薛定谔在1926年提出的一个用于描述量子力学中波函数的运动方程[1],被认为是量子力学的奠基理论之一。
薛定谔方程主要分为含时薛定谔方程与不含时薛定谔方程。
含时薛定谔方程相依于时间,专门用来计算一个量子系统的波函数,怎样随着时间演变。
不含时薛定谔方程不相依于时间,可以计算一个定态量子系统,对应于某本征能量的本征波函数。
波函数又可以用来计算,在量子系统里,某个事件发生的概率幅。
而概率幅的绝对值的平方,就是事件发生的概率密度。
薛定谔方程的解答,清楚地描述量子系统里,量子尺寸粒子的统计性量子行为。
量子尺寸的粒子包括基本粒子,像电子、质子、正电子、等等,与一组相同或不相同的粒子,像原子核。
薛定谔方程可以转换为海森堡的矩阵力学,或费曼的路径积分表述 (path integral formulation) 。
薛定谔方程是个非相对论性的方程,不能够用于相对论性理论。
海森堡表述比较没有这么严重的问题;而费曼的路径积分表述则完全没有这方面的问题。
[编辑]含时薛定谔方程虽然,含时薛定谔方程能够启发式地从几个假设导引出来。
理论上,我们可以直接地将这方程当作一个基本假定。
在一维空间里,一个单独粒子运动于位势中的含时薛定谔方程为(1)其中,是质量,是位置,是相依于时间的波函数,是约化普朗克常数,是位势。
类似地,在三维空间里,一个单独粒子运动于位势中的含时薛定谔方程为(2)假若,系统内有个粒子,则波函数是定义于-位形空间,所有可能的粒子位置空间。
用方程表达,。
其中,波函数的第个参数是第个粒子的位置。
所以,第个粒子的位置是。
[编辑]不含时薛定谔方程不含时薛定谔方程不相依于时间,又称为本征能量薛定谔方程,或定态薛定谔方程。
顾名思义,本征能量薛定谔方程,可以用来计算粒子的本征能量与其它相关的量子性质。
应用分离变量法,猜想的函数形式为;其中,是分离常数,是对应于的函数.稍回儿,我们会察觉就是能量.代入这猜想解,经过一番运算,含时薛定谔方程 (1) 会变为不含时薛定谔方程:。
爱因斯坦薛定谔方程

爱因斯坦薛定谔方程
爱因斯坦-薛定谔方程(Einstein-Schrödinger equation)是一个量子力学中的方程,将爱因斯坦的相对论和薛定谔方程结合在一起,描述了物质和场相互作用的行为。
这个方程是在广义相对论和量子力学之间的理论框架下提出的。
具体而言,爱因斯坦-薛定谔方程描述了物质在引力场中的行为,以及粒子与电磁场的相互作用。
它是一个偏微分方程,通常被写成:iħ∂ψ/∂t = (c^2√(p^2c^2 + m^2c^4) + eφ)ψ。
其中,ψ是波函数,描述了量子态的演化;t是时间;ħ是约化普朗克常数;c是光速;p是动量算符;m是粒子的静质量;e是元电荷;φ是电磁场势。
爱因斯坦-薛定谔方程是一个非常复杂的方程,它描述了物质在引力场和电磁场中的量子行为。
这个方程在理论物理的研究中扮演着重要的角色,帮助我们理解微观世界的行为。
但是,由于其复杂性,解析解很难找到,通常需要使用数值方法进行求解。
薛定谔方程

v v v v ψ(r ,t) =c1 1(r ,t) +c2ψ2(r ,t) +⋅⋅⋅ = ∑ iψi (r ,t) ψ c
也是这个系统的一个可能的量子态。 也是这个系统的一个可能的量子态。
i
薛定谔方程是复数方程,因此它的解, ② 薛定谔方程是复数方程,因此它的解,即波函数 一般是复数。 一般是复数。
一、含时薛定谔方程 1. 自由粒子的含时薛定谔方程 自由粒子的波动性对应于平面波,因此, 自由粒子的波动性对应于平面波,因此,描述自由 粒子量子态的波函数可以采用平面波函数的形式。 粒子量子态的波函数可以采用平面波函数的形式。 量子力学中,自由粒子对应的平面波函数: 量子力学中,自由粒子对应的平面波函数:
2 2 2
∂ψ ih = Eψ ∂t
v −ih∇ = pψ ψ
−h ∇ ⇔p
2 2 2
∂ v ih ⇔E −ih∇⇔ p ∂t
箭头左边的符号作用于波函数等于箭头右边的物理 量乘以波函数。 量乘以波函数。 不考虑相对论效应, 动能与动量的关系: 不考虑相对论效应,则动能与动量的关系: 与动量的关系
p E= 2µ 2 p Eψ = ψ 2µ
v 波矢, 波矢 大小等于角波数,沿着波传播方向。 k——波矢,大小等于角波数,沿着波传播方向。
角频率。 角频率 ω ——角频率。
v v v ψ(r ,t) = Aex i(k ⋅ r −ω ) p t
{
}
v v v ψ(r ,t) = Aex i(k ⋅ r −ω ) p t
{
}
ω
2π 2π E 1 = hν = E = = 2πν = T h h h v v v v v k 2π k 2π h k 1 k k = k k = λ k = h λ k = h p k
大学物理薛定谔方程

若势能曲线 如图所示:
U
( x) U= U0
有一个有限 E 宽度的“势垒”。 U= 0
U= 0 x
Ⅰ区是波动解, Ⅱ区是指数解,
0a
Ⅰ区 Ⅱ区 Ⅲ区
Ⅲ区也是波动解,但是只有向+x方向的波; 没有向-x方向的反射波了。
可以想见,原来在Ⅰ区的粒子也可以在势垒 的另一边Ⅲ 区出现!这在经典物理是不可想象的!
即可得总波函数 (x, t )。
例.一维自由运动微观粒子的波函数。 电子枪
K
自由运动区
A
U=0
其定态薛定谔方程为
d2
d x2
2m 2
E
0
2 2m
d2
d x2
U
E
……二阶常系数
E 是能量(动能)
常微分方程
令 2mE p2 ,P 是动量。
d2
d x2
2m 2
E
0
得
d2
d x2
p2 2
0
它有两个特解:
量子物理: 粒子有波动性,遵从不确定关系,
粒子穿过势垒区和能量守恒并不矛盾。
只要势垒区宽度 x = a 不是无限大,
粒子能量就有不确定量E 。
p2
2pΔ p pΔ p
E ΔE
2m
2m
m
x = a 很小时,P 很大,使 E也很大 , 以至
可以有: E U0 E E +E > U0
§2.4 一维谐振子
Ⅱ区:
d2
d x2
2m 2 (E
U0 )
0
令
k22
2m 2
E U0
2 C ek2x D ek2x
2 C ek2x Dek2x
薛定谔方程形式解

薛定谔方程是量子力学中的一个基本方程,它描述了微观系统在给定初始条件下的演化规律。
该方程的形式非常复杂,涉及到时间和空间的偏微分以及波函数等概念。
下面是对薛定谔方程形式解的一些说明:
1. 薛定谔方程的基本形式为:
- ihbar/tau粒*▽ψ(x, t) = Hψ(x, t)
其中,H是哈密顿量,ψ(x, t)是波函数,τ是时间演化参数。
这个方程表示,在给定初始条件下的波函数随时间的演化满足微分方程。
2. 波函数的求解依赖于具体的哈密顿量以及初始条件。
一般来说,我们可以通过分离变量等方法将波函数展开成一系列不同频率的谐波之和,从而得到波函数的解析解。
但是,对于一些复杂的哈密顿量,波函数的求解通常需要使用数值方法。
3. 薛定谔方程的解通常被称为波包,它描述了微观系统随时间的演化过程。
波包的形状和大小取决于初始条件和哈密顿量的性质。
对于一些简单的情况,例如一维无限深势阱或者谐振子等,我们可以得到一些具有实际意义的波包形状。
4. 薛定谔方程在量子力学中具有非常重要的地位,它描述了微观系统的波粒二象性以及量子叠加态等基本概念。
通过求解薛定谔方程,我们可以得到微观系统的量子态,从而对量子系统进行计算和控制。
5. 除了薛定谔方程本身,还有许多其他的量子力学方程和近似方法,例如狄拉克方程、海森堡方程、路径积分等。
这些方法在量子力学中都有重要的应用,可以解决不同类型的问题和计算任务。
总之,薛定谔方程是量子力学中的一个基本方程,它描述了微观系统在给定初始条件下的演化过程。
通过对波函数的求解和计算,我们可以对量子系统进行深入的研究和实验控制。
薛定谔方程最简单的形式

薛定谔方程最简单的形式引言薛定谔方程是量子力学中最重要的方程之一,描述了量子系统的演化和行为。
它的最简单形式可以用来描述自由粒子的运动,本文将对薛定谔方程最简单的形式进行介绍。
薛定谔方程薛定谔方程是用来描述量子系统的演化的方程。
对于一个自由粒子,它的薛定谔方程可以写作:$$i \\hbar \\frac{\\partial \\psi}{\\partial t} = -\\frac{\\hbar^2}{2m}\\frac{\\partial^2 \\psi}{\\partial x^2}$$其中,i是虚数单位,$\\hbar$是约化普朗克常数,$\\psi$是波函数,m是粒子的质量,t是时间,x是粒子的位置。
波函数与概率密度波函数是薛定谔方程的解,它包含了系统的全部信息。
但是,波函数本身并不直接描述粒子的物理性质,而是通过概率密度来给出具体的可观测结果。
概率密度$|\\psi|^2$表示在空间中找到粒子的几率。
根据波函数的性质,其概率密度要满足归一化条件,即在整个空间内的积分等于1。
这意味着粒子一定存在于某个位置。
在最简单的薛定谔方程中,波函数是一个平面波,可以写为$\\psi(x,t) = Ae^{i(kx - \\omega t)}$。
其中,A是振幅,k是波数,$\\omega$是频率。
根据平面波的性质,概率密度$|\\psi|^2$是恒定不变的,并且在整个空间范围内都有非零概率。
波函数的演化薛定谔方程描述了波函数随时间的演化。
对于自由粒子,它的薛定谔方程是线性的,意味着波函数的形式在时间演化中保持不变,只是振幅发生变化。
这也说明了自由粒子的能量是守恒的。
根据薛定谔方程,波函数的时间导数与空间二阶导数之间存在简单的线性关系。
由此可得,波函数的形式在不同位置上的变化是类似的,只是相位和振幅的变化不同。
自由粒子的波函数演化可以用平面波的形式简洁地表示。
根据平面波的性质,波函数在空间中传播,形成波动。
薛定谔方程

λ
n
Δx ⋅ Δp x ≥ h 2
ΔE ⋅ Δt ≥ h 2
第二章 薛定谔方程
§2.1 薛定谔得出的 波动方程 §2.2 无限深方势阱 中的粒子
§2.3 势垒穿透
§2.4 谐振子
§1 薛定谔方程的建立 一.含时薛定谔方程 自由粒子波函数: 自由粒子波相当于单色平面波 x 平面波函数: Ψ ( xt ) = A cos( 2πν t − 2π ) 或
−i
Φ( x ) =
n = 1,2,3 L
En t h
能量本征波函数: ψ n ( x ) = φ n ( x )e (3)概率密度
Wn ( x ) = φn ( x )
2
Φn( x )
4π x Φ( x ) = 2 sin a a
wn ( x ) = Φ n ( x )
2
n =4
2 cos 3π x Φ( x ) = a a 2 sin 2π x Φ( x ) = a a
(
)
a
a
(0 ≤ x ≤ a )
▲薛定谔方程是线性微分方程,ψ和φ都满足叠加原理 如果ψ1和ψ2是体系的可能状态,那它们的线 性叠加 ψ = c ψ + c ψ
1 1 2 2
也是体系的一个状态-----态叠加原理 在空间找到处于叠加态的几率密度是:
ψ = c1ψ 1 + c2ψ 2
2
2
[例5]在阱宽为 0-a的无限深势阱中,一个粒子的状态为 πx 2πx f ( x ) = sin − sin a a 多次测量其能量。求每次可能测到的值和相应概 率以及能量的平均值? 解:已知0-a无限深势阱中的粒子的 本征函数和能量本征值为
薛定谔方程推导

薛定谔方程(Schrödinger equation)是物理学家薛定谔于 1926 年提出的一个基本的量子力学方程,用它可以描述不同粒子的波函数随时间的变化。
薛定谔方程的推导: 1)以原子核心为中心,建立相对论性的电子动力学方程,即:$$ \frac{d^2\psi}{dt^2} = - \frac{\alpha}{m}\frac{\partial^2\psi}{\partial x^2} +V\psi $$ 式中,Ψ 为电子的波函数,α 为常数,m 为电子的质量,V 为外力作用下的电子电势能。
2)将上式改写成: $$ \frac{d^2\psi}{dt^2} +\frac{\alpha}{m}\frac{\partial^2\psi}{\partial x^2} = - V\psi $$ 3)用微分方程的表达式: $$ \frac{\partial \psi}{\partial t} = \frac{\partial \psi}{\partial x} \cdot\frac{\partial x}{\partial t} $$ 将上式中的Ψ 的二阶偏导数改写如下: $$\frac{\partial^2 \psi}{\partial t^2} = \frac{\partial^2 \psi}{\partial x^2} \cdot\left(\frac{\partial x}{\partial t}\right)^2 + \frac{\partial \psi}{\partial x} \cdot\frac{\partial^2 x}{\partial t^2} $$ 4)在特殊情况下,假设 $\frac{\partialx}{\partial t}$ 为常数,即电子的移动速度为常数,该常数的值为$v=\frac{\alpha}{m}$ ,则可以将上式中的 $\left(\frac{\partial x}{\partialt}\right)^2$ 改写为 $v^2$ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经典力学与量子力学的比较 经典力学
量子力学
研究对象
宏观物体,在一 具有波粒二象性 定条件下可看成 的微观粒子 质点
运动状态描写 坐标(x,y,z) 动量(p)
波函数ψ(x,y,z,t) |ψ(x,y,z,t)|2代表 时刻t在空间某 处的几率。
运动方程即状态 随时间变化规律
牛顿方程
薛定谔方程
三、一维无限深势阱
图3.2.1 无限深势阱
(3.2.3)
(3.2.4)
式中,A,δ为待定常数,为确定A与δ之值,利用ψ的边界条 件及归一化条件。从物理上考虑,粒子不能透过势阱,要求在 阱壁及阱外波函数为零,即
即
上式舍去了n=0和n为负值的情况
(3.2.5)
这个结果表明,粒子在无限高势垒中的能量是量子化的。 又由归一化条件
二、定态薛定谔方程
在势能V不显含时间的问题中,薛定谔方程可以用一种 分离变数的方法求其特解,令特解表为
代入下式,并把坐标函数和时间函数分列于等号两边:
令这常数为E,有
(10)
于是波函数ψ(r,t)可 以写成
与自由粒子的波函数比较,可知上式中的常数E就是能量, 具有这种形式的波函数所描述的状态称为定态.在定态中几 率密度|ψ(r,t)|2=|ψ(r)|2与时间无关。另一方面, (10) 式右边也等于E,故有
把(1)对t取一阶偏微商 如果自由粒子的速度较光速 小得多,它的能量公式是 p2/2m=E,两边乘以ψ,即得
(2) (3)
(4) (5)
把(3)和(4)代入(5)
得到一个自由粒子的薛定谔方程。 对于一个处在力场中的非 自由粒子,它的总能量等于 动能加势能
两边乘以ψ
自由粒子的薛定 谔方程可以按此式 推广成
[ 2 2 V ] ( r ) E ( r )
2m
这是波函数中与坐标有关的部分ψ(r)所满足的方程,此方程 称作定态薛定谔方程
定态波函数的特点:
1、能量不随世间变化; 2、粒子的概率不随时间变化。
态叠加原理
C1 1 C2 2 …+ C n n Cn n
一个粒子在两个无限高势垒之间的运动,实际上与一个粒子在 无限深势阱中的运动属于同一类问题。设势阱位于x=0及x=a处。 势阱之间(图3.2.1中Ⅰ区),V=0,势阱本身(图3.2.1中Ⅱ,Ⅲ区), V=∞,求粒子在势阱间的运动情况。
薛定谔方程为
(3.2.1)
在Ⅱ,Ⅲ区,只能有ψ=0.因为从物理上 考虑,粒子不能存在于势能为无限大的 地区,在Ⅰ区,方程简化为
是实际情况的 极端化和简化
U(x)
U(x) 0
方势阱
金属中的电子
分子束缚 在箱子内 三维方势肼
四、势垒贯穿
设如图3.3.1,在x=0到x=a之间有一个有限高的一维势垒
V=V0.在x<0区域有一个粒子,其动 能E<V0,从左向右射向势垒,求粒 子的概率分布。
在图中,将空间分为三个区域.粒 子 从 Ⅰ 区 射 向 Ⅱ 区 , 在 x=0 处 遭 遇 势垒。按经典力学,粒子的能量不 够,不能越过势垒,将被反射而折 回。但在微观世界则不然,粒子的 德布罗意波将部分地穿过势垒。解 题如下。
(6) (7) (8)
(9)
这就是量子力学中的薛定谔方程,相当于经典力学中的 牛顿运动定律,是不能从什么更基本的原理中推出来的。 它的正确与否,只能由科学实验来检验。实际上,薛定谔 方程是量子力学的一个基本原理。
薛定谔 Erwin Schrodinger
奥地利人 1887-1961 创立量子力学 获1933年诺贝尔物理学奖
粒子的薛定谔方程为
图3.3.1 有限高势垒
3.3.1 3.3.2
在Ⅱ区,有
其通解为 Ⅲ区的方程同Ⅰ区,但这里无反射波,故
粒子在势阱中的运动,是一种较为常见的现象;金属中 的自由电子在各晶格结点(正离子)形成的“周期场”中运 动,它们不会自发地逃出金属,简化这个模型,可以粗略 地认为粒子被无限高的势能壁束缚在金属之中。
氢原子中的电子就是在三维库仑势阱中运动,不过“阱 壁”不是直立的,而是按-1/r分布。近来,人们设计制作 了一种具有“量子阱”的半导体器件,它具有介观(介于 宏观与微观)尺寸的势阱,阱宽约在10nm上下。这种材料 具有若干特性,已用于制造半导体激光器、光电检测器、 双稳态器件等。
(3.2.6)
由上面的计算,可以看到量子力学解题的一些特点。在解定 态薛定谔方程的过程中,根据边界条件自然地得出了能量量 子化的特性(3.2.5),En是体系的能量本征值,相应的波函数 ψ n是能量本征函数。在一维无限高势垒间粒子运动的特点如 下:
(1)能量是量子化的,最低能量E1≠0,这与经典力学大不 相同,这是粒子波动性的反映,因为“静止的波”是不 存在的。能级的能量依n2规律加大,相邻能级间距越来 越大.
n
对薛定谔方程的讨论:
1、薛定谔方程描述了微观粒子在的运动状态ψ(x,y,z,t)在势 场V中随时间变化的规律。它把ψ(x,y,z,t)随时间的变化与随 空间的变化结合起来了。 2、薛定谔方程是量子力学的基本方程,它和牛顿方程一样 不能从更基本的假设中推导出来。 3、如果给出具体的势场V,再知道粒子的初始状态,原则 上可以通过薛定谔方程求出任意时刻的状态。 4、波函数 ψ(x,y,z,t)一般是复数形式, |ψ(x,y,z,t)|2是表示粒 子在时刻t、在空间某处出现的几率。 5、是非相对论的。
(2)含时间的波函数是
~
sinnxFra biblioteke
i
E
t,这是一个驻波,指
a
数部分表示振动,振幅为 sin n x (如图3.2.2(b)),在形式
a
上像一个两端固定的弦的驻波振动。这又一次指出,在有
限空间内,物质波只能以驻波形式稳定地存在着。
(3)粒子在势垒中的概率分布|ψ|2是不均匀的,而且 有若干概率为零的点(节点)(见图3.2.2(c)).
3.4 薛定谔方程
一、薛定谔方程的建立
二、定态薛定谔方程
三、一维无限深势阱
四、势垒贯穿
小结
一、薛定谔方程的建立
为建立微观粒子的运动方程,让我们先考虑一个特殊 情况,看一看自由粒子波函数满足什么样的微分方程。
自由粒子的波函数为:
(1)
对(1)x,y,z取二阶偏微商得到
等式两边相加,即有
拉普拉斯算符