波函数满足定态薛定谔方程这里
《量子力学》习题答案

第一章 绪论1.1 由黑体辐射公式导出维思位移定律,能量密度极大值所对应的波长m λ与温度T成反比,即b T m =λ (常数),并近似计算b 的数值,准确到二位有效值。
[解]:由黑体辐射公式,频率在ν与ννd +之间的辐射能量密度为 ννπνρννd ec hd kTh 11833-=由此可以求出波长在λ与λλd +之间的能量密度λλρd )(由于 λν/c =, λλνd cd 2+=因而有:λλπλλρλd ehcd kT hc 118)(5-=令λkT hc x =所以有:11)(5-=xe Ax λρ (44558c h T k A π=常数)由 0)(=λλρd d 有0)1(115)(254=⎥⎦⎤⎢⎣⎡---=λλλρd dxe e x e x A d d x x x于是,得: 1)51(=-x e x该方程的根为 965.4=x因此,可以给出,k hcxk hc T m 2014.0==λ即b T m =λ (常数)其中k hcb 2014.0=2383410380546.110997925.21062559.62014.0--⨯⨯⨯⨯⨯=km⋅⨯=-310898.2[注]根据11833-=kThechνννπρ可求能量密度最大值的频率:令kThxν=113-=xeAxνρ(23338hcTkAπ=)]11[3=-=ννρνddxeAxdxdddx因而可得131=⎪⎭⎫⎝⎛-x ex此方程的解821.2=xhkThkTx821.2max==νbTTb'=⇒'=-1max maxνν其中34231062559.610380546.1821.2821.2--⨯⨯=='hkb1910878.5-⋅︒⨯=sk这里求得m axν与前面求得的m axλ换算成的mν的表示不一致。
1.2 在0k附近,钠的价电子能量约为3电子伏,求其德布罗意波长。
[解]德布罗意公式为ph =λ因为价电子能量很小,故可用非相对论公式μ22p E=代入德布罗意公式得λ==这里利用了电子能量E eV=。
能量表象下的薛定谔方程

•设描述微观粒子状态的波函数为Ψ(r,t),质量为m的微观粒子在势场V(r,t)中运动的薛定谔方程。
在给定初始条件和边界条件以及波函数所满足的单值、有限、连续的条件下,可解出波函数Ψ(r,t)。
由此可计算粒子的分布概率和任何可能实验的平均值(期望值)。
当势函数V不依赖于时间t时,粒子具有确定的能量,粒子的状态称为定态。
定态时的波函数可写成式中Ψ(r)称为定态波函数,满足定态薛定谔方程,这一方程在数学上称为本征方程,式中E为本征值,它是定态能量,Ψ(r)又称为属于本征值E的本征函数。
薛定谔方程是量子力学的基本方程,它揭示了微观物理世界物质运动的基本规律,如牛顿定律在经典力学中所起的作用一样,它是原子物理学中处理一切非相对论问题的有力工具,在原子、分子、固体物理、核物理、化学等领域中被广泛应用。
扩展资料
薛定谔方程(Schrodinger equation)在量子力学中,体系的状态不能用力学量(例如x)的值来确定,而是要用力学量的函数Ψ(x,t),即波函数(又称概率幅,态函数)来确定,因此波函数成为量子力学研究的主要对象。
力学量取值的概率分布如何,这个分布随时间如何变化,这些问题都可以通过求解波函数的薛定谔方程得到解答。
这个方程是奥地利物理学家薛定谔于1926年提出的,它是量子力学最基本的方程之一,在量子力学中的地位与牛顿方程在经典力学中的地位相当,超弦理论试图统一两种理论。
15.6 波函数 一维定态薛定谔方程

2
2mE
2
2
, n 1, 2 ,
En n
π
2 2
,
n 1, 2 ,
2ma
n 为主量子数,表明粒子的能量是量子化的。
大学物理 第三次修订本
13
第15章 量子物理基础
波函数
nπ Ψ n x A sin a
2 a
x , n 1, 2 ,
i t Ψ (r , t ) Ψ (r )e
E
定态薛定谔方程
2m 2 2 2 Ψ( r ) 2 E V Ψ(r ) 0 x y z
2 2 2
若粒子在一维空间运动,则
d Ψ x
2
dx
2
2m
大学物理 第三次修订本
o
a
x
势能曲线
11
第15章 量子物理基础
薛定谔方程
d Ψ x
2
dx
2
2mE
2
Ψ x 0
d Ψ x
2
,0 xa
k Ψ x 0
2
令 k
2 mE
2
则
dx
2
方程通解
Ψ x A sin kx B cos kx
Ψ 利用边界条件 x = 0, 0 0 , 则 B = 0 。
物质波波函数是复数,它本身并不代表任 何可观测的物理量。 波函数是怎样描述微观粒子运动状态的?
大学物理 第三次修订本
3
第15章 量子物理基础
1926年德国物理学家玻恩提出了物质波的 统计解释:实物粒子的物质波是一种概率波, t 时刻粒子在空间 r 处附近的体积元 dV 中出现的 概率dW与该处波函数绝对值的平方成正比。
量子力学与统计物理习题解答完整版

量子力学与统计物理习题解答 第一章1. 一维运动粒子处于⎩⎨⎧≤>=-)0(0)0()(x x Axe x xλψ的状态,式中λ>0,求(1)归一化因子A ; (2)粒子的几率密度;(3)粒子出现在何处的几率最大? 解:(1)⎰⎰∞-∞∞-*=0222)()(dx e x Adx x x x λψψ令 x λξ2=,则323232023202224!28)3(88λλλξξλξλA AA d e A dx ex Ax=⨯=Γ==-∞∞-⎰⎰由归一化的定义1)()(=⎰∞∞-*dx x x ψψ得 2/32λ=A(2)粒子的几率密度xe x x x x P λλψψ2234)()()(-*==(3)在极值点,由一阶导数0)(=dxx dP 可得方程0)1(2=--xe x x λλ 而方程的根0=x ;∞=x ;λ/1=x 即为极值点。
几率密度在极值点的值0)0(=P ;0)(lim =∞→x P x ;24)/1(-=e P λλ由于P(x)在区间(0,1/λ)的一阶导数大于零,是升函数;在区间(1/λ,∞)的一阶导数小于零,是减函数,故几率密度的最大值为24-e λ,出现在λ/1=x 处。
2. 一维线性谐振子处于状态t i x Aet x ωαψ212122),(--=(1)求归一化因子A ;(2)求谐振子坐标小x 的平均值;(3)求谐振子势能的平均值。
解:(1)⎰⎰∞∞--∞∞-*=dx e Adx x222αψψ⎰∞-=02222dx e A xα⎰∞-=222ξαξd e Aαπ2A =由归一化的定义1=⎰∞∞-*dx ψψ得 πα=A (2) ⎰⎰∞∞-∞∞--==dx xe A dx x xP x x222)(α因被积函数是奇函数,在对称区间上积分应为0,故 0=x (3)⎰∞∞-=dx x P x U U )()(⎰∞∞--=dx e kx x 22221απα ⎰∞-=0222dx e x k x απα⎰∞-=222ξξπαξd e k⎥⎦⎤⎢⎣⎡+-=⎰∞-∞-0022221ξξπαξξd e e k⎰∞-=02221ξπαξd e k 2212ππαk=24αk =将2μω=k 、μωα=2代入,可得02141E U ==ω 是总能量的一半,由能量守恒定律U T E +=0可知动能平均值U E U E T ==-=0021和势能平均值相等,也是总能量的一半。
大学物理课件:23-2波函数与薛定谔方程

0.091
例:试求在一维无限深势阱中n=1粒子概率密度的最大值的位置。
解:一维无限深势阱中n=1粒子的概率密度为
1(x)
2
2 a
sin2
a
x
n (x)
d 1(x) 2
dx
4
a2
sin
a
x
cos
a
x0
2 sin n x
aa
因为粒子在阱内,则
sin
a
x
0
cos
a
x
0
a
x
2
由此解得最大值得位置为
在 dV 空间内发现粒子的概率: dP 2 dV *dV
概率密度 表示在某处单位体积内发现粒子的概率. Ψ 2 *
某一时刻在整个空间内发现粒子的概率为:
Ψ
2
dV
1
归一化条件
波函数的标准化条件
1)波函数具有有限性
有限空间内:
Ψ
2
dV
1
2)波函数是连续的
3)波函数是单值的
例:作一维运动的粒子被束缚在 0 x的 a范围内。已知其波函数
移动原子
六、一维简谐振子
微观领域中分子的振
动、晶格的振动、,都
可以近似地用简谐振子模
型来描述 。
一维简谐振子的经典模型
一维简谐振子的势函数:
U (x) 1 kx2 1 m2x2
2
2
k m,
m —— 振子质量, —— 固有频率,x —— 位移
相应的定态薛定谔方程为 :
2 d2 1 m 2 x2 E
2
2m
d2 dx2
U
x
x
E
x
2
量子力学 薛定谔方程的建立和定态问题

第二章 波函数和薛定谔方程 2.3、 薛定谔方程 2.3.2、 薛定谔方程的建立
2.3.2、 薛定谔方程的建立 1、自由粒子满足的微分方程: 由自由粒子波函数
i ( p⋅r − Et ) ψ p ( r , t ) = Ae
(1)
将上式两边对时间 t 求一次偏导,得:
∂ψ p
i ( p⋅r − Et ) i i = − EAe = − Eψ p ∂t
第二章 波函数和薛定谔方程 2.3、 薛定谔方程 2.3.1、 描写波函数随时间变化的方程应满足条件
经典力学和量子力学关于描述粒子运动状态的差别。 经典力学 质点的状态用 r , p 描述。 量子力学
微观粒子状态用波函数 Ψ (r , t ) 描述。
每个时刻, r , p 均有确定值, 波函数 Ψ 描述的微观粒子不可能同
第二章 波函数和薛定谔方程 2.3、 薛定谔方程 2.3.1、 描写波函数随时间变化的方程应满足条件
2.3、 薛定谔方程
在 2.1 节中, 我们讨论了微观粒子在某一时刻 t 的状态, 以及描写这个状态的波函数 Ψ 的性质, 但未涉及当时间改 变时粒子的状态将怎样随着变化的问题。本节中我们来讨 论粒子状态随时间变化所遵从的规律。
。
第二章 波函数和薛定谔方程 2.3、 薛定谔方程 2.3.3、 关于薛定谔方程的几点说明
2.3.3、 关于薛定谔方程的几点说明 (1)薛定谔方程是建立的,而不是推导出来的,建立的 方式有多种。 (2)薛定谔方程是量子力学最基本的方程,也是量子力 学的一个基本假定。薛定谔方程正确与否靠实验检验。 (3)薛定谔方程描述了粒子运动状态随时间的变化,揭 示了微观世界中物质的运动规律。
第二章 波函数和薛定谔方程 2.4、 粒子流密度和粒子数守恒定律2.4.1、 几率分布变化及连续性方程
量子力学 第二章 波函数和薛定谔方程

x px
t E J
二.量子力学中的测量过程 1.海森伯观察实验 2.测量过程 被测对象和仪器,测量过程即相互作用过程,其影响 不可控制和预测。
三.一对共轭量不可能同时具有确定的值是微观粒 子具有波动性的必然结果。
并不是测量方法或测量技术的缺陷。而是在本质上 它们就不可能同时具有确定的值
i p
p2 2
对自由粒子:
2 E p
2
∴
2 i 2 t 2
3.力场中运动粒子的波动方程 能量关系:
E p2 U (r , t ) 2
2 i 2 U (r , t ) t 2
4.三个算符
2 H 2 U 2
1。与宏观粒子运动不同。
2。电子位置不确定。
3。几率正比于强度,即 ( r , t )
2
结论:
波函数的统计解释:波函数在空间某一点的 强度(振幅绝对值的平方)和在该点找到粒 子的几率成正比。
2 数学表达: (r , t ) | (r , t ) |
归一化:
2 (r , t )d | (r , t ) | d 1
3 2 i ( pr Et )
e
(r ) p
1 (2)
3 2
e
i pr
(r , t )
( r ) dp dp dp x y z c( p, t ) p
其中:
而:
i Et c( p, t ) c( p) e
而在晶体表面反射后的晶电子状态
状态的迭加。
p
为各种值的
大学物理(下册) 14.6 波函数 薛定谔方程

1.所描述的状态称为 F 的本征态,而上式则 称为本征值方程;
2.波函数的标准条件:单值、有限和连续;
例题 14.6.1 设质量为m的粒子沿x轴方向运动,其势 能为: , x 0,x a Ep u ( x) 0, 0 x a (14.6.15)
无限深势阱:该势能如图所示形如一 无限深的阱,故称无限深势阱,本问 题为求解该一维无限深势阱内粒子的 波函数。
2 2 1 f ( t ) (x, y,z ) 推出: i V (x, y,z ) f (t ) t 2m (x, y,z )
设常量E:
1 f (t ) i E f (t ) t
2
[
2m
V (x, y,z )] (x, y,z ) E (x, y,z )
o
a
x
解:分析 因为势能不随时间变化,故粒子波函数 满足定态薛定谔方程,在势阱内势能为零故其定 态薛定谔方程为:
定态薛定谔方程为:
Ep
k 2mE
d 2 k 0 2 dx
2
其通解为: ( x)
A sin kx B cos kx
o
a
x
由波函数的标准条件:单值、有限和连续可得:
2.定态薛定谔方程 势能函数: V V ( x, y, z ) 波函数可以分离为坐标函数和时间函数的乘积:
(x, y,z,t ) (x, y,z ) f (t )
(14.6.8)
将其代入薛定谔方程式:
2 f (t ) i (x, y,z ) 2 (x, y,z ) f (t ) V (x, y,z ) (x, y,z ) f (t ) t 2m
2
解之得: 定态波函数:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 能量为En的粒子在 x-x+dx 内被发现的概率:
2 2 n dW n ( x ) dx sin xdx a a
2
波函数
几率密度分布
( x)
h2 E4 4 8ma2
2
( x)2
4
2 4 sin( x) a a
n=4
h2 E3 3 8ma2
2
2 3 3 sin( x) a a
主量子数决定着氢原子的能量,E 与n 的依赖关系与波尔理
2 角量子数l
角动量有确定值,为
L l (l 1), l 0,1,2,, (n 1)
角动量是量子化的,叫轨道角动量。习慣用小写字母表示电子 具有某一轨道角动量的量子态,
l 0,1,2,3,4,5,6, . 记号s, p, d , f , g , h, i,.
3 磁量子数ml
§19-8 量子力学简介(2)
定态薛定谔方程
2 [ V (r )] (r ) E (r ) 2m
2
一维定态薛定谔方程
d V ( x) ( x) E ( x) 2 2m dx
2 2
求解定态薛定谔方程,就是在已知势函数的条件下,求 出体系可能有的能量值和波函数。
安徽理工大学 2005级《大学物理》补充
第十八章 量子物理基础
第三讲量子力学应用初步
物理教研室
本次课内容
§19-8 量子力学简介(2)
三 薛定谔方程解一维势阱问题
四 对应原理 五 一维方势垒 隧道效应
§19-9 氢原子的量子理论
§19-10 多电子原子中的电子分布
课本 pp266—289; 练习册 第二十单元
n n ( x) A sin( x) a (0 x a )
式中常数A可由归一化条件求得。
n 2 a n ( x) dx A sin ( x) dx A 1 a 2 0
a 2 2 2
得到 A 2 / a 最后得到薛定谔方程的解为:
2 n n ( x) sin( x) a a (0 x a )
(5a )是勒让德方程,其解是勒让德多项式。为了使 和 时, 为有限,必须限定
(4)是径向方程,可写为:
径向方程用级数法求解。
若E>0,能量连续分布,自由电子情形;
但E<0, (束缚态),波函数标准条件要求
量子数的意义: 1 主量子数n
论相同。
氢原子只能处在一些分立的状态,用主量子数, 角量子数,磁量子数来描述, 取值如下
n=3
2 h E2 22 8ma2
2
2 2 sin( x) a a
n=2
n=1
h2 E1 1 8ma2
2
2 1 sin( x) a a
0
x a0
a
例题:在阱宽为a 的无限深势阱中,一个粒子的状态为
多次测量其能量。问 每次可能测到的值和相应概率? 能量的平均值? 解:已知无限深势阱中粒子的波函数和能量为
8
质量为m 的粒子在外场中作一维运 动,势能函数为
0 (0 x a ) V( x) ( x 0 或 x 0)
定态薛定谔方程为:
V (x )
x=0
x=a
2 d 2 E 2 2m dx
(0 x a )
(1)
当 x < 0 和 x > a 时, ( x) 0
此方程的通解为: ( x) A sin kx B cos kx
由于阱壁无限高,所以 (0) 0
A sin( 0) B cos(0) 0 A sin( ka) B cos( ka) 0
( a) 0
(1) (2)
由式(1)得 B = 0 ,波函数为: ( x) A sin kx 由式(2)得 A sin ka 0 ,于是
2
z
(1)
这里
,(1)式可写成
x
y
采用球坐标:
z
x r sin cos , y r sin sin , z r cos ,
球坐标下:
x
y
(2)式则为:
分离变量,令
代入方程(3)可得:
分离变量得
和
令
,(5)再分离变量式为:
即
和 的单值性要求
(5b )的解是
2 2 2 En 2ma2 n
势阱中粒子的能级图
E
当 n = 1,
h2 E1 2 2ma 8ma 2
n4
2 2
E4
E1即基态能级
n3 n2
E3
En n 2 E1
E2
n 叫作主量子数
n 1
o
a
E1
x
与 E 相对应的本征函数,即本问题的解为:
n ka n , k (n 1,2,3,) a
即: k 2mE / n / a,
2
由此得到粒子的能量En
2 2 2 En 2 2ma n ,
是量子化的。
n 1,2,3,
En 称为本问题中能量E 的本征值。势阱中的粒子,其能量
讨论
1 势阱中的粒子的能量不是任意的,只能取分立值,即 能量是量子化的。能量量子化是微观世界特有的现象,
经典粒子处在势阱中能量可取连续的任意值。
电子(m=9.1×10-31千克): ①若势阱宽a=10Å,则 En=0.75neV, 量子化明显; ②若a=1cm,则En=0.75×10-14eV ,量子化不明显。
则
多次测量能量(可能测到的值) 概率各占1/2 能量的平均值
§19-9 氢原子的量子理论
一 氢原子定态薛定谔方程的求解
氢原子由一个质子和一个电子组成,电子受质子库仑电场作用而绕核运 动(质子静止)。电子的状态由波函数描述,波函数满足定态薛定谔方程:
2 [ V (r )] (r ) E (r ) 2m
8
三 薛定谔方程解一维势阱问题
求解方程(1)
2 d 2 E 2 2m dx
(0 x a )
(1)
(1)式可写成
2
d 2 ( x) 2mE 2 ( x ) 0 (0 x a ) 2 dx
令 ( x ) 0 (0 x a ) 2 dx