平抛运动与斜抛运动

合集下载

平抛运动及斜抛运动

平抛运动及斜抛运动

平抛运动及斜抛运动平抛运动是指物体在水平方向上以一定的初速度从一定高度上抛出后,仅受到重力的影响,在竖直方向上匀加速运动的现象。

斜抛运动则是物体在水平方向上具有初速度的情况下,以一定的角度斜抛出,同时受到重力和空气阻力的影响,使得其运动轨迹不再为简单的抛物线形状。

一、平抛运动平抛运动是力学中的经典问题之一,我们经常见到的拋物线轨迹即为平抛运动。

在平抛运动中,物体的水平速度保持不变,而垂直速度则受到重力的影响逐渐减小。

根据抛体运动的基本公式以及牛顿第二定律,我们可以得到平抛运动的相关公式。

平抛运动的重要公式如下:1. 水平方向上的位移公式:x = v₀ * t其中,x表示水平方向上的位移,v₀表示初速度,t表示时间。

2. 垂直方向上的位移公式:y = v₀ * t - (1/2) * g * t²其中,y表示垂直方向上的位移,g表示重力加速度。

3. 垂直方向上的速度公式:v = v₀ - g * t其中,v表示垂直方向上的速度。

4. 抛体的飞行时间公式:T = (2 * v₀)/g其中,T表示物体的飞行时间。

通过这些公式,我们可以计算在平抛运动中物体的位移、速度以及运动时间等相关参数。

同时,平抛运动也可以应用于实际生活中的许多问题,例如投掷物体的轨迹、射击运动等。

二、斜抛运动斜抛运动是在平抛运动的基础上引入了斜抛的角度和初速度,使得物体在空中作曲线运动。

在斜抛运动中,物体的水平速度仍然保持不变,垂直速度受到重力影响逐渐减小,而斜抛的角度决定了物体的运动轨迹。

斜抛运动的重要公式如下:1. 水平方向上的位移公式:x = v₀ * cosθ * t其中,x表示水平方向上的位移,v₀表示初速度,θ表示抛出角度,t表示时间。

2. 垂直方向上的位移公式:y = v₀ * sinθ * t - (1/2) * g * t²其中,y表示垂直方向上的位移,g表示重力加速度。

3. 垂直方向上的速度公式:v = v₀ * sinθ - g * t其中,v表示垂直方向上的速度。

平抛运动与斜抛运动

平抛运动与斜抛运动

平抛运动与斜抛运动平抛运动和斜抛运动是物理学中常见的两种基本运动方式,它们在物体的运动轨迹、速度、加速度等方面有着明显的差异。

本文将对这两种运动进行详细的介绍与比较。

1、平抛运动平抛运动是指物体在水平方向上以初速度V0作抛射运动的一种运动方式。

在平抛运动过程中,物体始终沿着水平方向匀速运动,而竖直方向上则受到重力加速度的作用。

这意味着物体在抛出后,会先达到最大高度,然后再下落。

其运动轨迹为抛物线形状。

在平抛运动中,物体的初速度、质量以及重力加速度等因素决定了它的运动特性。

我们可以通过以下公式来描述平抛运动的各个参数之间的关系:- 物体的水平位移X与时间t的关系:X = V0 * t- 物体的垂直位移Y与时间t的关系:Y = V0 * t - (1/2) * g * t^2- 物体的运动时间t与最大高度H的关系:H = (V0^2) / (2g)其中,V0表示物体的初速度,g表示重力加速度。

根据上述公式,我们可以看出,平抛运动的时间与最大高度都与初速度有关,而与物体的质量无关。

2、斜抛运动斜抛运动是指物体在斜向上以初速度V0作抛射运动的一种运动方式。

与平抛运动相比,斜抛运动除了水平方向上的匀速运动外,还包含了竖直方向上的运动。

抛出物体的抛射角度对于斜抛运动的轨迹和特性都至关重要。

在斜抛运动中,物体的速度可以分解为水平方向速度Vx和竖直方向速度Vy。

水平方向上物体的速度不受重力作用,始终保持恒定。

而在竖直方向上,物体受到重力加速度的作用,速度逐渐增大直至最大,并随后逐渐减小。

最终,物体会回到地面。

斜抛运动的轨迹为抛物线形状,其特点是最高点位于运动轨迹的一半位置,而物体在抛出角度为45度时,达到最远水平距离。

3、平抛运动与斜抛运动的比较平抛运动和斜抛运动在水平方向上都是匀速运动,不同之处在于,平抛运动的初速度方向与水平方向一致,而斜抛运动的初速度方向有一个抛射角度。

因此,平抛运动的速度在运动过程中始终保持不变,而斜抛运动的速度则有一个初速度和竖直方向的分量。

运动学中的平抛运动和斜抛运动

运动学中的平抛运动和斜抛运动

运动学中的平抛运动和斜抛运动运动学是物理学的一个分支,研究的是物体的运动规律。

平抛运动和斜抛运动是运动学中两个重要的运动形式。

本文将详细介绍这两种运动形式,并探讨它们的特点、公式和实际应用。

一、平抛运动平抛运动是指物体在水平方向上以一定的初速度进行抛射运动。

在没有空气阻力的理想情况下,平抛运动的轨迹为一条抛物线。

平抛运动的特点是:水平方向速度恒定,垂直方向受重力的影响,导致高度随时间变化。

根据运动学的基本公式,可以推导出平抛运动的位移、速度和时间之间的关系。

平抛运动的位移计算公式可以表示为:Δx = Vx × t其中,Δx代表水平方向的位移,Vx表示水平方向上的速度,t表示时间。

平抛运动的速度计算公式可以表示为:Vx = V0 × cosθ其中,Vx表示水平方向上的速度,V0表示初速度的大小,θ表示抛射角度。

平抛运动的时间计算公式可以表示为:t = 2V0 × sinθ / g其中,t表示时间,V0表示初速度的大小,θ表示抛射角度,g表示重力加速度。

平抛运动在实际生活中有广泛的应用。

例如,投掷运动比赛中的铅球、标枪等项目就属于平抛运动。

还有一些物体的抛射运动,例如抛物线轨道的导弹飞行。

平抛运动的研究可以帮助我们预测抛射物体的落点和速度等相关参数。

二、斜抛运动斜抛运动是指物体在初速度有一定倾角的情况下进行抛射运动。

同样地,在没有空气阻力的情况下,斜抛运动的轨迹也是一条抛物线。

斜抛运动的特点是:水平方向速度和垂直方向速度都会发生变化。

根据运动学的基本公式,可以推导出斜抛运动的位移、速度和时间之间的关系。

斜抛运动的水平方向位移计算公式可以表示为:Δx = V0 × cosθ × t斜抛运动的垂直方向位移计算公式可以表示为:Δy = V0 × sinθ × t - 1/2 × g × t^2斜抛运动的速度计算公式可以表示为:Vx = V0 × cosθVy = V0 × sinθ - g × t斜抛运动的时间计算公式可以表示为:t = 2V0 × sinθ / g斜抛运动也有广泛的实际应用。

力学练习题平抛运动与斜抛运动的分析

力学练习题平抛运动与斜抛运动的分析

力学练习题平抛运动与斜抛运动的分析力学练习题:平抛运动与斜抛运动的分析引言:在力学学科中,平抛运动和斜抛运动是两个重要的概念。

本文将对这两种运动进行详细的分析和比较。

平抛运动是指在一个水平面上投掷物体,物体仅受到重力作用的运动;斜抛运动是指物体在水平面上具有初速度和竖直初速度的运动。

一、平抛运动的分析1. 物体在平抛运动中的运动轨迹是一个抛物线,撇点位于物体抛出的位置,对称轴垂直于水平面。

2. 物体的水平速度在整个运动过程中保持不变。

3. 物体的竖直速度随时间增加而减小,直到达到最大值。

二、斜抛运动的分析1. 物体在斜抛运动中的运动轨迹同样是一个抛物线,撇点位于物体抛出的位置。

2. 物体的水平速度在整个运动过程中保持不变。

3. 物体的竖直速度随时间变化,在竖直方向上受到重力作用的影响。

三、平抛运动和斜抛运动的比较1. 运动轨迹:平抛运动和斜抛运动的运动轨迹都是抛物线,撇点位于物体抛出的位置。

2. 初始速度:平抛运动的初始速度只有水平分量,而斜抛运动的初始速度有水平分量和竖直分量。

3. 最大高度:斜抛运动达到的最大高度要高于平抛运动,这是因为斜抛运动具有竖直分量的初速度。

4. 飞行时间:斜抛运动的飞行时间比平抛运动的飞行时间长,这是因为斜抛运动具有竖直分量的初速度。

5. 落地速度:平抛运动和斜抛运动在落地时的速度相同,都只有水平分量。

6. 最大水平距离:斜抛运动的最大水平距离比平抛运动的最大水平距离要远,这是因为斜抛运动具有水平分量的初速度。

结论:平抛运动和斜抛运动是力学学科中的两个重要概念,它们在运动轨迹、初始速度、最大高度、飞行时间、落地速度和最大水平距离等方面存在一些差异。

对于理解和分析抛体运动,了解这些差异是很重要的。

附录:力学练习题1. 一个物体以30m/s的速度和30°的角度进行斜抛运动,请计算该物体的最大高度和飞行时间。

2. 以同样的初速度20m/s进行平抛运动和斜抛运动,比较两种运动的最大水平距离。

运动学中的平抛运动与斜抛运动

运动学中的平抛运动与斜抛运动

运动学中的平抛运动与斜抛运动运动学是物理学中的一个重要分支,研究物体的运动状态、运动规律以及物体间相互作用的规律。

在运动学中,平抛运动和斜抛运动是两种常见的运动形式。

一、平抛运动平抛运动是指物体在水平方向上以一定的初速度从一定的高度投掷出去后,在重力的作用下自由运动的过程。

在忽略空气阻力的情况下,平抛运动有以下特点:1. 运动轨迹为抛物线:因为在水平方向上没有其他力的作用,而在竖直方向上只有重力的作用,所以物体的运动轨迹为抛物线。

2. 垂直方向上的加速度恒定:由于重力的作用,物体在垂直方向上受到一个恒定的加速度,即重力加速度g。

3. 水平方向上的速度恒定:由于在水平方向上没有其他力的作用,物体在水平方向上的速度始终保持不变。

通过上述特点,可以得到平抛运动中物体的运动方程。

假设物体的初始速度为v₀,竖直方向上的初速度为v₀sinθ(θ为投掷角度),水平方向上的初速度为v₀cosθ,初始高度为h,则物体在任意时刻t的位置可表示为:x = v₀cosθty = h + v₀sinθt - 1/2gt²二、斜抛运动斜抛运动是指物体在投掷的同时具有一个竖直方向的初速度分量和一个水平方向的初速度分量,从而形成一个斜向上抛的运动。

在忽略空气阻力的情况下,斜抛运动有以下特点:1. 运动轨迹为抛物线:与平抛运动相同,物体的运动轨迹仍然为抛物线。

2. 竖直方向上的加速度恒定:由于重力的作用,物体在竖直方向上受到一个恒定的加速度,即重力加速度g。

3. 水平方向上的速度恒定:由于在水平方向上没有其他力的作用,物体在水平方向上的速度始终保持不变。

通过上述特点,可以得到斜抛运动中物体的运动方程。

假设物体的初始速度为v₀,投掷角度为θ,初始高度为h,则物体在任意时刻t的位置可表示为:x = v₀cosθty = h + v₀sinθt - 1/2gt²三、平抛运动与斜抛运动的比较平抛运动与斜抛运动在运动特点上具有一些相似之处,也有一些明显的不同之处。

平抛运动与斜抛运动

平抛运动与斜抛运动

平抛运动与斜抛运动知识点一平抛运动1.定义:以一定的初速度沿水平方向抛出的物体只在重力作用下的运动.2.性质:平抛运动是加速度为g的匀加速曲线运动,其运动轨迹是抛物线.3.平抛运动的条件:(1)v0≠0,沿水平方向;(2)只受重力作用.4.研究方法:平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动.5.基本规律(如图所示)(1)速度关系(2)位移关系(3)轨迹方程:y=g2v20x2知识点二斜抛运动1.定义:将物体以初速度v0沿斜向上方或斜向下方抛出,物体只在重力作用下的运动.2.性质:加速度为重力加速度g的匀变速曲线运动,轨迹是抛物线.3.研究方法:斜抛运动可以看做水平方向的匀速直线运动和竖直方向的匀变速直线运动的合运动.【基础自测】1.“套圈圈”是老少皆宜的游戏,如图,大人和小孩在同一竖直线上的不同高度处分别以水平速度v1、v2抛出铁圈,都能套中地面上同一目标.设铁圈在空中运动时间分别为t1、t2,则(D)A.v1=v2B.v1>v2C.t1=t2D.t1>t2解析:根据平抛运动的规律h=12gt2知,运动的时间由下落的高度决定,故t1>t2,所以选项C错误,D正确;由题图知,两圈水平位移相同,再根据x=v t,可得v1<v2,故选项A、B错误.2.在同一水平直线上的两位置分别沿同方向水平抛出两小球A和B,其运动轨迹如图所示,不计空气阻力.要使两球在空中相遇,则必须(C)A.先抛出A球B.先抛出B球C.同时抛出两球D.使两球质量相等解析:由于相遇时A、B做平抛运动的竖直位移h相同,由h=12gt2可以判断两球下落时间相同,即应同时抛出两球,故选项C正确,A、B错误;下落时间与球的质量无关,故选项D错误.3.如图所示,某物体自空间O点以水平初速度v0抛出,落在地面上的A点,其轨迹为一抛物线.现仿此抛物线制作一个光滑滑道并固定在与OA完全重合的位置上,然后将此物体从O点由静止释放,受微小扰动而沿此滑道滑下,在下滑过程中物体未脱离滑道.P为滑道上一点,OP连线与竖直方向成45°,则此物体(B)A.由O点运动至P点的时间为2v0 gB.物体经过P点时,速度的水平分量为25 5v0C.物体经过P点时,速度的竖直分量为v0D .物体经过P 点时的速度大小为225v 0解析:OP 连线与竖直方向成45°,则平抛运动的竖直位移与水平位移相等,有v 0t =12gt 2,解得t =2v 0g ,而沿光滑轨道由静止下滑的物体除受重力外,还受轨道的支持力,其运动不是平抛运动,所以下滑至P 的时间不为2v 0g,故选项A 错误;平抛运动竖直方向分速度为v y =gt =2v 0,设瞬时速度方向与水平方向成θ角,则有tan θ=v yv 0=2.由静止沿轨道下滑过程,由动能定理得mgh =12m v 2,而平抛运动时v 2y =2gh ,解得v =2v 0,故选项D 错误;物体经过P 点时,速度的水平分量为v x =v cos θ=2v 0×55=255v 0,竖直分量为v y =v sin θ=2v 0×255=455v 0,故选项B 正确,C 错误. 4.如图所示,球网高出桌面H ,网到桌边的距离为L ,某人在乒乓球训练中,从左侧L2处,将球沿垂直于网的方向水平击出,球恰好通过网的上沿落到右侧边缘,设乒乓球的运动为平抛运动,下列判断正确的是( D )A .击球点的高度与网高度之比为21B .乒乓球在网左、右两侧运动时间之比为21C .乒乓球过网时与落到右侧桌边缘时速率之比为12D .乒乓球在左、右两侧运动速度变化量之比为12解析:因为水平方向做匀速运动,网右侧的水平位移是左侧水平位移的两倍,所以网右侧运动时间是左侧的两倍,竖直方向做自由落体运动,根据h =12gt 2可知,击球点的高度与网高之比为98,故选项A 、B 错误;球恰好通过网的上沿的时间为落到右侧桌边缘的时间的13,竖直方向做自由落体运动,根据v =gt 可知,球恰好通过网的上沿的竖直分速度与落到右侧桌边缘的竖直分速度之比为13,根据v =v 20+v 2y 可知,乒乓球过网时与落到桌边缘时速率之比不是12,故选项C 错误;网右侧运动时间是左侧的两倍,Δv =gt ,所以乒乓球在左、右两侧运动速度变化量之比为12,故选项D 正确.知识点一 平抛运动的规律1.基本规律 (1)速度关系(2)位移关系2.实用结论(1)速度改变量:物体在任意相等时间内的速度改变量Δv=gΔt相同,方向恒为竖直向下,如图甲所示.(2)水平位移中点:因tanα=2tanβ,所以OC=2BC,即速度的反向延长线通过此时水平位移的中点,如图乙所示.1.在地面上方某点将一小球以一定的初速度沿水平方向抛出,不计空气阻力,则小球在随后的运动中(B)A.速度和加速度的方向都在不断变化B.速度与加速度方向之间的夹角一直减小C.在相等的时间间隔内,速率的改变量相等D.在相等的时间间隔内,动能的改变量相等解析:由于物体只受重力作用,做平抛运动,故加速度不变,速度大小和方向时刻在变化,选项A错误;设某时刻速度与竖直方向(即加速度方向)夹角为θ,则tanθ=v0v y=v0gt,随着时间t变大,tanθ变小,θ变小,故选项B正确;根据加速度定义式a=ΔvΔt=g,则Δv=gΔt,即在相等的时间间隔内,速度的改变量相等,但速率的改变量不相等,故选项C错误;根据动能定理,动能的改变量等于重力做的功,即W G=mgh,对于平抛运动,在竖直方向上,相等时间间隔内的位移不相等,即动能的改变量不相等,故选项D错误.2.(2017·全国卷Ⅰ)发球机从同一高度向正前方依次水平射出两个速度不同的乒乓球(忽略空气的影响).速度较大的球越过球网,速度较小的球没有越过球网.其原因是(C)A.速度较小的球下降相同距离所用的时间较多B.速度较小的球在下降相同距离时在竖直方向上的速度较大C.速度较大的球通过同一水平距离所用的时间较少D.速度较大的球在相同时间间隔内下降的距离较大解析:发球机从同一高度水平射出两个速度不同的乒乓球,根据平抛运动规律,竖直方向上,h=12gt2,可知两球下落相同距离h所用的时间是相同的,选项A错误;由v2y=2gh可知,两球下落相同距离h时在竖直方向上的速度v y相同,选项B 错误;由平抛运动规律,水平方向上,x=v t,可知速度较大的球通过同一水平距离所用的时间t较少,选项C正确;由于做平抛运动的球在竖直方向的运动为自由落体运动,两球在相同时间间隔内下降的距离相同,选项D错误.3.(2019·抚顺一模)如图所示,离地面高h处有甲、乙两个物体,甲以初速度v0水平射出,同时乙以初速度v0沿倾角为45°的光滑斜面滑下.若甲、乙同时到达地面,则v0的大小是(A)A.gh2 B.ghC.2gh2D.2gh解析:甲做平抛运动,水平方向做匀速运动,竖直方向做自由落体运动,根据h=12gt2,得:t=2hg①根据几何关系可知:x乙=2h②乙做匀加速直线运动,根据牛顿第二定律可知:a=F合m=mg sin45°m=22g③根据位移时间公式可知:x乙=v0t+12at2④由①②③④式得:v0=gh2,所以A正确.知识点二与斜面有关的平抛运动平抛运动与斜面结合的问题,一般是研究物体从斜面顶端平抛到落回斜面的运动过程,解决这类问题一般仍是在水平和竖直方向上分解.求解的关键在于深刻理解通过与斜面的关联而给出的隐含条件.常见运动情景的研究方法典例如图所示,一光滑斜面与竖直方向成α角,一小球以两种方式释放:第一种方式是在A点以速度v0平抛落至B点;第二种方式是在A点松手后沿斜面自由下滑至B点,求:(1)AB的长度多大?(2)两种方式到达B点,平抛的运动时间为t1,下滑的时间为t2,t1t2等于多少?(3)以两种方式到达B 点的水平分速度之比v 1x v 2x 和竖直分速度之比v 1yv 2y各是多少? 【审题关键点】 物体从斜面上某一点水平抛出又落在斜面上,即满足平抛运动规律.在解答这类问题时,除要运用平抛运动的位移和速度规律,还要充分运用斜面倾角,找出斜面倾角同位移和速度与水平方向夹角的关系,从而顺利解决问题.【解析】 以两种方式释放,从A 到B 位移相同,设AB 长为L . (1)水平方向位移L sin α=v 0t 1 ① 竖直方向位移L cos α=12gt 21 ②联立①②得L =2v 20cos αg sin 2α. (2)将L 值代入①式可得t 1=2v 0g tan α. 物体下滑的加速度a =g cos α, 由L =12at 22,得t 2=2L a. 将L 、a 代入得t 2=2v 0g sin α,则有t 1t 2=cos α1. (3)平抛运动的水平分速度v 1x =v 0, 竖直分速度v 1y =gt 1=2v 0tan α; 下滑运动的水平分速度v 2x =v 2sin α, 竖直分速度v 2y =v 2cos α; 由于v 2=2aL =2v 0tan α, 所以v 2x =2v 0cos α,v 2y =2v 0cos 2αsin α; 则v 1x v 2x =12cos α,v 1y v 2y =1cos α. 【答案】 (1)2v 20cos αg sin 2α (2)cos α (3)12cos α 1cos α4.(多选)如图所示,不计空气阻力,从O 点水平抛出的小球抵达光滑斜面上端P 处时,速度方向恰好沿着斜面方向,然后紧贴斜面PQ 做匀加速直线运动.下列说法正确的是( BC )A .小球在斜面上运动的加速度大小比平抛运动时的大B .小球在斜面上运动的加速度大小比平抛运动时的小C .撤去斜面,小球仍从O 点以相同速度水平抛出,落地速率将不变D.撤去斜面,小球仍从O点以相同速度水平抛出,落地时间将不变解析:小球做平抛运动时,加速度为重力加速度g,在斜面上运动时,加速度为a=g sinα(α为斜面的倾角),选项A错误,选项B正确;小球平抛后又紧贴斜面PQ做匀加速直线运动,小球在斜面上所受的弹力对小球不做功,整个过程只有重力做功,而撤去斜面,小球仍从O点以相同速度水平抛出,整个过程也只有重力做功,两种方式小球机械能守恒,所以小球落地速率将不变,选项C正确;当在斜面上运动时,由运动的合成与分解知,小球在竖直方向的加速度小于重力加速度g,所以撤去斜面后,小球落地时间变短,选项D错误.5.(多选)如图所示,一固定斜面倾角为θ,将小球A从斜面顶端以速率v0水平向右抛出,小球击中了斜面上的P点;将小球B从空中某点以相同速率v0水平向左抛出,小球恰好垂直斜面击中Q点.不计空气阻力,重力加速度为g,下列说法正确的是(BC)A.若小球A在击中P点时速度方向与水平方向所夹锐角为φ,则tanθ=2tanφB.若小球A在击中P点时速度方向与水平方向所夹锐角为φ,则tanφ=2tanθC.小球A、B在空中运动的时间之比为2tan2θ1D.小球A、B在空中运动的时间之比为tan2θ1解析:由题图可知,斜面的倾角θ等于小球A落在斜面上时的位移与水平方向的夹角,由平抛运动的推论可知,tanφ=2tanθ,选项A错误,选项B正确;设小球A在空中运动的时间为t1,小球B在空中运动的时间为t2,则由平抛运动的规律可得tanθ=12gt21v0t1,tanθ=v0gt2,故t1t2=2tan2θ,选项C正确,选项D错误.知识点三求解平抛运动的五种方法方法1以分解速度为突破口求解平抛运动问题问题简述对于一个做平抛运动的物体来说,如果知道了某一时刻的速度方向,则我们常常是从“分解速度”的角度来研究问题.方法突破以初速度v0做平抛运动的物体,经历时间t速度和水平方向的夹角为α,由平抛运动的规律得:tanα=v yv x=gtv0,从而得到初速度v0、时间t、偏转角α之间的关系,进而求解.已知斜面顶端与平台的高度差h=0.8 m,g=10 m/s2,sin53°=0.8,cos53°=0.6,则(1)小球水平抛出的初速度v 0是多大? (2)斜面顶端与平台边缘的水平距离x 是多少?(3)若斜面顶端高H =20.8 m ,则小球离开平台后经多长时间到达斜面底端?解析:(1)由题意可知:小球落到斜面上并沿斜面下滑,说明此时小球速度方向与斜面平行,否则小球会弹起,所以v y =v 0tan53°,v 2y =2gh ,则v y =4 m/s ,v 0=3 m/s.(2)由v y =gt 1得t 1=0.4 s ,x =v 0t 1=3×0.4 m =1.2 m.(3)小球沿斜面做匀加速直线运动的加速度a =g sin53°,初速度v =5 m/s.则H sin53°=v t 2+12at 22,解得t 2=2 s (或t 2=-134 s 不合题意舍去.)所以t =t 1+t 2=2.4 s.答案:(1)3 m/s (2)1.2 m (3)2.4 s方法2 以分解位移为突破口求解平抛运动问题7.如图所示,在竖直面内有一个以AB 为水平直径的半圆,O 为圆心,D 为最低点.圆上有一点C ,且∠COD =60°.现在A 点以速率v 1沿AB 方向抛出一小球,小球能击中D 点;若在C 点以某速率v 2沿BA 方向抛出小球时也能击中D 点.重力加速度为g ,不计空气阻力.下列说法正确的是( A )A .圆的半径为R =2v 21gB .圆的半径为R =4v 213gC .速率v 2=32v 1D .速率v 2=33v 1解析:从A 点抛出的小球做平抛运动,它运动到D 点时R =12gt 21,R =v 1t 1,故R =2v 21g ,选项A 正确,选项B 错误;从C点抛出的小球R sin60°=v 2t 2,R (1-cos60°)=12gt 22,解得v 2=62v 1,选项C 、D 错误. 方法3 利用假设法求解平抛运动问题8.在b 点.斜坡上c 、d 两点与a 、b 共线,且ab =bc =cd ,不计空气阻力.第三颗炸弹将落在( A )A .bc 之间B .c 点C .cd 之间D .d 点解析:如图所示,设第二颗炸弹的轨迹经过A 、b ,第三颗炸弹的轨迹经过P 、Q ;a 、A 、B 、P 、C 在同一水平线上,由题意可设aA =AP =x 0,ab =bc =L ,斜面的倾角为θ,三颗炸弹到达a 所在水平面时的竖直速度为v y ,水平速度为v 0,对第二颗炸弹:水平方向:x 1=L cos θ-x 0=v 0t 1, 竖直方向:y 1=v y t 1+12gt 21.对第三颗炸弹:水平方向:x 2=2L cos θ-2x 0=v 0t 2,竖直方向:y2=v y t2+12gt22,解得:t2=2t1,y2>2y1.所以Q点在c点的下方,也就是第三颗炸弹将落在bc之间,故A正确,B、C、D错误.方法4利用重要推论求解平抛运动问题推论Ⅰ:做平抛运动的物体,任意时刻速度方向的反向延长线一定通过此时水平位移的中点.推论Ⅱ:做平抛运动的物体在任一时刻或任一位置时,设其速度方向与水平方向的夹角为α,位移与水平方向的夹角为θ,则tanα=2tanθ.9.成β=37°角,两者相距为d.假设飞镖的运动是平抛运动,求射出点离墙壁的水平距离为多少.(sin37°=0.6,cos37°=0.8)解析:设射出点P离墙壁的水平距离为L,飞镖甲下降的高度为h1,飞镖乙下降的高度为h2,根据平抛运动的重要推论可知,两飞镖速度的反向延长线一定通过水平位移的中点Q,如图所示,由此得L2cotβ-L2cotα=d,代入数值得:L=24d7.答案:24d 7方法5利用等效法求解类平抛运动问题Q点离开斜面,则(C)A.P→Q所用的时间t=22l g sinθB.P→Q所用的时间t=2l gC.初速度v0=b g sinθ2lD.初速度v0=b g 2l解析:物体的加速度为:a=g sinθ.根据l=12at2,得:t=2lg sinθ,故A、B错误;初速度v0=bt=bgsinθ2l,故C正确,D错误.体育运动中的平抛运动问题在体育运动中,像乒乓球、排球、网球等都有中间网及边界问题,要求球既能过网,又不出边界,某物理量(尤其是球速)往往要有一定的范围限制,在这类问题中,确定临界状态,画好临界轨迹,是解决问题的关键点.11.[乒乓球的平抛运动问题]一带有乒乓球发射机的乒乓球台如图所示.水平台面的长和宽分别为L1和L2,中间球网高度为h.发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h.不计空气的作用,重力加速度大小为g.若乒乓球的发射速率v在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v 的最大取值范围是( D )A.L 12 g6h <v <L 1 g6hB.L 14 g h <v < (4L 21+L 22)g6h C.L 12 g 6h <v <12 (4L 21+L 22)g6h D.L 14g h <v <12(4L 21+L 22)g6h解析:设以速率v 1发射乒乓球,经过时间t 1刚好落到球网正中间.则竖直方向上有3h -h =12gt 21①,水平方向上有L 12=v 1t 1②.由①②两式可得v 1=L 14g h .设以速率v 2发射乒乓球,经过时间t 2刚好落到球网右侧台面的两角处,在竖直方向有3h =12gt 22③,在水平方向有 ()L 222+L 21=v 2t 2④.由③④两式可得v 2=12(4L 21+L 22)g6h.则v 的最大取值范围为v 1<v <v 2.故选项D 正确.12.[足球的平抛运动问题]如图所示为足球球门,球门宽为L .一个球员在球门中心正前方距离球门s 处高高跃起,将足球顶入球门的左下方死角(图中P 点).球员顶球点的高度为h .足球做平抛运动(足球可看成质点,忽略空气阻力),则( B )A .足球位移的大小x =L 24+s 2 B .足球初速度的大小v 0=g 2h ()L 24+s 2C .足球末速度的大小v =g 2h ()L24+s 2+4gh D .足球初速度的方向与球门线夹角的正切值tan θ=L2s解析:根据几何关系可知,足球做平抛运动的竖直高度为h ,水平位移为x 水平=s 2+L 24,则足球位移的大小为:x =x 2水平+h 2=s 2+L 24+h 2,选项A 错误;由h =12gt 2,x 水平=v 0t ,可得足球的初速度为v 0= g 2h ()L 24+s 2,选项B 正确;对小球应用动能定理:mgh=m v22-m v202,可得足球末速度v=v20+2gh=g2h()L24+s2+2gh,选项C错误;初速度方向与球门线夹角的正切值为tanθ=2sL,选项D错误.13.[网球的平抛运动问题]一位网球运动员以拍击球,使网球沿水平方向飞出.第一只球飞出时的初速度为v1,落在自己一方场地上后,弹跳起来,刚好擦网而过,落在对方场地的A点处.如图所示,第二只球飞出时的初速度为v2,直接擦网而过,也落在A点处.设球与地面碰撞时没有能量损失,且不计空气阻力,求:(1)网球两次飞出时的初速度之比v1v2;(2)运动员击球点的高度H与网高h之比H h.解析:(1)第一、二两只球被击出后都做平抛运动,由平抛运动的规律可知,两球分别被击出至各自第一次落地的时间是相等的.由题意知水平射程之比为x1x2=13,故平抛运动的初速度之比为v1v2=1 3.(2)第一只球落地后反弹做斜抛运动,根据运动对称性可知DB段和OB段是相同的平抛运动,则两球下落相同高度(H-h)后水平距离x1′+x2′=2x1,根据公式H=12gt21,H-h=12gt22,而x1=v1t1,x1′=v1t2,x2′=v2t2,综合可得v1t2+v2t2=2v1t1,故t1=2t2,即H=4(H-h),解得H h=4 3.答案:(1)13(2)4314.[排球的平抛运动问题]如图所示,排球场总长为18 m,设球网高度为2 m,运动员站在网前3 m处正对球网跳起将球水平击出,不计空气阻力,取重力加速度g=10 m/s2.(1)若击球高度为2.5 m,为使球既不触网又不出界,求水平击球的速度范围;(2)当击球点的高度低于何值时,无论水平击球的速度多大,球不是触网就是越界?解析:(1)排球被水平击出后,做平抛运动,如图所示, 若正好压在底线上,则球在空中的飞行时间: t 1=2h 0g=2×2.510 s =12s 由此得排球不越界的临界速度 v 1=x 1t 1=121/2m/s =12 2m/s.若球恰好触网,则球在网上方运动的时间: t 2=2(h 0-H )g=2×(2.5-2)10 s =110s. 得排球触网的临界击球速度值 v 2=x 2t 2=31/10m/s =310 m/s.要使排球既不触网又不越界,水平击球速度v 的取值范围为:310 m/s<v ≤12 2 m/s.(2)设击球点的高度为h ,当h 较小时,击球速度过大会越界,击球速度过小又会触网,临界情况是球刚好擦网而过,落地时又恰好压在边界线上.由几何知识可得x 12h g=x 22(h -H )g .得h =H 1-()x 2x12=21-()3122m =3215m. 即击球高度不超过此值时,球不是出界就是触网. 答案:(1)310 m/s<v ≤12 2 m/s (2)3215m。

高中物理平抛斜抛运动

高中物理平抛斜抛运动
A.当v≥50 m/s时,飞镖将射中第8环线以内
B.当v=50 m/s时,飞镖将射中第6环线
C.若要击中第10环的线内,飞镖的速度v至少为50 m/s
D.若要击中靶子,飞镖的速度v至少为25 m/s
考点三 斜面上的平抛运动
平抛运动与斜面相结合的模型,其特点是做平抛运动的物体落在斜面上,包括两种情况:
第十一定义:以一定的初速度沿方向抛出的物体只在作用下的运动。
2.性质:平抛运动是加速度为g的曲线运动,其运动轨迹是。
3.平抛运动的条件:(1)v0≠0,沿;(2)只受作用。
4.研究方法:平抛运动可以分解为水平方向的运动和竖直方向的运动。
5.基本规律(如图所示)
位移关系
(3)从同一高度水平抛出的物体,不计空气阻力,初速度越大,落地速度越大。()
考点一 对平抛运动的理解
【例1】(多选)对于平抛运动,下列说法正确的是()
A.落地时间和落地时的速度只与抛出点的高度有关
B.平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动
C.做平抛运动的物体,在任何相等的时间内位移的增量都是相等的
C.A、B、C处三个小球的初速度大小之比为3∶2∶1
D.A、B、C处三个小球的运动轨迹可能在空中相交
考点四斜抛运动规律的应用
【例4】(多选)如图所示,从地面上同一位置抛出两小球A、B,分别落在地面上的M、N点,两球运动的最大高度相同.空气阻力不计,则().
A.B的加速度比A的大
B.B的飞行时间比A的长
2.(多选)对平抛运动,下列说法正确的是().
A.平抛运动是加速度大小、方向不变的曲线运动
B.做平抛运动的物体,在任何相等的时间内位移的增量都是相等的
C.平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动

斜抛运动与平抛运动

斜抛运动与平抛运动

斜抛运动的落 地速度:与抛 出角度、初速 度和重力加速
度有关
平抛运动的落 地速度:恒定,
等于初速度
斜抛运动的落 地时间:与抛 出角度、初速 度和重力加速
度有关
平抛运动的落 地时间:与初 速度和重力加 速度有关,可
以通过公式 t=√(2h/g)计 算,其中h为高 度,g为重力加
速度。
平抛运动的落地速度:与抛出时的 初速度有关,与抛出时的角度无关通过公式 v=g*t^2/2计算
添加标题
添加标题
添加标题
添加标题
平抛运动的落地时间:与抛出时的 初速度和角度有关,可以通过公式 t=2v/g计算
平抛运动的落地速度和落地时间与 斜抛运动的比较:斜抛运动的落地 速度和落地时间与抛出时的角度和 初速度有关,需要通过积分计算
平抛运动的初速度:水平方向有 速度,竖直方向速度为零,通常 用矢量表示
平抛运动的初位置:物体在抛出 时的位置,通常用坐标表示
初速度:水平方向,大小为v0
初位置:水平方向,位置为x0
斜抛运动的初速度:水平方向, 大小为v0,竖直方向,大小为 vs
斜抛运动的初位置:水平方向, 位置为x0,竖直方向,位置为 y0
平抛运动的加速度是恒定的,大 小为g,方向竖直向下
平抛运动的加速度与物体的质量 和初速度无关
平抛运动的加速度是物体在重力 作用下获得的加速度
平抛运动的加速度是物体在自由 落体运动中受到的加速度
斜抛运动的初速度:水平方向和 竖直方向都有速度,通常用矢量 表示
斜抛运动的初位置:物体在抛出 时的位置,通常用坐标表示
汇报人:XX
斜抛运动是一种常见的抛 体运动,物体以一定的初 速度沿与水平面成一定角
度的方向抛出。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平抛运动与斜抛运动一、平抛运动1,定义:水平方向抛出的物体只在重力作用下运动。

2,性质:①水平方向:以初速度v 0做匀速直线运动。

②竖直方向:以加速度a=g 做自由落体运动。

③在水平方向和竖直方向的两个分运动同时存在,互不影响,具有独立性。

④合运动是匀变速曲线运动。

3,平抛运动的规律以抛出点为坐标原点,以初速度v 0方向为x 正方向,竖直向下y 为正方向,,如右图所示,则有:分速度0v v x =,gt v y = 合速度2220t g v v +=,0tan v gt =θ 分位移gt x =,221gt y =合位移422202221t g t v y x s +=+= θαtan 21221tan 002====v gt t v gt x y (注意:合位移方向与合速度方向不一致)4,平抛运动的特点①平抛运动是匀变速曲线运动,故相等的时间内速度的变化量相等,由gt v =∆可知,速度的变化必沿竖直方向,如下图所示。

任意两时刻的速度,画到一点时,其末端连线必沿竖直方向,且都与v 0构成直角三角形。

②物体由一定高度做平抛运动,其运动时间由下落高度决定,与初速度无关。

由公式221at h =,可得:gh t 2=。

落地点距离抛出点的水平距离t v s 0=,由水平速度和下落时间共同决定。

二、斜抛运动1,定义:斜向上或斜向下抛出的物体只在重力(不考虑空气阻力)作用下的运动叫做斜抛运动。

2,斜抛运动的特点:水平方向速度不变,竖直方向仅受重力,加速度为g 。

3,斜抛运动的分解:斜抛运动可以看成是水平方向的匀速直线运动和竖直方向的竖直上抛或竖直下抛运动的合运动。

4,斜抛运动的方程如图所示,斜上抛物体初速度为v ,与水平方向夹角为θ,则速度:位移:可得:θcos v x t =代入y 可得:θθ222cos 2tan v gx x y -= 这就是斜抛物体的轨迹方程。

可以看出:y =0时,(1)x =0是抛出点位置。

(2)是水平方向的最大射程。

(3)飞行时间:随堂练习 1、质量为m 的物体受到一组共点恒力作用而处于平衡状态,当撤去某个恒力F 1时,物体可能做( )A .匀加速直线运动B .匀减速直线运动C .匀变速曲线运动D .变加速曲线运动2、物体从某一确定高度以v 0初速度水平抛出,已知落地时的速度为v t ,它的运动时间是 )A .g v v t 0-B .g v v t 20-C .g v v t 2202- D3、如图所示,以9.8m/s 的水平初速度v 0抛出的物体,飞行一段时间后,垂直地撞在倾角θ为30° 的斜面上,可知物体完成这段飞行的时间是( )A 、s B 、sC 、sD 、2s 4、如图示,从一根内壁光滑的空心竖直钢管A 的上端边缘,沿直径方向向管内水平抛入一钢球.球与管壁多次相碰后落地(球与管壁相碰时间不计),若换一根等高但较粗的内壁光滑的钢管B ,用同样的方法抛入此钢球,则运动时间( )A .在A 管中的球运动时间长B .在B 管中的球运动时间长g v x θ2sin 2=C.在两管中的球运动时间一样长D.无法确定5、物体做平抛运动时,它的速度的方向和水平方向间的夹角α的正切tanα随时间t变化的图像是图1中的()6、一个物体以初速度v0水平抛出,经t秒时,其速度竖直方向分量和v0大小相等,t等于( )A、 B、 C、 D、7、做平抛运动的物体如果落地时竖直方向的速率与水平抛出时的速率相等,则它经过的水平距离与抛出点的高度之比是。

11、一物体从20m 高处水平抛出,1 s末速度方向与水平方向的夹角为300,(g取10 m/s2,不计空气阻力)求(1)落地时的速度大小为多少?(2)落地点里抛出点多远?8、如图所示,一个小球从楼梯顶部以v0=2 m/s的水平速度抛出,所有的台阶都是高0.2 m、宽0.25 m。

问小球从楼梯顶部抛出后首先撞到哪一级台阶上。

9、一座炮台置于距地面60 m高的山崖边,以与水平线成45°角的方向发射一颗炮弹,炮弹离开炮口时的速度为120 m/s。

求:(1)炮弹所达到的最大高度;(2)炮弹落到地面时的时间和速度;(3)炮弹的水平射程。

(忽略空气阻力,取g=10 m/s2)巩固练习1、关于平抛运动,下列说法正确的是()A .是匀变曲线速运动B .是变加速曲线运动C .任意两段时间内速度变化量的方向相同D .任意相等时间内的速度变化量相等2、物体在平抛运动过程中,在相等的时间内,下列哪些量是相等的( )A .速度的增量B .加速度C .位移D .平均速率3、一水平抛出的小球落到一倾角为θ的斜面上时,其速度方向与斜面垂直,运动轨迹如右图中虚线所示。

小球在竖直方向下落的距离与在水平方向通过的距离之比为( )A .1tan θB .12tan θC .tan θD .2tan θ4、如图所示,斜面上有a 、b 、c 、d 四个点,ab =bc =cd ,从a 点正上方O以速度v 水平抛出一个小球,它落在斜面的b 点;若小球从O以速度2v 水平抛出,不计空气阻力,则它落在斜面上的( )A.b 与c 之间某一点B.c 点C.d 点D.c 与d 之间某一点5、以速度v o 水平抛出一小球,如果从抛出到某时刻小球的竖直分位移与水平分位移大小相等,以下判断正确的是( )A .此时小球的竖直分速度大小等于水平分速度大小B .此时小球的速度大小为0v 5C.此时小球速度的方向与位移的方向相同 D .小球运动的时间为v o /g6、以初速度v 0水平抛出一物体,经过一段时间后,速度的大小为v ,,再经过相同的一段时间,物体速度的大小变为____。

7、从19.6m 高处水平抛出的物体,落地时速度为25m/s ,求这物体的初速度.8、水平抛出的一个石子,经过0.4s 落到地面,落地时的速度方向跟水平方向的夹角是53° ,(g 取10m/s 2 )。

试求:(1)石子的抛出点距地面的高度;(2)石子抛出的水平初速度。

9、在倾角为α的斜面上P 点,以水平速度υ0向斜面下方抛出一小球,落在O 点(如图).不计空气阻力,试求小球落在O 的速度.a cb O10、在掷铅球时,铅球出手时距地面的高度为h,若出手时的速度为v0,求以何角度掷球时,水平射程最远?最远射程为多少?课外训练:1.做斜抛运动的物体( )A.水平分速度不变B.加速度不变C.在相同的高度处有相同的速度D.经过最高点时,瞬时速度为零2.某同学在篮球场地上做斜上抛运动实验,设抛出球的初速度为20 m/s,抛射角分别为30°、45°、60°、75°,不计空气阻力,则关于球的射程,以下说法中正确的是( )A.以30°角度抛射时,射程最大B.以45°角度抛射时,射程最大C.以60°角度抛射时,射程最大D.以75°角度抛射时,射程最大3.一位田径运动员在跳远比赛中以10 m/s的速度沿与水平面成30°的角度起跳,在落到沙坑之前,他在空中滞留的时间约为(g取10 m/s2)( )A.0.42 s B.0.83 sC.1 s D.1.5 s4.若不计空气阻力,下列运动可以看成斜抛运动的是( )A.斜向上方发射的探空火箭B.足球运动员远射踢出的高速旋转的“香蕉球”沿奇妙的弧线飞入球门C.姚明勾手投篮时抛出的篮球D.军事演习中发射的导弹5.将同一物体分别以不同的初速度、不同的仰角做斜抛运动,若初速度的竖直分量相同,则下列哪个量相同 ( )A.落地时间B.水平射程C.自抛出至落地的速度变化量D.最大高度6.斜抛运动与平抛运动相比较,相同的是( )A.都是匀变速曲线运动B.平抛是匀变速曲线运动,而斜抛是非匀变速曲线运动C.都是加速度逐渐增大的曲线运动D.平抛运动是速度一直增大的运动,而斜抛是速度一直减小的曲线运动7、两物体自同一地点分别与水平方向成θ1=60°、θ2=30°的仰角抛出,若两物体所达到的射程相等,则它们的抛射速度之比为( )A.1∶1 B.1∶3C. 3∶1 D.1∶38、如图1所示,在水平地面上的A点以速度v1跟地面成θ角射出一弹丸,恰好以速度v2垂直穿入墙壁上的小孔B,则下列说法正确的是()A.在B点以跟v2大小相等、方向相反的速度射出弹丸,它必定落在地面上的A点B.在B点以跟v1大小相等、跟v2方向相反的速度射出弹丸,它必定落在地面上的A点C.在B点以跟v1大小相等、跟v2方向相反的速度射出弹丸,它必定落在A点的左侧D.在B点以跟v1大小相等、跟v2方向相反的速度射出弹丸,它必定落在A点的右侧9、下列关于做斜抛运动的物体速度改变量的说法中正确的是(g=9.8 m/s2)()A.抛出后一秒内物体速度的改变量要比落地前一秒内的小B.在到达最高点前的一段时间内,物体速度的变化要比其他时间慢一些C.即使在最高点附近,每秒钟物体速度的改变量也等于9.8 m/sD.即使在最高点附近,物体速度的变化率也等于9.8 m/s210、一足球运动员开出角球,球的初速度是20 m/s,初速度方向跟水平面的夹角是37°.如果球在飞行过程中,没有被任何一名队员碰到,空气阻力不计,g取10 m/s2,求:(1)落点与开出点之间的距离;(2)球在运动过程中离地面的最大距离.。

相关文档
最新文档