求定积分的四种方法

合集下载

求定积分的四种方法

求定积分的四种方法

定积分的四种求法定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例题分析定积分计算的几种常用方法.一、定义法 例1 用定义法求230x dx ⎰的值.分析:用定义法求积分可分四步:分割,以曲代直,作和,求极限.解:(1)分割:把区间[0,2] 分成n 等分,则△x =2n. (2)近似代替:△32()i i i S f x x n ξ⎛⎫=∆=∆ ⎪⎝⎭(3)求和:33111222nnni i i i i i S x n n n ===⎛⎫⎛⎫⎛⎫∆≈∆=• ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑.(4)取极限:S=3332242lim n n n n n n →∞⎡⎤⎛⎫⎛⎫⎛⎫+++⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦L =443332244221lim 12lim[(1)]4n n n n n n n →∞→∞⎡⎤+++=⨯+⎣⎦L =224(21)lim n n n n →∞++==4.∴230x dx ⎰=4..评注:本题运用微积分的基本定理法来求非常简单.一般地,其它方法计算定积分比较困难时,用定义法,应注意其四个步骤中的关键环节是求和,体现的思想方法是先分后合,以直代曲.二、微积分基本定理法例2 求定积分221(21)x x dx ++⎰的值.分析:可先求出原函数,再利用微积分基本定理求解.解:函数y =221x x ++的一个原函数是y =323x x x ++. 所以.221(21)x x dx ++⎰=3221()|3x x x ++=81421133⎛⎫⎛⎫++-++ ⎪ ⎪⎝⎭⎝⎭=193.评注:运用微积分基本定理计算定积分的关键是找到被积函数的原函数.三、几何意义法 例3 求定积分11dx -⎰的值.分析:利用定积分的意义是指曲边梯形的面积,只要作出图形就可求出.解:11dx -⎰表示圆x 2+y 2=1在第一、二象限的上半圆的面积.因为2S π=半圆,又在x 轴上方.所以11dx -⎰=2π. 评注:利用定积分的几何意义解题,被积函数图形易画,面积较易求出.四、性质法例4 求下列定积分: ⑴44tan xdx ππ-⎰;⑵22sin 1x xdx x ππ-+⎰. 分析:对于⑴用微积分的基本定理可以解决,而⑵的原函数很难找到,几乎不能解决.若运用奇偶函数在对称区间的积分性质,则能迎刃而解.解:由被积函数tan x 及22sin 1x xx +是奇函数,所以在对称区间的积分值均为零.所以⑴44tan xdx ππ-⎰=0;⑵22sin 1x xdx x ππ-+⎰=0. 评注:一般地,若f (x )在[-a ,a ]上连续,则有性质:①当f (x )为偶函数时,()aaf x dx -⎰=20()af x dx ⎰;②当f (x )为奇函数时,()aaf x dx -⎰=0. 小结通过这几个例题分析,让我明白并牢固记住了如何求定积分的方法,懂得在什么情况该用何种方法解决问题;它有非常重要的意义,并且应用也非常广泛,因此掌握此四种方法可以为学好其他比如物理学应用打下良好的基础。

求定积分的四种方法

求定积分的四种方法

求定积分的四种方法定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例析定积分计算的几种常用方法.一、定义法例1 用定义法求230x dx ⎰的值.分析:用定义法求积分可分四步:分割,以曲代直,作和,求极限.解:(1)分割:把区间[0,2] 分成n 等分,则△x =2n. (2)近似代替:△32()i i i S f x x n ξ⎛⎫=∆=∆ ⎪⎝⎭(3)求和:33111222n n n i i i i i i S x n n n ===⎛⎫⎛⎫⎛⎫∆≈∆=• ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑. (4)取极限:S=3332242lim n n n n n n →∞⎡⎤⎛⎫⎛⎫⎛⎫+++⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦ =443332244221lim 12lim[(1)]4n n n n n n n →∞→∞⎡⎤+++=⨯+⎣⎦ =224(21)lim n n n n→∞++==4. ∴230x dx ⎰=4..评注:本题运用微积分的基本定理法来求非常简单.一般地,其它方法计算定积分比较困难时,用定义法,应注意其四个步骤中的关键环节是求和,体现的思想方法是先分后合,以直代曲.二、微积分基本定理法例2 求定积分221(21)x x dx ++⎰的值.分析:可先求出原函数,再利用微积分基本定理求解.解:函数y =221x x ++的一个原函数是y =323x x x ++.所以.221(21)x x dx ++⎰=3221()|3x x x ++=81421133⎛⎫⎛⎫++-++ ⎪ ⎪⎝⎭⎝⎭=193. 评注:运用微积分基本定理计算定积分的关键是找到被积函数的原函数.三、几何意义法例3 求定积分11dx -⎰的值.分析:利用定积分的意义是指曲边梯形的面积,只要作出图形就可求出.解:11dx -⎰表示圆x 2+y 2=1在第一、二象限的上半圆的面积.因为2S π=半圆,又在x 轴上方. 所以11dx -⎰=2π. 评注:利用定积分的几何意义解题,被积函数图形易画,面积较易求出.四、性质法例4 求下列定积分: ⑴44tan xdx ππ-⎰;⑵22sin 1x x dx x ππ-+⎰. 分析:对于⑴用微积分的基本定理可以解决,而⑵的原函数很难找到,几乎不能解决.若运用奇偶函数在对称区间的积分性质,则能迎刃而解.解:由被积函数tan x 及22sin 1x x x +是奇函数,所以在对称区间的积分值均为零.所以⑴ 44tan xdx ππ-⎰=0;⑵22sin 1x x dx x ππ-+⎰=0. 评注:一般地,若f (x )在[-a ,a ]上连续,则有性质:①当f (x )为偶函数时,()a a f x dx -⎰=20()a f x dx ⎰;②当f (x )为奇函数时,()a a f x dx -⎰=0.。

定积分计算方法总结

定积分计算方法总结

定积分计算方法总结
一、定积分的计算方法
1. 利用函数奇偶性
2. 利用函数周期性
3. 参考不定积分计算方法
二、定积分与极限
1. 积和式极限
2. 利用积分中值定理或微分中值定理求极限
3. 洛必达法则
4. 等价无穷小
三、定积分的估值及其不等式的应用
1. 不计算积分,比较积分值的大小
1) 比较定理:若在同一区间[a,b]上,总有
f(x)=g(x),则= ()dx
2) 利用被积函数所满足的不等式比较之a)
b) 当0 x 兀/2时,2/兀 1
2. 估计具体函数定积分的值
积分估值定理:设f(x)在[a,b]上连续,且其最大值为M,最小值为m则
M(b-a) = =M(b-a)
3. 具体函数的定积分不等式证法
1) 积分估值定理
2) 放缩法
3) 柯西积分不等式
≤ %
4. 抽象函数的定积分不等式的证法
1) 拉格朗日中值定理和导数的有界性
2) 积分中值定理
3) 常数变易法
4) 利用泰勒公式展开法
四、不定积分计算方法
1. 凑微分法
2. 裂项法
3. 变量代换法
1) 三角代换
2) 根幂代换
3) 倒代换
4. 配方后积分
5. 有理化
6. 和差化积法
7. 分部积分法(反、对、幂、指、三)
8. 降幂法。

求解定积分的技巧与方法

求解定积分的技巧与方法

求解定积分的技巧与方法求解定积分是高中数学和大学数学中不可避免的一个内容。

对于许多学生和学者来说,求解定积分是一个比较棘手的问题,需要灵活的思维和丰富的数学知识。

本文将为大家介绍一些求解定积分的技巧和方法,帮助大家更好地理解和掌握这一内容。

1. 分段函数法分段函数法是解决经典定积分求解的常用技巧之一。

当我们面对一个比较复杂的积分时,可以尝试将其分解成多个简单的分段函数,进而分别求解。

例如,对于一个形如$y=|x|$ 的函数图像,我们可以将其分区间来讨论,即:当$x\leq0$ 时,$y=-x$,则:$\int_{-1}^{1}|x|\,\mathrm{d}x=\int_{-1}^{0}-x\,\mathrm{d}x+\int_{0}^{1}x\,\mathrm{d}x$当$x>0$ 时,$y=x$,则:$\int_{-1}^{1}|x|\,\mathrm{d}x=\int_{0}^{1}x\,\mathrm{d}x-\int_{-1}^{0}x\,\mathrm{d}x$这样的分段讨论可以使我们更加清晰地理解函数的特性,并且更加方便地求解原函数。

2. 换元法换元法是求解复杂定积分的常用方法之一。

通常我们会利用简单的变量替换,将原积分转化为易于处理的形式。

例如,对于$\int_{-\pi}^{\pi} \frac{1}{1+\sin x}\,\mathrm{d}x$这样的积分,我们可以利用以下替换:设$t=\tan\frac{x}{2}$,则有:$\sin x=\frac{2t}{1+t^{2}},\cos x=\frac{1-t^{2}}{1+t^{2}},\mathrm{d}x=\frac{2\mathrm{d}t}{1+t^{2}}$将上述变量替换代入原式中,则有:$\int_{-1}^{1}\frac{2}{1+(2t/(1+t^{2}))}\frac{2\mathrm{d}t}{1+t^{2}}=4\in t_{-1}^{1}\frac{\mathrm{d}t}{1+t^{2}}=4\pi$所以原式的解为$4\pi$。

高二数学 求定积分的四种方法知识点分析 大纲人教版

高二数学 求定积分的四种方法知识点分析 大纲人教版

1 / 1求定积分的四种方法定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例析定积分计算的几种常用方法.一、定义法 例1 用定义法求23x dx ⎰的值.分析:用定义法求积分可分四步:分割,以曲代直,作和,求极限.解:(1)分割:把区间[0,2] 分成n 等分,则△x =2n.(2)近似代替:△32()i i i S f x x n ξ⎛⎫=∆=∆ ⎪⎝⎭(3)求和:33111222nnni i i i i i S x n n n ===⎛⎫⎛⎫⎛⎫∆≈∆=• ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑.(4)取极限:S=3332242lim n n n n n n →∞⎡⎤⎛⎫⎛⎫⎛⎫+++⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦=443332244221lim 12lim[(1)]4n n n n n n n →∞→∞⎡⎤+++=⨯+⎣⎦ =224(21)lim n n n n→∞++==4. ∴230x dx ⎰=4..评注:本题运用微积分的基本定理法来求非常简单.一般地,其它方法计算定积分比较困难时,用定义法,应注意其四个步骤中的关键环节是求和,体现的思想方法是先分后合,以直代曲.二、微积分基本定理法 例2 求定积分221(21)x x dx ++⎰的值.分析:可先求出原函数,再利用微积分基本定理求解. 解:函数y =221x x ++的一个原函数是y =323xx x ++. 所以.221(21)x x dx ++⎰=3221()|3x x x ++=81421133⎛⎫⎛⎫++-++ ⎪ ⎪⎝⎭⎝⎭=193.评注:运用微积分基本定理计算定积分的关键是找到被积函数的原函数. 三、几何意义法例3 求定积分11dx -⎰的值.分析:利用定积分的意义是指曲边梯形的面积,只要作出图形就可求出.解:11dx -⎰表示圆x 2+y 2=1在第一、二象限的上半圆的面积.因为2S π=半圆,又在x 轴上方.所以11dx -⎰=2π. 评注:利用定积分的几何意义解题,被积函数图形易画,面积较易求出. 四、性质法例4 求下列定积分:⑴44tan xdx ππ-⎰;⑵22sin 1x xdx x ππ-+⎰. 分析:对于⑴用微积分的基本定理可以解决,而⑵的原函数很难找到,几乎不能解决.若运用奇偶函数在对称区间的积分性质,则能迎刃而解.解:由被积函数tan x 及22sin 1x xx +是奇函数,所以在对称区间的积分值均为零.所以⑴44tan xdx ππ-⎰=0;⑵22sin 1x xdx x ππ-+⎰=0. 评注:一般地,若f (x )在[-a ,a ]上连续,则有性质:①当f (x )为偶函数时,()aaf x dx -⎰=20()af x dx ⎰;②当f (x )为奇函数时,()aaf x dx -⎰=0.。

定积分计算方法总结

定积分计算方法总结

定积分计算方法总结定积分是微积分中的重要概念,用于计算曲线下方的面积、变量间的平均值、曲线的长度等问题。

在计算定积分时,有几种常见的方法可以使用。

一、基本定积分计算方法1.函数不可导情况下的计算方法:当函数在闭区间上不可导时,可以将该区间划分成多个子区间,然后在各子区间上分别求积,最后求和。

2. 函数可导情况下的计算方法:对于可导函数,可以使用Newton-Leibniz公式求解定积分。

若函数F(x)是f(x)的一个原函数,即F'(x) = f(x),则有∫[a,b] f(x) dx = F(b) - F(a)。

二、几何意义的计算方法1.面积计算:当被积函数为非负函数时,定积分表示积分区间上的曲线与x轴之间的面积。

使用定积分计算面积时,要先找到积分区间,并选择一个适当的被积函数。

2.长度计算:当被积函数为非负函数时,定积分可以表示曲线的弧长。

通过将曲线分成小线段,并用小线段长度之和逼近曲线的弧长,然后取极限即可得到曲线的弧长。

三、换元法换元法是一种常用的定积分计算方法,通过代换变量的方式来简化被积函数。

具体步骤如下:1.将被积分函数中的变量替换为一个新的变量,使得替换后的函数能够更容易积分。

2. 计算新变量的微分形式dx,然后求解出新的积分上下限。

3.将原函数转化为新变量的函数,并根据新的上下限计算定积分。

4.最后要将新变量换回原变量的形式。

四、分部积分法分部积分法是通过Leibniz公式的一个特殊情况来进行定积分计算的方法。

具体步骤如下:1. 选择u和dv,其中u是整个被积函数的一个部分,dv是剩余的部分。

2. 求解du和v分别对x的积分。

3. 将原函数表示为uv积分减去∫vdu,其中v需要对x进行积分。

4.根据上述公式计算定积分。

五、极坐标下的计算方法当被积函数围成的区域具有对称性或者特殊的形状时,可以使用极坐标进行计算。

1.将被积函数与曲线转化为极坐标形式,即用r和θ表示。

2. 根据极坐标的面积元素dA=rdrdθ,计算出面积元素dA。

定积分计算方法总结

定积分计算方法总结

定积分计算方法总结
定积分计算方法总结
导语:学习需要总结,只有总结,才能真正学有所成。

以下是定积分计算方法总结,供各位阅读和参考。

一、定积分的计算方法
1. 利用函数奇偶性
2. 利用函数周期性
3. 参考不定积分计算方法
二、定积分与极限
1. 积和式极限
2. 利用积分中值定理或微分中值定理求极限
3. 洛必达法则
4. 等价无穷小
三、定积分的估值及其不等式的应用
1. 不计算积分,比较积分值的大小
1) 比较定理:若在同一区间[a,b]上,总有
f(x)>=g(x),则 >= ()dx
2) 利用被积函数所满足的不等式比较之 a)
b) 当0<x<兀/2时,2/兀<<1
2. 估计具体函数定积分的值
积分估值定理:设f(x)在[a,b]上连续,且其最大值为M,最小值为m则
M(b-a)<= <=M(b-a)
3. 具体函数的定积分不等式证法
1) 积分估值定理
2) 放缩法
3) 柯西积分不等式
≤ %
4. 抽象函数的定积分不等式的证法
1) 拉格朗日中值定理和导数的有界性
2) 积分中值定理
3) 常数变易法
4) 利用泰勒公式展开法
四、不定积分计算方法
1. 凑微分法
2. 裂项法
3. 变量代换法
1) 三角代换
2) 根幂代换
3) 倒代换
4. 配方后积分
5. 有理化
6. 和差化积法
7. 分部积分法(反、对、幂、指、三)
8. 降幂法。

计算定积分的方法

计算定积分的方法

计算定积分的方法定积分是微积分中的一个重要概念,用来描述曲线下方的面积。

计算定积分的方法通常包括几何法、零散法、换元法和分部积分法等。

一、几何法几何法是通过几何图形的性质计算定积分。

常用的几何法计算定积分的方法有:1. 面积法:将曲线下方的区域分割成许多个简单几何形状,如矩形、三角形等,然后计算每个几何形状的面积,并将所有面积相加得到总面积。

2. 折线法:将曲线下方的区域近似地用折线连接起来,然后计算每段折线的长度,并将所有长度相加得到总长度。

二、零散法零散法是将曲线下方的面积进行分割求和的方法。

常用的零散法计算定积分的方法有:1. 矩形法:将曲线下方的区域分割成若干个矩形,然后计算每个矩形的面积,并将所有面积相加得到总面积。

2. 梯形法:将曲线下方的区域分割成若干个梯形,然后计算每个梯形的面积,并将所有面积相加得到总面积。

3. 辛普森法则:将曲线下方的区域分割成若干个小区间,在每个小区间上使用二次多项式逼近曲线,然后使用辛普森公式进行近似计算。

三、换元法换元法是通过变量替换的方式将复杂的积分转化成简单的积分,从而简化计算。

常用的换元法计算定积分的方法有:1. 对换元法:将被积函数中的自变量替换成新的自变量,通过求出新的积分变量和原积分变量的关系,将原来的积分变量带入进行计算。

2. 三角换元法:将被积函数中的自变量表示成三角函数形式,通过选择合适的三角变换,将原函数转化成更简单的形式进行计算。

四、分部积分法分部积分法是微积分中的一个重要定理,可以将一个积分问题转化为另一个积分问题,从而简化计算。

常用的分部积分法计算定积分的方法有:1. 正比换元法:将被积函数中的一项作为导数,另一项作为原函数,通过求出原函数和导数的关系,将积分变换为另一个积分。

2. 对数换元法:将被积函数中的一项取导数,另一项取倒数,通过求出导数和倒数的关系,将积分变换为另一个积分。

以上是计算定积分的常用方法,通过几何法、零散法、换元法和分部积分法可以解决各种类型的定积分计算问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定积分的四种求法
定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例题分析定积分计算的几种常用方法.
一、定义法
例1 用定义法求2
30x dx ⎰的值.
分析:用定义法求积分可分四步:分割,以曲代直,作和,求极限.
解:(1)分割:把区间[0,2] 分成n 等分,则△x =2n
. (2)近似代替:△3
2()i i i S f x x n ξ⎛⎫=∆=∆ ⎪⎝⎭
(3)求和:33111222n n n i i i i i i S x n n n ===⎛⎫⎛⎫⎛⎫∆≈∆=• ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑. (4)取极限:S=3332242lim n n n n n n →∞⎡⎤⎛⎫⎛⎫⎛⎫+++⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣
⎦ =443332244221lim 12lim[(1)]4
n n n n n n n →∞→∞⎡⎤+++=⨯+⎣⎦ =224(21)lim n n n n
→∞++==4. ∴2
30x dx ⎰=4..
评注:本题运用微积分的基本定理法来求非常简单.一般地,其它方法计算定积分比较困难时,用定义法,应注意其四个步骤中的关键环节是求和,体现的思想方法是先分后合,以直代曲.
二、微积分基本定理法
例2 求定积分2
21(21)x x dx ++⎰的值.
分析:可先求出原函数,再利用微积分基本定理求解.
解:函数y =2
21x x ++的一个原函数是y =3
23x x x ++. 所以.2
2
1(21)x x dx ++⎰=3221()|3x x x ++=81421133⎛⎫⎛⎫++-++ ⎪ ⎪⎝⎭⎝⎭=193. 评注:运用微积分基本定理计算定积分的关键是找到被积函数的原函数.
三、几何意义法
例3 求定积分1
211)x dx --⎰的值.
分析:利用定积分的意义是指曲边梯形的
面积,只要作出图形就可求出.
解:1
211x dx --⎰表示圆x 2+y 2=1在第一、
二象限的上半圆的面积. 因为2S π=
半圆,又在x 轴上方. 所以1
211x dx --⎰=2
π. 评注:利用定积分的几何意义解题,被积函数图形易画,面积较易求出.
四、性质法
例4 求下列定积分:
⑴44tan xdx π
π-⎰;⑵22sin 1
x x dx x ππ-+⎰. 分析:对于⑴用微积分的基本定理可以解决,而⑵的原函数很难找到,几乎不能解决.若运用奇偶函数在对称区间的积分性质,则能迎刃而解.
解:由被积函数tan x 及22sin 1
x x x +是奇函数,所以在对称区间的积分值均为零.
x y o 1-11
所以⑴ 4
4
tan xdx ππ-⎰=0; ⑵22sin 1
x x dx x ππ-+⎰=0. 评注:一般地,若f (x )在[-a ,a ]上连续,则有性质:①当f (x )为偶函数时,()a a f x dx -⎰=20()a f x dx ⎰;②当f (x )为奇函数时,()a
a f x dx -⎰=0.
小结
通过这几个例题分析,让我明白并牢固记住了如何求定积分的方法,懂得在什么情况该用何种方法解决问题;它有非常重要的意义,并且应用也非常广泛,因此掌握此四种方法可以为学好其他比如物理学应用打下良好的基础。

参考文献:
[1]《数学分析》上册(第二版)复旦大学数学系编.高等教育出版社,1983.07
[2]《数学分析》下册(第二版)复旦大学数学系编.高等教育出版社,1983.11。

相关文档
最新文档