牛吃草问题【图示法解析】(新)
【奥数】牛吃草问题PPT课件

答:需要12台同样的抽水机6天抽干。
.
14
规律总结
这是一道变相的“牛吃草”问题。抽 水机相当于牛,水相当于草。最一问给出 了时间,求抽水机台数(相当于“牛数”)。 找到题中的“牛”与“草”,问题就迎刃而 解了。
.
15
牛吃草问 题总结
(1)求草每天的生长量
第一步
第三步 (3)求给定时间内草总量 或(3)求牛每天净吃草量
漏进水为2,所以实际上船中每小时减少 的水量为(17-2)=15
(4)30÷15=2(小时)
答:17人2小时可以淘完水。
当给出人数求时间时, 从总人数里可减去每小 时进水量。这样工作总 量就相当于不变了,再 除以人数即可求出时间。
.
9
练习1
举一反三
1.一个牧场长满青草,牛在吃草而草又在不断生长,已知牛
=总草量
问题的核心就是求出原有的草。
.
5
答案揭秘
摘录条件: 10头 20天 原有草+20天生长草 15头 10天 原有草+10天生长草 ?头 5天 原有草+5天生长草 设每头牛每天吃草量为1, 按四个步骤解答。
解:(1)每天的生长量 (10×20- 15×10)÷(20-10)=5 (2)求原有草量 15×10-5×10=100 (3)求5 天内草总量 100+5×5=125 (4)求多少头牛5 天吃完草
(2)求原有草量
第二步
第四步 (4)求多少头牛 或(4)多少天吃完草
.
16
.
17
(4)求21头牛多少 天吃完草:72÷6=12(天)
.
11
规律总结
当给出牛头数(人数)求时间时,从 牛(人)总数里可减去单位时间增加量。 这样工作总量就相当于不变了,再除以牛 (人)数即可求出时间。
《牛吃草问题》PPT课件(1)

1.一牧场上的青草每天都匀速生长。这片青草可供
27头牛吃6周或供23头牛吃9周。那么,可供21头牛 吃几周? 2.一牧场上的青草每天都匀速生长。这片青草可供 17头牛吃30天,或供19头牛吃 24天。现有一群牛, 吃了6天后卖掉4头,余下的牛又吃了2天将草吃完, 这群牛原来有多少头? 3.经测算,地球上的资源可供100亿人生活100年, 或可供80亿人生活300年。假设地球新生成的资源 增长速度是一定的,为使人类有不断发展的潜力, 地球最多能养活多少亿人? 4.有一水池,池底有泉水不断涌出。用10部抽水机 20时可以把水抽干;用15部同样的抽水机,10时可 以把水抽干。那么,用25部这样的抽水机多少小时 可以把水抽干?
分析与解:与例1不同的是,不仅没有新长出的草,
而且原有的草还在减少。但是,我们同样可以利用 例1的方法,求出每天减少的草量和原有的草量。 设1头牛1天吃的草为1份。20头牛5天吃100份,15 头牛6天吃90份,100-90=10(份),说明寒冷使牧 场1天减少青草10份,也就是说,寒冷相当于10头 牛在吃草。由“草地上的草可供20头牛吃5天”, 再加上“寒冷”代表的10头牛同时在吃草,所以牧 场原有草 (20+10)×5=150(份)。 由 150÷10=15知,牧场原有草可供15头牛吃 10 天,寒冷占去10头牛,所以,可供5头牛吃10天。
例2 一个水池装一个进水管和三个同样的出水管。先 打开进水管,等水池存了一些水后,再打开出水管。 如果同时打开2个出水管,那么8分钟后水池空;如果 同时打开3个出水管,那么5分钟后水池空。那么出水
管比进水管晚开多少分钟?
分析:虽然表面上没有“牛吃草”,但因为总的水
量在均匀变化,“水”相当于“草”,进水管进的 水相当于新长出的草,出水管排的水相当于牛在吃 草,所以也是牛吃草问题,解法自然也与例1相似。 出水管所排出的水可以分为两部分:一部分是出水 管打开之前原有的水量,另一部分是开始排水至排 空这段时间内进水管放进的水。因为原有的水量是 不变的,所以可以从比较两次排水所用的时间及排 水量入手解决问题。
2024年牛吃草问题课件

牛吃草问题课件一、引言牛吃草问题,又称“牛吃草悖论”,是数学中著名的动态规划问题。
它源于一个有趣的数学谜题,即如何在有限的时间内,让牛吃到尽可能多的草。
这个问题看似简单,实则蕴含着丰富的数学原理和思维方式。
本课件旨在通过讲解牛吃草问题,引导大家掌握动态规划的基本思想和方法,培养逻辑思维和问题解决能力。
二、牛吃草问题的提出假设有一个草地,草地在每个单位时间内的生长速度是一定的,比如每天长出k份草。
同时,有一头牛在草地上吃草,这头牛在单位时间内吃的草量也是一定的,比如每天吃m份草。
我们希望知道,这头牛在t天内最多能吃到多少份草。
三、牛吃草问题的分析1.动态规划的基本思想动态规划是一种求解最优化问题的方法,它将复杂问题分解为若干个子问题,通过求解子问题来逐步构建原问题的最优解。
在牛吃草问题中,我们可以将t天分为若干个时间段,每个时间段内牛吃草的决策是相互独立的,因此可以将问题分解为多个子问题。
2.牛吃草问题的数学模型f(i)=max{f(i-1)+m,N+kimi}其中,f(i)表示第i天牛最多能吃到的草量。
3.牛吃草问题的求解根据递推关系,我们可以通过循环迭代的方式求解牛吃草问题。
具体步骤如下:(1)初始化f(0)=0,表示第一天牛没有吃到草。
(2)从第二天开始,根据递推关系计算f(i),直到第t天。
(3)输出f(t),即为t天内牛最多能吃到的草量。
四、牛吃草问题的拓展1.多头牛吃草问题在牛吃草问题的基础上,我们可以进一步考虑多头牛同时吃草的情况。
假设有n头牛,每头牛的吃草速度不同,我们希望知道在t天内,这n头牛最多能吃到多少份草。
2.草地生长速度变化问题在牛吃草问题中,我们假设草地每个单位时间内的生长速度是一定的。
然而,在实际情况下,草地的生长速度可能会受到季节、气候等因素的影响。
如何在这种情况下求解牛吃草问题,是一个更具挑战性的问题。
五、总结牛吃草问题是一个典型的动态规划问题,通过求解这个问题,我们可以掌握动态规划的基本思想和方法。
《牛吃草问题》PPT课件

在例1的解法中,要注意三点:
(1)每天新长的草量是用已知的两种不同情况下 吃草总量与吃草天数之差来计算的。
(2)在已知的两种情况中的任何一种情况下,假 定其中几头牛吃新长出的草,剩下的几头牛吃原草, 原草量可根据它们吃的天数计算出来。
(3)在所问的问题中,让几头牛吃新长的草,其 余的吃原来的草。根据原来的草量,就可以算出可 以吃多少天。
解决方案:扶梯分分钟走 (20×5-15×6)÷(6-5)=10(等级), 自动扶梯共有(20+10)×5=150(等级)。 A:有150部自动扶梯。
解决方案:扶梯分分钟走 (20×5-15×6)÷(6-5)=10(等级), 自动扶梯共有(20+10)×5=150(等级)。 A:有150部自动扶梯。
200-150=50(份),20-10=10(天),
表明牧场10天有50株草,1天有5株草。也就是说,五 头牛刚吃完新长出的草,五头牛以外的牛吃的草就是 牧场上原来的草。得出结论:牧场上的原草
(10-5)×20=100(份)或(15-5)×10=100(份)。
现在了解到,原来的草有100株,每天长出5株新草。 25头牛时,其中5头吃新长的草,其余20头吃原来的 草,需要100÷20=5(天)。
若出水管从水箱排出的水为每分钟1份,则两 根出水管排出8分钟的水为2×8=16份(份), 三根出水管排出5分钟的水为3×5=15份 (份)。两次排出的水量包括原来的水量和
从开始排水到放空这段时间的进水量。两者 相减为8-5=3(份)以内的放水量,因此每分 钟的流入量为1/3(份)。原始水量为:(21/3)×8=40/3(份)
解析:上楼的速度可以分为两部分:一部分是少 男少女自身的速度,另一部分是自动扶梯的 速度。
牛吃草问题经典例题图文稿

牛吃草问题经典例题集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)英国大数学家牛顿曾编过这样一道数学题:牧场上有一片青草,每天都生长得一样快。
这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,如果供给25头牛吃,可以吃几天?解题关键:牛顿问题,俗称“牛吃草问题”,牛每天吃草,草每天在不断均匀生长。
解题环节主要有四步:1、求出每天长草量;2、求出牧场原有草量;3、求出每天实际消耗原有草量( 牛吃的草量-- 生长的草量= 消耗原有草量);4、最后求出可吃天数想:这片草地天天以同样的速度生长是分析问题的难点。
把10头牛22天吃的总量与16头牛10天吃的总量相比较,得到的10×22-16×10=60,是60头牛一天吃的草,平均分到(22-10)天里,便知是5头牛一天吃的草,也就是每天新长出的草。
求出了这个条件,把25头牛分成两部分来研究,用5头吃掉新长出的草,用20头吃掉原有的草,即可求出25头牛吃的天数。
解:新长出的草供几头牛吃1天:(10×22-16×1O)÷(22-1O)=(220-160)÷12=60÷12=5(头)这片草供25头牛吃的天数:(10-5)×22÷(25-5)=5×22÷20=5.5(天)答:供25头牛可以吃5.5天。
----------------------------------------------------------------“一堆草可供10头牛吃3天,这堆草可供6头牛吃几天”这道题太简单了,一下就可求出:3×10÷6=5(天)。
如果我们把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了,因为草每天都在生长,草的数量在不断变化。
这类工作总量不固定(均匀变化)的问题就是牛吃草问题。
最新行测数量关系题型:牛吃草模型的巧解方法

在行测数量关系的常考题目中,牛吃草是一类常见的考题类型,而最常考的两类题型是追及型牛吃草和相遇型牛吃草,只要掌握这类题型的做题原理和方法,就能快速准确地选出正确答案。
一、追及型牛吃草例1.一片草地上草每天都均匀地生长,如果放24头牛,则6天吃完牧草;如果放21头牛,则8天吃完牧草。
问如果放16头牛,几天可以吃完牧草?如图所示,用M表示草地上的原始草量,牛吃草使草量减少,草在匀速生长使草量增加,牛吃完草的时候相当于牛追上了正在生长的草,构成了一个追及问题,而原始草量M就是牛比草多走的路程。
我们假设每头牛单位吃草量为1,草单位时间生长量为x,设16头牛t天可以吃完,则原始草量M=(24-x)×6=(21-x)×8=(16-x)×t,解得x=12,t=18,所以16头牛18天可以吃完牧草。
根据这道题,我们可以得出追及型牛吃草的做题公式,假设每头牛单位吃草量为1,草单位时间生长量为x,牛吃草的时间记为T,则原始草量M=(牛的数量-x)×T。
二、相遇型牛吃草例2.一片草地上草每天都匀速枯萎,如果放2头牛,7天可以吃完;如果放3头牛,6天可以吃完。
若要在3天内吃完,则需要多少头牛?如图所示,我们依然用M表示草地上的原始草量,牛吃草使草量减少,草在匀速枯萎也使草量减少,牛吃完草的时候相当于牛与正在枯萎的草相遇了,构成了一个相遇问题,而原始草量M就是牛与草走的路程和。
假设每头牛单位吃草量为1,草单位时间枯萎量为x,设y头牛3天可以吃完,则原始草量M=(2+x)×7=(3+x)×6=(y+x)×3,解得x=4,y=10,所以10头牛3天可以吃完牧草。
根据这道题,我们可以得出相遇型牛吃草的做题公式,假设每头牛单位吃草量为1,草单位时间枯萎量为x,牛吃草的时间记为T,则原始草量M=(牛的数量+x)×T。
根据以上总结,可以看出,追及型牛吃草是牛吃草使草量减少、草生长使草量增加的题型,而相遇型牛吃草是牛吃草使草量减少、草枯萎也使草量减少的题型,做题时分析清楚这两个因素使原始草量增加还是减少从而确定用哪个公式做题即可。
5牛吃草问题ppt课件(2024)

2024/1/29
22
06
总结与展望
2024/1/29
23
问题解决思路回顾
01
02
03
04
引入问题
通过具体实例引入5牛吃草问 题,明确问题的背景和研究意
义。
分析问题
对问题进行深入分析,识别问 题的关键要素和变量,建立数
学模型。
解决问题
运用数学方法和计算工具对模 型进行求解,得出问题的解决
方案。
验证问题
每头牛的食量和吃草速度
牛的数量和初始位置
2024/1/29
16
数值计算方法介绍
有限差分法
将连续的时间和空间离散化,通过差分方程近似求解。
2024/1/29
有限元法
将求解域划分为有限个互不重叠的单元,在每个单元内选择合适的节点作为求解函数的插 值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的 线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
探索更高效的求解算法
针对牛吃草问题的求解算法可 以进一步优化和改进,以提高 求解效率和准确性。
拓展应用领域
牛吃草问题不仅仅局限于牧场 管理领域,未来可以将其拓展 应用到更多相关领域,如生态 保护、农业规划等。
加强跨学科合作研究
牛吃草问题涉及到数学、生态 学、农业等多个学科领域,未 来可以加强跨学科合作研究, 以更全面地揭示问题的本质和 规律。
。
2024/1/29
6
02
数学模型建立
2024/1/29
7
假设与定义
假设每头牛每天吃草 的量是一定的,设为 x单位。
定义n为需要的天数 ,即牛吃完草地上的 草所需的时间。
人教版六年级数学上册牛吃草问题课件(共23张PPT)

草地原有草(17-9)×30=240(份)
这群牛8天应吃掉草
240+9×8+4×2=320(份)
所以这群牛有320÷8=40(头)
答:这群牛本来有40头.
3.经测算,地球上的资源可供100亿人生活100 年,或可供80亿人生活300年。假设地球新生成 的资源增长速度是一定的,为使人类有不断发 展的潜力,地球最多能养活多少亿人?
例1 牧场上一片青草,每天牧草都匀速生长。这片牧草可供10头牛吃20天, 或者可供15头牛吃10天。问:可供25头牛吃几天?
设1头牛一天吃的草为1份。那么,10头牛20天吃200份,草被吃完;15头牛 10天吃150份,草也被吃完。前者的总草量是200份,后者的总草量是150
份,前者是原有的草加 20天新长出的草,后者是原有的草加10天新长出的 草。
【分析】:与例3比较,“总的草量”变成了“扶梯的梯级总数”,“草” 变成了“梯级”,“牛”变成了“速度”,也可以看成牛吃草问题。
上楼的速度可以分为两部分:一部分是男、女孩自己的速度,另一部
分是自动扶梯的速度。男孩5分钟走了20×5= 100(级),女孩6分钟走了
15×6=90(级),女孩比男孩少走了100-90=10(级),多用了6-5=1
例2 一个水池装一个进水管和三个同样的出水管。 先打开进水管,等水池存了一些水后,再打开出 水管。如果同时打开2个出水管,那么8分钟后水 池空;如果同时打开3个出水管,那么5分钟后水 池空。那么出水管比进水管晚开多少分钟?
出水管所排出的水可以分为两部分:一部分是出 水管打开之前原有的水量,另一部分是开始排水 至排空这段时间内进水管放进的水。因为原有的 水量是不变的,所以可以从比较两次排水所用的 时间及排水量入手解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图示法解析牛吃草问题
图示法解题:图示法在解很多题目时非常直观、简洁,如在牛吃草、行程等问题中得到广泛的应用,以牛吃草为例说明如下:
【例1】一片草场的青草每天都匀速生长,这片青草可供27头牛吃6天,或供23头牛吃9天,那么可供21头牛吃几天?
解题思路总结:解决牛吃草问题的关键是:
(1)设1头牛1天吃1份草;
(2)要求出每天(或每周等)新生长的草量;
(3)要求出原有的草量;注意:原有的草量不变。
然后代入计算就可以了。
解:作线段图如下图:
设1头牛1天吃1份草,
则27头牛6天共吃草:27×6=162份;23头牛9天共吃23×9=207份,
多了207-162=45份,相当于(9-6)天生长的草量,
所以每天生长的草量为:=15份/天;
则原有的草量为:162-6×15=72份;
21头牛中有15头吃生长的草,那么剩下的21-15=6头吃原有的草,
所以可以吃:天,因此可供21头牛吃12天。
练习题:
1.有一个水池,池底有一个打开的出水口。
用5台抽水机20时可将水抽完,用8台抽水机15时可将水抽完。
如果仅靠出水口出水,那么多长时间能把水漏完?
2.哥哥沿着向上移动的自动扶梯从顶向下走到底,共走了100级。
在相同的时间内,妹妹沿着自动扶梯从底向上走到顶,共走了50级。
如果哥哥单位时间内走的级数是妹妹的2倍,那么当自动扶梯静止时,自动扶梯能看到的部分有多少级?
3.两个顽皮的孩子逆着自动扶梯行驶的方向行走,男孩每秒可走3级梯级,女孩每秒可走2级梯级,结果从扶梯的一端到达另一端男孩走了100秒,女孩走了300秒。
问:该扶梯共有多少级梯级?
4.仓库里原有一批存货,以后继续运货进仓,且每天运进的货一样多。
用同样的汽车运货出仓,如果每天用4辆汽车,则9天恰好运完;如果每天用5辆汽车,则6天恰好运完。
仓库里原有的存货若用1辆汽车运则需要多少天运完?
5.画展9点开门,但早就有人排队等候入场了。
从第一个观众来到时起,每分钟来的观众人数一样多。
如果开3个入场口,则9点9分就不再有人排队,如果开5个入场口,则9点5分就没有人排队。
那么第一个观众到达的时间是8点几分?
6.某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多。
从开始检票到等候检票的队伍消失,若同时开5个检票口则需30分钟,若同时开6个检票口则需20分钟。
如果要使队伍10分钟消失,那么需同时开几个检票口?
7.假设地球上新生成的资源的增长速度是一定的,照此测算,地球上的资源可供110
亿人生活90年,或可供90亿人生活210年。
为使人类能够不断繁衍,那么地球最多能养活多少亿人?
8.有一牧场,17头牛30天可将草吃完.19头牛则24天可以吃完.现有若干头牛吃了6天后,卖掉了4头牛,余下的牛再吃两天便将草吃完.问:原来有多少头牛吃草(草均匀生长)?
9.有三块草地,面积分别为5公顷、15公顷和24公顷。
草地上的草一样厚,而且长得一样快。
第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天。
问:第三块草地可供多少头牛吃80天?
10.有一水池,池底有泉水不断涌出。
要想把水池的水抽干,10台抽水机需抽8时,8台抽水机需抽12时。
如果用6台抽水机,那么需抽多少小时?。