质数与合数(含答案)
小学五年级专项思维训练(质数与合数)【附参考答案】

8、设 p、a、6、c 均为互不相等的质数,且满足 p=a4 +b4 +C4-3,则满足条件的 p 的和为多少?
9、已知 n,n+6,n+84,n+102,n+218 都是质数,那么 n=
.
10、从 20 以内的质数中选出 6 个数,写在一个正方体的六个面上,使两个相对
面的和都相等,所选的 6 个数是
18、有三张卡片,在它们上面各写有一个数字(如下图所示).从中抽出一张、 二张、三张,接任意次序排起来,可以得到不同的一位数、二位数、三位数.请 你将其中的质数都写出来.
12
3
—3—
小学五年级专项思维训练
19、用数字卡片 1、1、2、2、3、3、4、4、5、5、6、7、9、9(不允许把 6 倒 过来当做 9,也不许把 9 倒过来当做 6)组成七个不同的两位质数,这七个质数 之和等于 。
23、如下图所示,点 B 是线段 AD 的中点,由 A、B、c、D 四个点所构成的所有线
段的长度均为整数,若这些线段的长度之积为 10500,则线段 AB 的长度
是
。
A
BC D
—4—
小学五年级专项思维训练
24、甲、乙两个自然数的乘积比甲数的平方数小 1999,乙数是 .
25、张老师带领六(l)班的学生种树,学生恰好可平均分成 5 组,已知师生每人 种的树一样多,共种树 527 棵,则六(1)班的学生有 人.
,最大
4、 一个两位数,数字和是质数,而且,这个两位数分别乘以 3 ,5,7 之后,
得到的数的数字和都仍为质数.满足条件的两位数为
.
5 、当 p 和 p3 +5 都是质数时,p5 +5=
质数与合数(含答案)

第3讲质数与合数阿拉伯数字无疑是人类历史上最伟大的发明之一,其本身蕴含的规律更是数学学科中最璀璨的明珠!质数和合数的分类产生了哥德巴赫对于自然数a 和b (0b ≠),若a b ÷没有余数,则a 是b 的倍数,b 是a 的约数。
特殊地,0是任意非零自然数的倍数。
质数:除了1和本身,没有其他约数的自然数叫质数。
合数:除了1和本身,还有其他约数的自然数叫合数。
特殊地,1既不是质数也不是合数。
最小的合数是4,最小的质数是2,且2是唯一的偶质数。
质因数:如果一个质数是某个数的约数,那么就编写说明知识要点【例1】对7个不同质数求和,和为58,则最大的质数是多少【分析】七个质数若全部是奇数,则和一定是奇数,而58是偶数,则七个质数中必定含有唯一的偶质数2,所以最小的质数是2,从2开始,最小的七个连续质数是2,3,5,7,11,13,17,和为58,所以题中的七个质数只能是从2开始的七个连续质数,最大为17。
【温馨提示】2是唯一的偶质数,是偶数中的“叛徒”,所以质数也经常与奇偶性相结合,主要考察“2”.【拓展】已知a、b、c、d都是质数,且130959179a b c d+=+=+=+,求a、b、c、d的值。
【分析】959179+=+=+,所以b、c、d应该都是奇数,所以a是唯一的偶质数2,依此可求得:b c db=,41d=.c=,53a=,372【例2】从小到大写出5个质数,使后面数都比前面的数大12。
这样的数有几组【分析】考虑到质数中除了2以外其余都是奇数,因此这5个质数中不可能有2;又质数中除了2和5,其余质数的个位数字只能是1、3、7、9。
若这5个质数中最小的数其个位数字为1,则比它大24的数个位即为5,不可能是质数;若最小的数其个位数字为3,则比它大12的数个位即为5,也不可能为质数;由此可知最小的数其个位数字也不可能是7和9,因此最小的数只能是5,这5个数依次是5,17,29,41,53。
质数与合数 考点总结+题型训练 带答案

11、三个连续奇数的和是87,这三个连续的奇数分别是 ( 27 )、( 29 )、( 31 )。
12、下面是一道有余数的整数除法算式:A÷B=C…R,若 B是最小的合数,C是最小的质数,则A最大是( 11 ),最 小是( 9 )
13、写出两个都是质数的连续自然数。( 2 )( 3 )
14、写出两个既是奇数,又是合数的数。( 9 )( 21 )
)
A.7、8、9
B.10、11、12
C.14、15、16
D.21、22、23
5.12个质数连乘的积是( B )
A.质数 B.合数 C.因数
6.对于乘法算式5×7=35,下面的说法中,正确的是(D
)
A.5是因数 B.7是因数
C.35是倍数 D.5是35的因数
7.一个数只有1和它本身两个因数,这样的数叫( B ) A.奇数 B.质数 C.质因数 D.合数
(2)分解质因数:把一个合数分解成若干个质数相乘的形
式
把48分解质因数:48=2×2×2×2×3
针对性练习
一、判断: (1)质数都是奇数。( × ) (2)两个质数相乘,积是合数。( √ ) (3)偶数不全是合数,奇数不全是质数。( √ ) (4)两个质数的和一定是合数。( × ) (5)任意一个自然数,不是质数就是合数。( × )
7、李叔叔的果园每行树的棵树都是相等的,下面是几位 小朋友各自数出的总棵树,其中只有( 程鸣 )数对的。 李刚:73棵 程鸣:77棵 王冰:79棵 赵强:71 8、一个质数与它本身的8倍的和是45,这个质数是( 5 )。 9、20以内最大的质数与最小的质数的2倍的和是( 23 )。 10、有两个质数的和是18,积是65,这两个质数分别是 ( 5 )和( 13 )。
高斯小学奥数五年级上册含答案_质数与合数

第三讲 质数与合数什么是质数?每一个数都能写成若干个数相乘的形式,考虑到任何一个数都能写成若干个1乘以它本身的形式,所以不考虑1作为乘数的情况:623=⨯,824222=⨯=⨯⨯,122634223=⨯=⨯=⨯⨯……这些数都能拆成若干个不为1的数相乘的形式,我们把这样的数称为合数.而像2,3,7……这些不能拆成若干个不为1的数相乘形式的数,我们称之为质数.如果说得形象一点,质数就是“拆不开”的数,合数就是拆得开的数.严格说来,质数就是只能被1和自身整除的数;合数是除了1和它本身之外,还能被其它数整除的数.注意,1既不是质数也不是合数.我们先来看一个关于质数的小问题,提高大家对质数的熟悉程度:请写出所有颠倒个位十位之后还是质数的两位质数._____________________________________________(填写在横线上)相信对100以内的质数比较熟悉的同学,做这个题目会很轻松.质数是我们后面学习的基础,因此同学们一定要牢牢记住常见的质数.请同学们在下面的横线上写出100以内的所有质数:同学们还可以这样做:从大到小....写出100以内的质数.如果你能一个不少地写出来,说明你对100以内的质数确实掌握得很牢固了^_^.当然,同学们写出的这些质数只是质数大军中的冰山一角.在100以上还有无穷多个质数,比如接着100的就有四个质数:101,103,107,109.【分析】1~56以内的质数有哪些?把它们列出来,然后依次找出对应的汉字,这句话就出来了.下面是主试委员会为第六届“华杯赛”写的一首诗:美少年华朋会友,幼长相亲同切磋; 杯赛联谊欢声响,念一笑慰来者多; 九天九霄志凌云,九七共庆手相握; 聚起华夏中兴力,同唱移山壮丽歌.将诗中56个字第1行左边第一字起逐行逐字编为1—56号,再将号码中的质数由小到大找出来,将它们对应的字依次排成一行,组成一句话,请写出这句话.自然数N 是一个两位数,它是一个质数,而且N 的个位数字与十位数字都是质数,这样的自然数有多少个?【分析】对于第1问,依次枚举即可,可知这两个不同的质数一定都是奇数.那么后两问中的质数可以都是奇数吗?如果三个互不相同的质数相加,和为52,这三个质数可能是多少?通过前面的学习,我们对质数已经有了基本了解.下面我们来学习这一讲中最重要的内容:分解质因数.分解质因数是指把一个数写成质因数相乘的形式.如:30235=⨯⨯,1002255=⨯⨯⨯,28022257=⨯⨯⨯⨯.同学们请注意:分解式应该把质因数按从小到大的顺序写好,每个数分解质因数的形式是唯一的.分解质因数的方法一般是短除法,如下图所示,我们将30分解质因数,在计算的过程(1)如果两个不同的质数相加等于26,那么这两个质数的乘积可能是多少?请全部写出. (2)如果两个不同的质数相加等于25,那么这两个质数的乘积可能是多少?请全部写出. (3)三个互不相同的质数相加,和为40,这三个质数的乘积可能是多少?请全部写出.中要善用各种特殊数的整除特性.100在分解质因数时也可以写成:2210025=⨯;280在分解质因数时也可以写成3280257=⨯⨯.这种写法更简洁更方便,其中位于质因数右上角,表示质因数个数的数叫作指数,如:这里280的分解式中5和7的指数都是1,写的时候可以省略.如何确定一个大数是不是质数呢?我们要判断197是不是质数,难道需要一一验算197以内的所有质数吗?同学们不用担心,数学家们早就为我们准备了简单的方法,只需要试很少的几个就能判断.例如我们要判断197是否为质数,只需要验算15以内的质数就足够了!因为1515225⨯=比197大.类似的,如果我们要判断2011是不是质数,只需要验算45以内的质数,因为45452025⨯=比2011大.有了这个方法,同学们以后判断一个大数是不是质数就非常方便了.「分析」将一个数分解质因数,可以从最小的质数开始,一个一个去试商,写成短除的形式.请把下面的数分解质因数: (1)373;(2)12660.请把下面的数分解质因数:(1)360;(2)539;(3)999;(4)10101.2210025=⨯指数3280257=⨯⨯ 指数2 30 315 5能整除30相除后得在整数问题中,有一类特殊的问题,专求乘积末尾连续0的个数.解决这类问题的方法同样是质因数分解.下面我们来看一个例题.【分析】乘积的末尾要出现一个0,只需要乘数中凑出一个10,那么能凑出来几个10,末尾就有多少个连续的0.注意到1025=⨯,我们只需要计算这个算式中含有的质因数2和5的个数就可以了.算式12330⨯⨯⨯⨯的计算结果的末尾有多少个连续的0?分解质因数是学习数论问题时非常重要的方法,大家一定要能熟练的将一个数分解质因数,这应该作为一项基本的能力来培养.下面我们来看看如何利用分解质因数来解决实际的问题.三个连续自然数的乘积等于39270,那么这三个数的和等于多少?算式123100⨯⨯⨯⨯计算结果的末尾有多少个连续的0?「分析」39270是三个自然数的乘积,于是先将39270分解质因数,再对这些质因数进行适当的组合,凑出题目中的三个连续自然数.由于连续自然数相互之间比较接近,所以凑的时候也必须尽量接近.360与一个三位数的乘积是完全平方数,这个三位数最小是多少?【分析】完全平方数是两个相同数的乘积,那么分解后它的每个质因数的次数都是偶数.而32360235=⨯⨯,它不是一个平方数.它最小再乘上多少,结果就是平方数了?通过上面例题的讲解,相信大家能体会到分解质因数的好处.它就像手术刀一样,把整数解剖开来,让我们把整数的组成结构看得一清二楚.很多看似复杂的问题,如果从分解质因数的角度来看,就会变得非常简单.课堂内外质数有无穷个吗?在正整数里走得越远,我们就发现质数变得越来越稀少.有人可能会问:质数出现频率越来越小,它们会不会在某处终止呢?会不会从某个数开始之后就没有质数了呢?早在公元前300年左右,欧几里得就第一次证明了质数有无穷多个.他用的是如下的反证法:设n代表最后一个质数,那么从2到n的所有质数的积是2357n⨯⨯⨯⨯⨯.将这个积加1称为k,因为2,3,5,7,11,…,n都不能整除k,所以k必然含有一个更大的质因数!这与n代表最后一个质数相矛盾!作业1.(1)如果两个不同的质数相加等于39,那么这两个质数的乘积是多少?(2)三个互不相同的质数相加,和为30,这三个质数的乘积是多少?2.自然数49,87,101,103,121中,哪些是质数?3.请把下面的数分解质因数:(1)240;(2)1080.4.三个连续自然数的乘积为336,则这三个数的和是多少?⨯⨯⨯⨯的计算结果的末尾有多少个连续的0?5.算式12335第三讲质数与合数例题1.答案:少年朋友亲切联欢一九九七相聚中山详解:1~56中的质数有2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53共16个.例题2.答案:(1)69、133;(2)46;(3)434详解:(1)26可以拆成3与23的和,或者7与19的和;(2)25只能拆成2和23的和;(3)三个数的和是偶数,可以是三个偶数,或者一偶两奇.考虑到质数中只有2是偶数,可知一定是一偶两奇,且偶数是2.另外两个奇数是7和31.例题3.答案:(1)32360235=⨯;=⨯;(3)3999337=⨯⨯;(2)2539711(4)10101371337=⨯⨯⨯.例题4.答案:24详解:末尾0的个数与算式结果所含质因数2和5的个数有关,结果中质因数的个数又与乘数中质因数的个数有关.因为2的个数要比5的个数多,所以0的个数等于5的个数.乘数中5的倍数有20个,25的倍数有4个,所以质因数5的个数有20424+=个.末尾有24个连续的0.例题5.答案:102详解:3927023571117=⨯⨯⨯⨯⨯.考虑其中最大的质因数17,三个自然数中一定有17的倍数.如果是17,那么一定有16或18.这不可能.如果是34,另外两个数是33和35,正好满足.333435102++=.例题6.答案:160详解:完全平方数的每个质因数的次数一定是偶数.而32=⨯⨯,360235至少要再乘上2510⨯=才是一个平方数.题目要求是三位数,即是一个平方数.可知空格上也要填入一个平方数,最⨯⨯36010____三位数小要填16.要乘的三位数最小是160.练习1. 答案:23、37、53、73简答:一位数中的质数只有2、3、5、7.而N 的个位数字只能是3和7,分类枚举即可. 练习2. 答案:2、3、47或者2、7、43或者2、13、37或者2、19、31简答:三个质数一定是一偶两奇,偶数是2. 练习3. 答案:(1)质数;(2)212660235211=⨯⨯⨯. 练习4. 答案:7简答:1~30中5的倍数有6个,25的倍数有1个,所以其中有7个5.计算结果的末尾有7个连续的0.作业1. 答案:(1)74;(2)230或374简答:(1)39237=+,乘积为74.(2)30252321117=++=++,乘积为230或374.作业2. 答案:101,103.作业3. 答案:(1);(2).作业4. 答案:21简答:,和为21. 作业5. 答案:8个简答:看含有因子5的个数,是5的倍数的数有7个,是25的倍数的数有1个,共8个.4336237678=⨯⨯=⨯⨯ 331080235=⨯⨯ 4240235=⨯⨯。
合数和质数的练习册及答案

合数和质数的练习册及答案### 合数和质数的练习册及答案#### 练习题一:判断质数1. 判断下列数字是否为质数:- 2- 3- 4- 5- 9- 13- 16- 17- 23#### 练习题二:找出合数2. 找出100以内的所有合数。
#### 练习题三:质数序列3. 列出100以内的质数序列。
#### 练习题四:合数分解4. 将下列合数分解为质因数:- 12- 18- 24- 36#### 练习题五:质数与合数的个数5. 计算100以内质数和合数的个数。
#### 练习题六:质数的应用6. 解释质数在密码学中的应用。
#### 答案解析#### 练习题一:判断质数1. 质数是指只能被1和自身整除的大于1的自然数。
- 2(质数)- 3(质数)- 4(合数)- 5(质数)- 9(合数)- 13(质数)- 16(合数)- 17(质数)- 23(质数)#### 练习题二:找出合数2. 100以内的合数有:- 4, 6, 8, 9, 10, ..., 98, 99#### 练习题三:质数序列3. 100以内的质数序列:- 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ..., 97 #### 练习题四:合数分解4. 合数分解为质因数:- 12 = 2 × 2 × 3- 18 = 2 × 3 × 3- 24 = 2 × 2 × 2 × 3- 36 = 2 × 2 × 3 × 3#### 练习题五:质数与合数的个数5. 100以内质数有25个,合数有74个。
#### 练习题六:质数的应用6. 质数在密码学中的应用主要是基于其难以因式分解的特性。
例如,在RSA加密算法中,公钥和私钥的生成依赖于两个大质数的乘积。
通过这些练习题,学生可以加深对质数和合数概念的理解,并学会如何应用这些数学概念解决实际问题。
质数合数单元测试题目及答案

质数合数单元测试题目及答案一、选择题(每题2分,共20分)1. 下列哪个数是质数?A. 4B. 9C. 15D. 172. 100以内最大的质数是什么?A. 97B. 99C. 100D. 1013. 一个数如果只有1和它本身两个因数,那么这个数是什么?A. 合数B. 质数C. 偶数D. 奇数4. 以下哪个数是合数?A. 2B. 3C. 5D. 45. 质数的定义是什么?A. 只有1和它本身两个因数的数B. 能被2整除的数C. 能被3整除的数D. 能被4整除的数6. 一个数的因数除了1和它本身外,还有其他因数,那么这个数是什么?A. 质数B. 合数C. 偶数D. 奇数7. 以下哪个数不是质数?A. 29B. 31C. 33D. 378. 一个数的因数个数是奇数个,那么这个数是什么?A. 质数B. 合数C. 偶数D. 奇数9. 质数和合数的区别是什么?A. 质数是偶数,合数是奇数B. 质数只有两个因数,合数有多个因数C. 质数是奇数,合数是偶数D. 质数和合数都是偶数10. 以下哪个数是最小的合数?A. 0B. 1C. 2D. 4二、填空题(每题2分,共20分)11. 质数是指只有________和它本身两个因数的自然数。
12. 合数是指除了1和它本身外,还有________的自然数。
13. 100以内的质数有________、________、________等。
14. 一个数的因数个数是偶数个,那么这个数至少是________。
15. 2是唯一的________,因为它是唯一的偶数质数。
16. 质数和合数都是________的子集。
17. 一个数如果只有1和它本身两个因数,那么它一定是________。
18. 一个数如果除了1和它本身外,还有其他因数,那么它一定是________。
19. 质数和合数的区别在于它们的因数个数,质数有________个因数,合数有________个因数。
20. 100以内最大的质数是________。
五下数学《合数、质数》参考答案

合数、质数1. 写出下面每个数的所有因数。
参考答案:试一试。
参考答案:2. 试一试。
参考答案:8=2×2×2;30=2×3×5。
课堂活动2. 把上面没有划去的数由小到大写下来,看看它们是什么数。
参考答案:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47;都是质数。
练习三1. 下面哪些数有因数2?哪些数有因数3?哪些数有因数5?解题思路:利用2,3,5的倍数特征判断。
参考答案:10、16、24、30、48有因数2;24、30、48、75、81有因数3;10、30、75有因数5。
2. 下面哪些数是质数?把它们圈起来。
剩下的数都是合数吗?参考答案:将3、17、83圈起来;剩下的数不都是合数,1不是合数,因为1既不是质数也不是合数。
3. 数学医院。
参考答案:第1小题错,5不是11的因数。
因为11=2×5+1,不是质数相乘的形式;第2小题错,例如:合数中的9不是偶数。
第3小题错,例如:质数中的2就不是奇数,而是偶数。
4. 从3张卡片0、4、5中选两张组成两位数。
(1)哪些数是2的倍数?(2)哪些数是5的倍数?参考答案:(1)40、50、54是2的倍数;(2)40、50、45是5的倍数。
5. 谁是小狗的主人?(连线)解题思路:先把每个人身上数分解质因数,再连线。
参考答案:6. 把下列各数写成质数相乘的形式。
参考答案:40=2×2×2×5;52=2×2×13;90=2×3×3×5;96=2×2×2×2×2×3。
7. 填表。
解题思路:把这2个数分解质因数,注意1和这个数本身也是这个数的因数。
参考答案:观察发现:除了1和这个数本身外,这个数的其它因数的乘积等于这个数。
8. 在1~100的自然数中,找出既是3的倍数也是5的倍数的所有偶数和所有奇数,说说你是怎么找的?解题思路:既是3的倍数也是5的倍数,一定也是15的倍数,先找出在100以内是15的倍数的两位数;再筛选奇偶数。
质数与合数答案

内部资料
1
【例6】 2004 7 20的计算结果能够整除三个连续自然数的乘积,这三个连续自然数之和 最小是多少? 【分析】 首先分解质因数,2004 7 20 2 2 2 2 3 5 7 167,其中最大的质因数是 167,所以所要求的三个连续自然数中必定有 167 本身或者其倍数. 165 3 51,166 283,168 2 2 2 3 7,169 1313,所以165166167,166167 168,167 168169 都没有 4个 2,不满足题意.说明 167 不可行.尝试334 167 2,335 5 67, 336 2 2 2 2 3 7,334 335 336 2 2 2 2 2 3 5 7 67 167, 包括了2004 7 20中的所有质因数,所以这组符合题意,以此三数之和最小为 1005. 【例7】大毛、二毛、三毛、小明四个人,他们的年龄一个比一个大2岁,他们四个人年龄的 乘积是48384。问他们四个人的年龄各是几岁? 【分析】 题中告诉我们, 48384 是四个人年龄的乘积,只要我们把48384 分解质因数, 再 按照每组相差2 来分成四个数相乘,这四个数就是四个人的年龄了。 48384 28 33 7 (22 3) (2 7) 24 (2 32) 12141618,得出这四个人的年龄分别 是12 岁、14 岁、16 岁、18 岁。由题意可知,这四个数是相差2 的四个整数。它们的积是 偶数,当然这四个数不是奇数,一定是偶数。又因为48384 的个位数字不是0,显然这四个 数中,没有个位数字是 0 的,那么这四个数的个位数字一定是 2、4、6、8。又因为104 48384,而48384 204,所以可以断定,这四个数一定是 12、14、16、18。也就是说,这四 个人的年龄分别是12 岁、14 岁、16 岁、18 岁。答:这四个人的年龄分别是12 岁、14 岁、 16 岁、18 岁。 【例8】 一个分数,分母是901,分子是一个质数.现在有下面两种方法:⑴ 分子和分母各 加一个相同的一位数;⑵ 分子和分母各减一个相同的一位数.用其中一种方法组成一个新 分数,新分数约分后是
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3讲质数与合数阿拉伯数字无疑是人类历史上最伟大的发明之一,其本身蕴含的规律更是数学学科中最璀璨的明珠!质数和合数的分类产生了哥德巴赫猜想等世界著名的命题,学习质数和合数,窥探数字的奥秘!对于自然数a 和b (0b ≠),若a b ÷没有余数,则a 是b 的倍数,b 是a 的约数。
特殊地,0是任意非零自然数的倍数。
质数:除了1和本身,没有其他约数的自然数叫质数。
合数:除了1和本身,还有其他约数的自然数叫合数。
特殊地,1既不是质数也不是合数。
最小的合数是4,最小的质数是2,且2是唯一的偶质数。
质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数。
互质数:公约数只有1的两个自然数,叫做互质数。
分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
编写说明知识要点【例1】对7个不同质数求和,和为58,则最大的质数是多少?【分析】七个质数若全部是奇数,则和一定是奇数,而58是偶数,则七个质数中必定含有唯一的偶质数2,所以最小的质数是2,从2开始,最小的七个连续质数是2,3,5,7,11,13,17,和为58,所以题中的七个质数只能是从2开始的七个连续质数,最大为17。
【温馨提示】2是唯一的偶质数,是偶数中的“叛徒”,所以质数也经常与奇偶性相结合,主要考察“2”.【拓展】已知a、b、c、d都是质数,且130959179+=+=+=+,求a、b、c、d的值。
a b c d【分析】959179+=+=+,所以b、c、d应该都是奇数,所以a是唯一的偶质数2,依此可求得:b c dc=,53b=,41d=.a=,372【例2】从小到大写出5个质数,使后面数都比前面的数大12。
这样的数有几组?【分析】考虑到质数中除了2以外其余都是奇数,因此这5个质数中不可能有2;又质数中除了2和5,其余质数的个位数字只能是1、3、7、9。
若这5个质数中最小的数其个位数字为1,则比它大24的数个位即为5,不可能是质数;若最小的数其个位数字为3,则比它大12的数个位即为5,也不可能为质数;由此可知最小的数其个位数字也不可能是7和9,因此最小的数只能是5,这5个数依次是5,17,29,41,53。
这样的数只有一组。
说明:除了2和5,其余的质数个位数字只能是1,3,7或9。
这是此题的突破口。
老师可以只推算个位数字就可以否定1、3、7、9,然后剩下个位数字是2和5,就很容易找到5。
【拓展】如果某整数同时具备如下三条性质:①这个数与1的差是质数,②这个数除以2所得的商也是质数,③这个数除以9所得的余数是5,那么我们称这个整数为幸运数。
求出所有的两位幸运数。
【分析】法一:由条件②可知,所求的数是偶数,因此可设所求的幸运数是质数p的两倍,即此幸运数为2p,则p的所有可能取值为5,7,11,13,17,19,23,29,31,37,41,43,47。
于是2p-1的所有可能取值为9,13,21,25,33,37,45,57,61,73,81,85,93。
根据题目条件①,2p-1应为质数,因此2p-1只可能为13,37,61或73。
再由条件③知2p-1除以9所得的余数应为4,于是2p-1只可能是13,从而这个幸运数只能是2p=14。
法二:从条件③入手,符合条件的偶数有:14,32,50,68,86,再由条件②排除掉32,50,68,最后由条件①排除掉86,所以这个幸运数是14。
【例3】四个连续自然数的乘积是3024,这四个自然数中最大的一个是多少?【分析】分解质因数43=⨯⨯,考虑其中最大的质因数7,说明这四个自然数中必定有一个是7的3024237倍数。
若为7,因3024不含有质因数5,那么这四个自然数可能是6、7、8、9或7、8、9、10(10仍含有5,不行),经检验6、7、8、9恰符合。
【温馨提示】根据乘积求因数,是分解质因数的一个重要运用.【拓展】2004×7×20的计算结果能够整除三个连续自然数的乘积,这三个连续自然数之和最小是多少?【分析】首先分解质因数,2004×7×20=2×2×2×2×3×5×7×167,其中最大的质因数是167,所以所要求的三个连续自然数中必定有167本身或者其倍数。
165=3×5×11,166=2×83,168=2×2×2×3×7,169=13×13,所以165×166×167,166×167×168,167×168×169都没有4个2,不满足题意。
说明167不可行。
尝试334=167×2,335=5×67,336=2×2×2×2×3×7,334×335×336=2×2×2×2×2×3×5×7×67×167,包括了2004×7×20中的所有质因数,所以这组符合题意,以此三数之和最小为1005。
【拓展】 甲数比乙数大5,乙数比丙数大5,三个数的乘积是6384,求这三个数。
【分析】 将6384分解质因数,6384=22223719⨯⨯⨯⨯⨯⨯,则其中必有一个数是19或19的倍数;经试算,19-5=14=2×7,19+5=24=2×2×2×3,恰好14×19×24=6384,所以这三个数即为14,19,24。
一般象这种类型的题,都是从最大的那个质因数去分析。
如果这道题里19不符合要求,下一个该考虑38,再下一个该考虑57,依此类推。
【例4】 一个长方体的长、宽、高是连续的3个自然数,它的体积是39270立方厘米,那么这个长方体的表面积是多少平方厘米?【分析】 方法一:39270=2×3×5×7×11×17,为三个连续自然数的乘积,所以33、34、35为满足题意的长、宽、高.则长方体的表面积为:2×(长×宽+宽×高+高×长)=2×(33×34+34×35+35×33) =6934(平方厘米).方法二:39270=2×3×5×7×11×17,为三个连续自然数的乘积,考虑质因数17,如果17作为长、宽或高显然不满足.当17与2结合即34作为长方体一条边的长度时有可能成立,再考虑质因数7,与34接近的数32~36中,只有35含有7,于是7与5的乘积作为长方体的一条边的长度.而39270的质因数中只剩下了3和1l ,所以这个长方体的大小为33×34×35.长方体的表面积为: 2×(3927033+3927034+3927035)=2×(1190+1155+1122)=2×3467=6934(平方厘米).【拓展】 在面前有一个长方体,它的正面和上面的面积之和是209,如果它的长、宽、高都是质数,那么这个长方体的体积是多少?【分析】 如上图,设长、宽、高依次为a 、b 、c ,有正面和上面的和为209ac ab +=.()209ac ab a c b +=⨯+=,而2091119=⨯.当11a =时,19c b +=,当两个质数的和为奇数,则其中必定有一个数为偶质数2,则217c b +=+;当19a =时,11c b +=,则29c b +=+,b 为9不是质数,所以不满足题意.所以它们的乘积为11217374⨯⨯=.【例5】 4只同样的瓶子内分别装有一定数量的油.每瓶和其他各瓶分别合称一次,记录千克数如下:8,9,10,11,12,13.已知4只空瓶的重量之和以及油的重量之和均为质数,求最重的两瓶内有多少油? 【分析】 由于每只瓶都称了三次,因此记录数据之和是4瓶油(连瓶)重量之和的3倍,即4瓶油(连瓶)共重(8+9+10+11+12+13)÷3=21(千克)而油重之和及瓶重之和均为质数,所以它们必为一奇一偶,由于2是唯一的偶质数,只有两种可能:(1)油重之和为19千克,瓶重之和为2千克,每只瓶重21千克,最重的两瓶内的油为13-12×2=12(千克).(2)油重之和为2千克,瓶重之和为19千克,每只瓶重194千克,最重的两瓶内的油为13-194×2=27(千克),这与油重之和2千克矛盾.因此最重的两瓶内共有12千克油.【例6】从20以内的质数中选出6个,然后把这6个数分别写在正方体木块的6个面上,并且使得相对两个面的数的和都相等。
将这样的三个木块掷在地上,向上的三个面的三个数之和可能有多少种不同的值?【分析】小于20的质数有2,3,5,7,11,13,17,19,其中5+19=7+17=11+13。
每个木块掷在地上后向上的数可能是六个数中的任何一个,三个数的和最小是5+5+5=15,最大是19+19+19=57,经试验,三个数的和可以是从15到57的所有奇数,所有可能的不同值共有22个。
【拓展】有些自然数能够写成一个质数与一个合数之和的形式,并且在不计加数顺序的情况下,这样的表示方法至少有13种,那么所有这样的自然数中最小的一个是多少?【分析】在所有的质数中,从小到大第13个质数是41,因此在13种分解方法中,质数最大的那一组至少是41445+=。
按题目要求分拆45有如下12种方法:4534254073811341332=+=+=+=+=+ =+=+=+=+=+=+=+17281926232229163114378414按题目要求分拆46有如下7种方法:=+=+=+=+=+=+=+462447391135133319273115379按题目要求分拆47有如下14种方法:=+=+=+=+=+=+=+472453444435426417401037=+=+=+=+=+=+=+因此满足题意的最小自然数是47。
1136133417301631182919282324【练习1】4个一位数的乘积是360,并且其中只有一个是合数,那么在这4个数字所组成的四位数中,最大的一个是多少?【分析】将360分解质因数得360=2×2×2×3×3×5,它是6个质因数的乘积。
因为题述的四个数中只有一个是合数,所有该合数必至少为6-3=3个质因数的积,又只有3个2相乘才能是一位数,所以这4个乘数分别为3,3,5,8,所组成的最大四位数是8533。